next up previous
Next: Polynomial (Mochizuki) cocycles Up: Definitions Previous: -Cocycle invariants

$ 3$-Cocycle invariants

Let $ X$ be a finite quandle and $ A$ an abelian group.

A function $ \theta : X \times X \times X \rightarrow A$ is called a quandle $ 3$-cocycle if it satisfies the $ 3$-cocycle condition

$\displaystyle {\theta (x,z,w)- \theta(x,y,w)+\theta(x,y,z)
-\theta(x*y,z,w)}$
    $\displaystyle +\theta(x*z,y*z,w)-\theta(x*w,y*w,z*w)=0,
\quad \forall x,y,z, w \in X,$  

and $ \theta(x,x,y)=0=\theta(x,y,y), \forall x, y \in X$.

Let $ {\cal C}$ be a coloring of arcs and regions of a given diagram $ K$. Let $ (x,y,z) (=(x_{\tau}, y_{\tau}, z_{\tau}))$ be the ordered triple of colors at a crossing $ \tau$, see Fig. [*]. Let $ \theta$ be a $ 3$-cocycle. Then the weight in this case is defined by $ B( {\cal C}, \tau)=\phi(x_{\tau}, y_{\tau}, z_{\tau})^{\epsilon(\tau)}$ where $ \epsilon(\tau)$ is $ \pm 1$ for positive and negative crossing, respectively. Then the ($ 3$-)cocycle invariant is defined in a similar way to $ 2$-cocycle invariants by $ \Phi_{\phi}(K) =\{ \sum_{\tau} B( {\cal C}, \tau )  \vert  {\cal C}\in {\rm Col_X(K)} \} $. The multiset version is defined similarly.



Masahico Saito - Quandle Website 2005-09-29