next up previous contents
Next: Quandle -Cocycle Invariants of Up: Quandle Cocycle Invariants of Previous: Quandle -Cocycle Invariants of   Contents

Quandle $ 3$-Cocycle Invariants of Classical Knots

Let $ X$ be a finite quandle and $ A$ an abelian group. A function $ \theta : X \times X \times X \rightarrow A$ is called a quandle $ 3$-cocycle if it satisfies the $ 3$-cocycle condition

$\displaystyle {\theta (x,z,w)- \theta(x,y,w)+\theta(x,y,z)
-\theta(x*y,z,w)}$
    $\displaystyle +\theta(x*z,y*z,w)-\theta(x*w,y*w,z*w)=0,$  

for all $ x,y,z, w \in X$, and $ \theta(x,x,y)=0=\theta(x,y,y)$ for all $ x, y \in X$.

Let $ \tilde{{\mathcal C}}\in {\rm Colr}_X(D)$ be a coloring of arcs and regions of a given diagram $ D$ of a classical knot $ K$. Let $ (x,y,z) (=(x_{\tau}, y_{\tau}, z_{\tau}))$ be the ordered triple of colors at a crossing $ \tau$, see Fig. [*] of Chapter $ 2$. Let $ \theta$ be a $ 3$-cocycle. Then the weight in this case is defined by $ B( {\mathcal C}, \tau)=\theta(x_{\tau}, y_{\tau}, z_{\tau})^{\epsilon(\tau)}$ where $ \epsilon(\tau)$ is $ \pm 1$ for positive and negative crossing, respectively. Then the ($ 3$-)cocycle invariant is defined in a similar way to $ 2$-cocycle invariants by $ \Phi_{\theta}(K) =\{ \sum_{\tau} B( {\mathcal C}, \tau )  \vert  {\mathcal C}\in {\rm Colr_X(D)} \} $. The multiset version is defined similarly.

Example 4.3   Let $ D$ be the closure of $ \sigma_1^3$, a diagram of a trefoil. Take $ X=R_3$ for a quandle and let $ \theta(x,y,z)=(x-y)(y^2+yz+z^2)z \pmod{3}$ for $ x, y, z \in R_3=\mathbb{Z}_3$. (This formula came from $ \theta (x,y,z)= (x-y) [(2 z^p - y^p) - (2z-y)^p ]/p \pmod{p}$ for $ p=3$ that will be discussed later.) If the source region of all three crossings is colored by 0, the top left and right arcs are colored by $ (1,2)$, respectively, then the contribution is

$\displaystyle \theta(0,1,2) + \theta(0,2,0) + \theta(0,0,1)=(-1)(1+2+1)(2) + 0 + 0 = 1 \quad {\rm in}
\quad \mathbb{Z}_3,$

and by computing all colors, we obtain $ \Phi_{\theta}(K)=9 + 18u$.


next up previous contents
Next: Quandle -Cocycle Invariants of Up: Quandle Cocycle Invariants of Previous: Quandle -Cocycle Invariants of   Contents
Masahico Saito - Quandle Website 2006-09-19