Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals
R. Österbacka, et al.
Science 287, 839 (2000);
DOI: 10.1126/science.287.5454.839

The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 3, 2007):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/287/5454/839

This article cites 3 articles, 1 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/287/5454/839#otherarticles

This article has been cited by 100 article(s) on the ISI Web of Science.

This article has been cited by 1 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/287/5454/839#otherarticles

This article appears in the following subject collections:
Chemistry
http://www.sciencemag.org/cgi/collection/chemistry

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/help/about/permissions.dtl
because their overall performance can be good. The available literature indicates that the actuated strains of silicone are greater than for any known high-speed electrically actuated material (that is, a bandwidth above 100 Hz). Silicone elastomers also have other desirable material properties such as good actuation pressures and high theoretical efficiencies (80 to 90%) because of the elastomers' low viscoelastic losses and low electrical leakage (12).

The VHB 4910 acrylic adhesive appears to be a highly energetic material. The energy density of the acrylic adhesive is three times that reported for single-crystal lead–zinc niobate/lead titanate (PZN-PT) piezoelectric that was discussed earlier. The energy density of the acrylic adhesive is three times that of conventional piezoelectrics. The density of both the silicones and the acrylic adhesive is approximately that of water and about one-seventh that of ceramic piezoelectrics.

Potential applications for dielectric elastomer actuators include robotics, artificial muscle, loudspeakers, solid-state linear actuators, and any application for which high-performance actuation is needed. A variety of actuator devices have been made with the silicone elastomers, including rolled actuators, tube actuators, unimorphs, bimorphs, and diaphragm actuators (12, 18, 19). Their performance is promising, but most of this work did not exploit the benefits of high prestrain or the new acrylic material. We have built an actuator using 2.6 g of stretched acrylic film that demonstrated a force of 29 N and displacement of 0.035 m, a high mechanical output for such a small film mass. The very high strains recently achieved suggest novel applications for shape-changing devices, and the specific energy density of the acrylic adhesive is so high that, if it could be realized in a practical device, it could replace hydraulic systems at a fraction of their weight and complexity. However, practical applications require that a number of other issues be addressed, such as high-voltage, high-efficiency driver circuits, fault-tolerant electrodes, long-term reliability, environmental tolerances, and optimal actuator designs.

Several spectroscopic methods were applied to study the characteristic properties of the electronic excitations in thin films of regioregular and regiordom polymerpolythiophene polymers. In the regioregular polymers, which form two-dimen-sional lamellar structures, increased interchain coupling strongly influences the traditional one-dimensional electronic properties of the polymer chains. The photogenerated charge excitations (polarons) show two-dimensional delocalization that results in a relatively small polaronic energy, multiple absorption bands in the gap where the lowest energy band becomes dominant, and associated infrared active vibrations with reverse absorption bands caused by electron-vibration interferences. The relatively weak absorption bands of the delocalized polaron in the visible and near-infrared spectral ranges may help to achieve laser action in nanocrystalline polymer devices using current injection.

Two-Dimensional Electronic Excitations in Self-Assembled Conjugated Polymer Nanocrystals

R. Österbacka,* C. P. An, X. M. Jiang, Z. V. Vardeny†

Self-assembled organic semiconductor polymers with supramolecular two-dimensional (2D) structures are of interest (1–11) because the traditional one-dimensional (1D) electronic properties of the π-conjugated polymer chains can be modified by the increased interchain coupling. The regioregular (RR)-substituted polythiophene polymers (7) such as poly(3-alkylthiophene) (P3AT), in which the alkyl side groups are attached to the third position of the thiophene rings in a head-to-tail stereoregular order (Fig. 1A), form thin films with nanocrystalline lamellae (6), resulting in relatively high hole mobilities of 0.1 cm² V⁻¹ s⁻¹ (8–11).

References and Notes
14. For a constant-volume material, (1 + s)(1 + s) = 1, where s is the length and width strains. As the film is squeezed, the area of compression (A)(s) can be expressed as (A)(s) = x0 - x0(1 + s)(1 + s) = y0(1 + s) - (x0y0)(1 + s), where x0, y0, and z0 are the initial length, width, and thickness of the active area of the film. The energy density converted to mechanical work is then the integral, over the displacement, of the compressive stress times the area of compression divided by the volume:

\[e = \int (1 + s)(1 + s) dz \]

where p is the assumed constant compressive stress. The minus sign is introduced because we are defining p as a positive number for compression (dz is negative over the integration). The assumption of constant p depends on the electronic driving circuitry, which ideally would adjust the applied voltage according to the varying thickness to hold the electric field constant. It can be shown that with a nonideal, constant-voltage drive, the term ln(1 + s) would be replaced by \(-\frac{1}{s} \). However, because the present focus is on the fundamental material performance rather than electronic performance, we make the simplest physical assumption that p is constant.

15. The silicone films are based on a polydimethyl siloxane backbone. They were diluted in naphtha solvent, spin-coated, cured, and released. The HS3 silicone was centrifuged to remove pigment particles before spin coating. VHB 4910 is available in film form with a removable liner backing. The acrylic elastomer is made of mixtures of aliphatic acrylate photocured during film processing. Its elasticity results from the combination of the soft, branched aliphatic groups and the light cross-linking of the acrylic polymer chains. The zero-strain thicknesses of the materials were typically 225 µm for HS3, 50 µm for CF19-2186, and 1000 µm for the VHB 4910 acrylic.

20. Much of this work was performed under the management of the Micromachine Center at the Industrial Science and Technology Frontier Program, Research and Development of Micromachine Technology of MITI (Japan), supported by the New Energy and Industrial Technology Development Organization.

September 1999; accepted 6 December 1999
Thin-film transistors of RR P3AT have already been used to fabricate integrated circuits (8), which, in conjunction with highly luminescent polymers, may also lead to all-organic light-emitting diodes and smart pixels (9). On the contrary, P3AT films of regiorandom (RRa) stereo order (Fig. 1B) do not show supramolecular structures, and the hole mobility is very small, on the order of $10^{-7} \text{V}^{-1} \text{s}^{-1}$ (8–11).

In this work, we applied linear and nonlinear optical spectroscopies to show that the charge carriers (or polarons) in the RR P3AT lamellae become delocalized over several polymer chains, consistent with the high hole mobility. These spectroscopies include photoinduced absorption (PIA), PIA detected magnetic resonance (PIA DMR), doping-induced absorption (DIA), and electroabsorption (EA). In all of these techniques, the changes ΔT in the films’ optical transmission T that are induced by the external perturbation were measured versus the photon frequency ω, using phase-sensitive methods, and the absorption modulation spectra $\Delta T(\omega)/T(\omega)$ were obtained. In our measurements, we used visible and near-infrared (NIR) as well as Fourier transform infrared spectrometers. In PIA (12), ΔT is photoinduced by a continuous-wave Ar$^+$ laser, which generates long-lived photoexcitations with density N. In PIA DMR (12), we modulated the density N by microwave absorption in a magnetic field to obtain the spin state of the photoexcitations that are associated with specific bands in the PIA spectrum. In the DIA measurements (13), the films were doped by exposure to I$_2$ vapor for a few seconds. The electric field in EA spectroscopy was on the order of 10^5V cm^{-1}, and we found a quadratic field-dependent EA in all cases (14).

We studied thin films of RR and RRa P3AT (Fig. 1, A and B), where the alkyl side group (CH$_2$)$_n$CH, varied from $n = 4$ to 12. We purchased the P3AT powders from Aldrich, and the films were evaporated from xylene solutions. The RR polymers (>99% head to tail) self-organized to form lamellae perpendicular to the substrate (11), with grain size of ~150 Å and high hole mobility (11). The interplane distance b (Fig. 1C) was measured by x-ray diffraction to be ~ 3.8 Å, whereas the in-plane, interchain distance a (Fig. 1C) varied from 13 to 27 Å for $n = 4$ to 12, respectively (6).

In a strictly 1D chain model (15), a single-charge carrier added onto the polymer chain forms a spin 1/2 polaron (Fig. 1D), with two correlated localized states in the gap between the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) (Fig. 1E). The two localized states are shifted inside the gap caused by the polaronic relaxation of the local electronic, bond dimerization (Δr in Fig. 1D), and lattice structure, and thus, polarons have two allowed optical transitions, P_1 and P_2 (Fig. 1E) below the HOMO-LUMO gap (15). Because of the relatively strong electronic-phonon coupling in π-conjugated polymers, the polaron relaxation renormalizes the frequencies of the Raman-active amplitude modes (16), which consequently borrow IR intensity from the electronic transitions. The small polaronic mass causes these IR-active vibrations (IRAVs) to have very large oscillator strengths that are comparable to that of the electronic transitions (17). As seen in Fig. 2A, two DIA bands, P_1 at 0.45 eV and P_2 at 1.3 eV, and associated IRAVs are indeed generated in RR poly(3-hexylthiophene) (P3HT) films upon I$_2$ doping. The large interstitial iodine ions may actually isolate the polymer chains and cause quasi-1D electronic properties. In addition, the dopant counterion may further localize the induced polaron excitation.

Similar results were obtained upon photogeneration of isolated RR P3HT chains in a polystyrene matrix (Fig. 2B). We observed two correlated PIA bands, P_1 at 0.4 eV and P_2 at 1.35 eV, with associated IRAVs. PIA DMR studies show a spin 1/2 resonance with Landé g factor of 2.012 associated with these PIA bands. We therefore conclude that, similar to I$_2$ doping, the long-lived photoexcitations in isolated RR P3HT chains are localized polarons, with polaronic relaxation energy given by $P_1 = 0.35$ eV, and 1D electronic properties.

The photoinduced charged excitations in RRa P3HT films are also 1D polarons with P_1 and P_2, and their optical properties were studied by PIA and DIA spectroscopies. PIA and DIA studies of RRa P3HT films show IR-active vibronic bands, with vibrational modes that are comparable to those of isolated 1D polarons in RR P3HT films (12).

Fig. 1. The (A) regioregular and (B) regiorandom stereo orders of P3AT polymer chains. R, alkyl group; S, sulfur. (C) The lamellae geometry of RR P3AT films. The substrate is perpendicular to the polymer planes. The in-plane interchain distance a and the interplane interchain distance b are assigned. (D) Schematic representation of a positive polaron on the P3AT backbone chain structure. Δr is the dimerization amplitude. The localized energy levels and allowed optical transitions of a positively charged (E) 1D polaron, P^+, and (F) 2D delocalized polaron, DP^+, where 2. ΔS is the level splitting, are shown. HOMO is blue-shifted and LUMO is red-shifted for the coupled chain (f) in relation to the uncoupled chain (e).

Fig. 2. (A) The DIA bands of RR P3HT film doped with I$_2$. Long-lived photoexcitations in films of (B) RR P3HT, where the broken line is for isolated chains in polystyrene, and (C) RRa P3HT, measured by PIA at 80 K, are shown. There is a change in scale at 0.6 eV (B) and 0.85 eV (C). The PIA bands (P_1, and P_2 at 1.1 eV, and DP_1) are associated with 1D polarons (Fig. 1E) and 2D delocalized polarons (Fig. 1F), respectively. IRAVs and T$_1$ are related to interchain singlet exciton and intrachain triplet exciton, respectively, whereas IRAVs are IR-active vibrations associated with the 1D polarons. h, Planck’s constant divided by 2π.

References

= 0.5 eV and strong IRAVs (Fig. 2C). However, these films also show an improved fluorescence efficiency with a singlet-exciton lifetime on the order of 0.5 ns, which allows efficient intersystem crossing. Thus, the dominant long-lived photoexcitations are triplet excitons with a PIA band at 1.5 eV (Fig. 2C); this excitation was identified in the PIA DMR spectrum by the associated triplet powder pattern at \(g = 4 \) \((12) \). We therefore conclude that the interchain coupling in RRa P3AT films is also weak and results in 1D electronic properties.

However, the PIA spectrum of an undoped RR P3HT film (Fig. 2B), where lamellae are formed \((11)\), substantially differs from those of the other films discussed above. The PIA spectrum shows multiple PIA bands: In addition to the \(P_1 \) band at 0.37 eV and the \(P_2 \) band at 1.3 eV as in isolated chains in polystyrene, the PIA spectrum in the RR P3HT film also contains three additional PIA bands, denoted \(P_D \) (for delocalized polarons) with a peak at 0.06 eV (Fig. 2B), interchain excitons (IEXs) at 1.05 eV, and \(D_2 \) at 1.7 eV. The \(P_1 \) and \(D_2 \) PIA bands are correlated: They have the same dependencies on the laser excitation intensity \(I_L \), laser modulation frequency, and temperature. Moreover, we found from PIA DMR measurements that the two \(P_1 \) bands (\(D_{11} \) and \(D_{12} \)) are also associated with spin \(-1/2\) excitations, but with \(g = 2.008 \), compared to \(g = 2.012 \) for the \(P_1 \) bands, \(P_1 \) and \(P_2 \). The IEX band, however, does not show any PIA DMR and therefore is due to spin singlet excitations. In addition, it is not correlated with the \(P_1 \) and \(P_2 \) bands and is not generated by charge injection \((11)\). We conjecture, therefore, that the IEX band is due to a neutral, spin singlet excitation. Because intrachain excitons are short-lived in \(\pi \)-conjugated polymers with a lifetime on the order of 1 ns, we think that IEX is caused by interchain excitons \((18)\). We note that the \(P_1 \) bands are not correlated with the \(D_2 \) bands; in addition to a different \(g \) value and microwave modulation frequency dependence in PIA DMR, the \(P_1 \) bands saturate more easily than the \(D_2 \) bands with \(I_L \). We therefore conclude that the \(D_2 \) bands are due to delocalized polarons in the RR P3HT ordered phase (in the lamellae), whereas the \(P_1 \) bands are due to localized polarons in disordered P3HT chains surrounding the lamellae.

The influence of increasing the interchain coupling \(t_{1b} \) on the stability, delocalization, and other electronic properties of polaron excitations in \(\pi \)-conjugated polymer chains has been investigated theoretically \((19-24)\). It has been predicted that, for \(t_{1b} \) on the order of 0.15 eV, the polaron excitation substantially delocalizes over adjacent chains. Similar to the case of \(\pi \) dimers \((25, 26)\), we assumed that neighboring chains are strongly coupled, which results in an energy splitting \(2 \Delta (= 2t_{1b}) \) for each of the two polaron levels in the gap, whereas the HOMOLUMO gap shrinks by the same amount (Fig. 1F). For the two allowed transitions, \(D_{11} \) and \(D_{12} \), we then find \(D_{11} = P_1 - 2 \Delta \) and \(D_{12} = P_2 + 2 \Delta \), and thus, the sum of the transition energies is conserved; that is, \(D_{11} + D_{12} = P_1 + P_2 \). Moreover, the intensity ratio of the \(D_{11} \) transitions is very different from that of isolated polarons, with the lowest energy transition (\(D_{11} \)) becoming dominant \((24)\). The four new gap states and associated allowed optical transitions related to a DP\(^{+}\) excitation (Fig. 1F) can be compared with the \(D_{11} \) bands of the RR P3HT film (Fig. 2B). We identify two PA bands related to the delocalized polaron excitation, \(D_{11} = 0.06 \) eV and \(D_{12} = 1.8 \) eV, where the \(D_{12} \) band is the strongest. We also note that \(P_1 + P_2 = 1.75 \) eV, whereas \(P_1 + P_2 = 1.85 \) eV, in agreement with the conservation of the transition energies concluded from the above model.

The \(D_{11} \) band (Fig. 2B) is superimposed by narrow bands with some resemblance to the IRAVs in \(L_2 \)-doping films (Fig. 2A) or in PIA of RRa films (Fig. 2C). However, a more detailed examination of the \(D_{11} \) band (Fig. 3) indicates that this is not true. First, the narrow superimposed features appear to have negative absorption contributions with antiresonances (ARs) rather than peaks (or resonances), as for regular IRAVs \((16, 17)\). Second, there are many more AR bands than IRAVs bands. Third, the AR bands diminish at low frequency, on the DP\(^{+}\) absorption tail. Finally, the AR frequencies are very near the frequencies of the Raman-active modes and the IR-active modes of the RR P3HT film (Fig. 3). It seems, therefore, that the AR bands are due to Fano-type interferences \((27)\) between the discrete vibrational lines (both Raman and IR active) and the \(D_{11} \) electronic band. Such AR bands cannot be described as a set of independent Fano interferences, but the complete phonon propagator has to be considered. In this case, AR bands appear in between each adjacent pair of Raman-active modes \((27)\). Our results differ substantially from this theoretical prediction: First, we observe AR bands with Raman-active mode as well as with IR-active modes. Second, the AR frequencies are very close to the Raman and IR frequencies, indicating a reduced electron-phonon coupling. We speculate that both of these findings may be related to the acquired 2D properties of the delocalized polaron excitation caused by the increased interchain coupling.

Increasing the side-chain length \(n \) of the polymers may decrease \(t_{1b} \) \((28)\) because the interplane interchain separation \(b \) (Fig. 1C) increases \((6)\). The change in \(t_{1b} \) may then be reflected in the delocalized polaron properties: The \(D_{11} \) peak energy will increase with decreasing \(t_{1b} \) \((24)\). The \(D_{11} \) band in various RR P3AT films blue-shifts from \(n > 6 \) (Fig. 3), indicating that, indeed, the delocalized polaron excitation becomes more localized when \(b \) increases. However, the \(D_{11} \) peak increases again for \(n = 4 \) \((\text{RR poly}(3\text{-butylthiophene}) (P3BT)\)).

The reason for this increase is not exactly understood at present; however, it may be related to the difficulties that we encountered in dissolving the RR P3HT powder.

We studied the influence of the increased structural order in RR P3HT films on the interchain excitons by EA spectroscopy. We found that, in addition to spectral features at 2 eV...
Cool Glacial Temperatures and Changes in Moisture Source Recorded in Oman Groundwaters
Constanze E. Weyhenmeyer,1 Stephen J. Burns,1 H. Niklas Waber,1 Werner Aeschbach-Hertig,2 Rolf Kipfer,2 H. Hugo Loosli,3 Albert Matter1

Concentrations of atmospheric noble gases (neon, argon, krypton, and xenon) dissolved in groundwaters from northern Oman indicate that the average ground temperature during the Late Pleistocene (15,000 to 24,000 years before present) was 6.5° ± 0.6°C lower than that of today. Stable oxygen and hydrogen isotopic groundwater data show that the origin of atmospheric water vapor changed from a primarily southern, Indian Ocean source during the Late Pleistocene to a dominantly northern, Mediterranean source today. The reduced northern water vapor source is consistent with a drier Last Glacial Maximum through much of northern Africa and Arabia.

Large discrepancies exist in estimates of tropical glacial-interglacial temperature changes during the Pleistocene-Holocene transition (1–4). These discrepancies are an obstacle to producing predictive general circulation models (GCMs) of climate. Reconstructions of sea surface temperature (SST) based on transfer function analyses of planktonic foraminiferal assemblages originally indicated that there was less than a 2°C change in tropical SST between the Last Glacial Maximum (LGM) and the Holocene (5–8). Alkenones in deep-sea sediments suggest only a slightly larger glacial-interglacial increase in SST of 2° to 3°C (9, 10). More recent studies of Sr/Ca ratios and δ18O (11) records of corals, however, indicate that tropical SST was as much as 5°C cooler during the LGM than today (12). The coral records are more consistent with available continental palaeoclimate studies on vegetation, snow lines, tropical ice cores, and groundwater, which indicate an even larger tropical Pleistocene-Holocene SST increase of 5° to 8°C (13–20).

SST maps for the LGM are commonly used as boundary conditions for atmospheric circulation models of climate change or as an independent test for GCM simulations (2, 3). Atmospheric circulation models that use CLIMAP SST distributions as boundary conditions generally predict little continental glacial-interglacial temperature changes for tropical regions (2), which is inconsistent with most available geological proxies. More recent simulations with modified SST fields (3) and coupled atmosphere-ocean GCMs (4) that include ocean dynamics (e.g., thermohaline circulation

References and Notes
28. The interchain coupling constant t may not be related to the in-plane interchain distance a (Fig. 1C) in a simple way. In fact, it may be a complicated function of a, as was previously realized in the field of charge-transfer salts.
31. We thank H. Sirringhaus for sending us a preprint of his work (11) before publication and S. Mazumdar for useful discussions. Supported in part by NSF grant DMR 97-32820 and U.S. Department of Energy grant ER 45490. R.O. acknowledges funding from the Swedish Academy for Engineering Sciences in Finland, the Neste Foundation, and the Ehrenrooth Foundation.

September 1999; accepted 9 December 1999