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Abstract

By combining two pieces of bi-directional Wronskian solutions, molecule so-
lutions in Wronskian form are presented for the finite, semi-infinite and infinite
bilinear 2D Toda molecule equations. In the cases of finite and semi-infinite lat-
tices, separated-variable boundary conditions are imposed. The Jacobi identities
for determinants are the key tool employed in the solution formulations.
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1 Introduction

The study of soliton equations presents interesting mathematical theories to deal with

nonlinear equations. Wronskian determinants, double Wronskian determinants and bi-

directional Wronskian determinants are used to construct exact solutions to soliton

equations, among which are the KdV equation, the Boussinesq equation, the KP equa-

tion, the Toda lattice equation and the 2D Toda lattice equation (see, e.g., [1]-[10]).

The Plücker relations for determinants and the Jacobi identities for determinants are

the key tools employed in formulating exact solutions to soliton equations [1, 11].

Generic multi-exponential wave solutions can be constructed by the multiple exp-

function method [12]. The approach generalizes the transformed rational function

method [13] and the Hirota perturbation technique [1], and it is very powerful while

applying computer algebra systems [12]. The resulting multiple wave solutions contain

linear combination solutions of exponential waves [14, 15] and resonant solitons [16].
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This also shows that soliton equations can possess linear superpositions among partic-

ular solutions [14, 15], and thus possess linear subspaces of solutions. Therefore, though

soliton equations are nonlinear, they are good neighbors to linear equations.

However, given the complexity that nonlinear equations bring, there is a need to

develop more explicit and systematic formulations for generating exact solutions. This

paper is one of such explorations.

In this paper, we would like to formulate molecule bi-directional Wronskian solu-

tions for the 2D Toda molecule (2DTM) equation in bilinear form:

∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1

in three cases of the finite lattice: 1 ≤ n ≤ N , the semi-infinite lattice: 1 ≤ n < ∞, and

the infinite lattice: −∞ < n < ∞. For the first two cases, we impose the separated-

variable boundary conditions:

τ0 = φ1(x)χ1(y), τN+1 = φ2(x)χ2(y);

and

τ0 = φ(x)χ(y);

respectively, where all φ- and χ-functions are arbitrarily given. The difference among

these three cases is that we simply don’t require any boundary conditions at n = ±∞.

We will show that combining two pieces of bi-directional Wronskian solutions [17] yields

a required molecule solution. By molecule solutions, we mean a kind of determinant

solutions whose determinants have orders depending on the discrete independent vari-

able n. The Jacobi identities for determinants are the key tool employed in the solution

formulations

2 Bi-directional Wronskians and the Jacobi iden-

tity

We provide the definition of the bi-directional Wronskian determinant and discuss the

Jacobi identity for determinants for the reader’s convenience and ease of reference.

A bi-directional Wronskian determinant is defined as follows.

Definition 2.1 A bi-directional Wronskian determinant of order n associated with
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Υ = Υ(x, y) is defined by

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Υ

∣∣∣∣
1≤i,j≤n

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Υ
∂

∂y
Υ · · · ∂n−1

∂yn−1
Υ

∂

∂x
Υ

∂2

∂x∂y
Υ · · · ∂n

∂x∂yn−1
Υ

...
...

. . .
...

∂n−1

∂xn−1
Υ

∂n

∂xn−1∂y
Υ · · · ∂2n−2

∂xn−1∂yn−1
Υ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.1)

The determinant in (2.1) is a Wronskian determinant in both horizontal and vertical

directions. That is why it is called bi-directional.

Let us next state the Jacobi identity and give a direct proof by using the Laplace

Expansion Theorem. Let n > 2 be an integer, A = (ai,j)1≤i,j≤n be a square matrix of

order n and D denote the determinant of A, that is,

D = det(A) = |ai,j|1≤i,j≤n. (2.2)

So D is an nth-order determinant.

The (i, j) minor of A is defined as the (n − 1)th-order determinant obtained by

striking out the ith row and the jth column of D, denoted by D

[
i

j

]
. All such

minors are called first minors. The (i, j; k, l) minor of A is defined as the (n − 2)th-

order determinant obtained by striking out the ith and jth rows and the kth and lth

columns of D, denoted by D

[
i, j

k, l

]
. All such minors are called second minors.

Now we can state the Jacobi identity [1, 18] as follows.

Theorem 2.1 Let n > 3, A = (ai,j)1≤i,j≤n and D = det(A). For 1 ≤ i 6= j ≤ n, we

have

D

[
i

i

]
D

[
j

j

]
−D

[
i

j

]
D

[
j

i

]
= D

[
i, j

k, l

]
D, (2.3)

where D

[
i

j

]
and D

[
i, j

k, l

]
are the (i, j) minor and the (i, j; k, l) minor of A, re-

spectively.

Proof: By the properties of determinants, without loss of generality, we only need to

verify the Jacobi identity for i = 1 and j = 2. Let us denote the (i, j) cofactor of A by
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Ci,j:

Ci,j = (−1)i+jD

[
i

j

]
. (2.4)

We partition the matrix A into four blocks as follows:

A =

[
A1 A2

A3 A4

]
, A1 =

[
a1,1 a1,2

a2,1 a2,2

]
. (2.5)

By the Laplace Expansion Theorem, we have

[
A1 A2

A3 A4

]




C1,1 C1,2

C2,1 C2,2

0

C3,1 C3,2

...
...

Cn,1 Cn,2

1 0

. . .

0 1




=




D 0

0 D
A2

0 A4


 .

Taking determinants on both sides leads to

D(C1,1C2,2 − C1,2C2,1) = D

[
1, 2

1, 2

]
D2. (2.6)

If D 6= 0, this gives the desired Jacobi identity, upon using (2.4). If D = 0, we

take another matrix A′ = A + εIn, where In is the nth-order identity matrix, and then

taking the limit ε → 0 of the resulting identity (2.6) associated with A′ yields the

desired Jacobi identity. Note that we have used a fact that if ε is small enough, the

matrix A′ is invertible. ¤

3 Combined bi-directional Wronskian solutions

Let us now start to construct combined bi-directional Wronskian solutions to the 2D

Toda molecule (2DTM) equation

∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1, (3.1)

which is equivalent to

DxDyτn · τn = 2τn+1τn−1, (3.2)

where Dx and Dy are Hirota’s differential operators [1, 19]. We will present the solution

formulations in the finite, semi-infinite and infinite cases separately.
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3.1 Finite lattice

We consider the finite 2DTM equation

∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1, 1 ≤ n ≤ N, (3.3)

with the following separated-variable boundary conditions:

τ0 = φ1(x)χ1(y), τN+1 = φ2(x)χ2(y), (3.4)

where φi and χi, i = 1, 2, are four arbitrarily given functions of the indicated vari-

ables. We apply the Jacobi identities for determinants to guarantee a class of combined

molecule bi-directional Wronskian solutions to this boundary problem.

Set N = N1 + N2 + 4, where N1 and N2 are non-negative integers. Let us combine

two pieces of bi-directional Wronskian determinant functions to introduce τn as follows:





τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Φ(x, y)

∣∣∣∣
1≤i,j≤N1−n+1

, 0 ≤ n ≤ N1,

τN1+1 = 1, τN1+2 = 0, τN1+3 = 0, τN1+4 = 1,

τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Ψ(x, y)

∣∣∣∣
1≤i,j≤n−N+N2

, N1 + 5 ≤ n ≤ N + 1.

(3.5)

One piece is defined over the N1 lattice points: 1 ≤ n ≤ N1, and the other piece, over

the N2 lattice points: N −N2 + 1 = N1 + 5 ≤ n ≤ N . In between, set τn as either zero

or one.

We will prove that this combined Wronskian determinant function solves the 2DTM

equation (3.3) with the boundary conditions (3.4). Note that the two involved deter-

minants in the presented solution formulation are bi-directional Wronskian determi-

nants and their orders depend on the discrete independent variable n. Therefore, (3.5)

presents combined molecule bi-directional Wronskian solutions.

Solving the 2DTM equation: Let us first prove that τn defined by (3.5) solves the

2DTM equation (3.3) when 1 ≤ n ≤ N1. For brevity, we assume that

Φi,j =
( ∂

∂x

)i( ∂

∂y

)j

Φ(x, y), i, j ≥ 0. (3.6)

If n = N1, the 2DTM equation (3.3) becomes

Φ1,1Φ0,0 − Φ1,0Φ0,1 =

∣∣∣∣∣
Φ0,0 Φ0,1

Φ1,0 Φ1,1

∣∣∣∣∣ , (3.7)
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which is obviously true. Let 1 ≤ n ≤ N1−1. We introduce three kinds of determinants:

D1 =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Φ(x, y)

∣∣∣∣
1≤i,j≤N1−n+2

= τn−1, (3.8)

D1

[
i

j

]
= the determinant obtained by striking out the ith row

and jth column of D1,

(3.9)

D1

[
i, j

k, l

]
= the determinant obtained by striking out the ith

and jth rows and the kth and lth columns of D1,

(3.10)

which are the determinant, and a first minor and a second minor of a corresponding

matrix, respectively. Using this determinant notation, we can easily compute

τn = D1

[
N1 − n + 2

N1 − n + 2

]
, τn+1 = D1

[
N1 − n + 1, N1 − n + 2

N1 − n + 1, N1 − n + 2

]
,

∂τn

∂x
= D1

[
N1 − n + 1

N1 − n + 2

]
,

∂τn

∂y
= D1

[
N1 − n + 2

N1 − n + 1

]
,

∂2τn

∂x∂y
= D1

[
N1 − n + 1

N1 − n + 1

]
.

Now it follows that for each 1 ≤ n ≤ N1− 1, the 2DTM equation (3.3) is equivalent to

D1

[
N1 − n + 1

N1 − n + 1

]
D1

[
N1 − n + 2

N1 − n + 2

]
−D1

[
N1 − n + 1

N1 − n + 2

]
D1

[
N1 − n + 2

N1 − n + 1

]

= D1

[
N1 − n + 1, N1 − n + 2

N1 − n + 1, N1 − n + 2

]
D1.

These are simply the Jacobi identities for determinants. Therefore, τn defined by (3.5)

solves (3.3) when 1 ≤ n ≤ N1.

When n = N1 + i, 1 ≤ i ≤ 4, it is direct to check that the 2DTM equation (3.3)

holds.

Let us now similarly prove that τn defined by (3.5) solves the 2DTM equation (3.3)

when N1 + 5 ≤ n ≤ N . Assume for brevity that

Ψi,j =
( ∂

∂x

)i( ∂

∂y

)j

Ψ(x, y), i, j ≥ 0. (3.11)

If n = N1 + 5, the 2DTM equation (3.3) reduces to

Ψ1,1Ψ0,0 −Ψ1,0Ψ0,1 =

∣∣∣∣∣
Ψ0,0 Ψ0,1

Ψ1,0 Ψ1,1

∣∣∣∣∣ , (3.12)
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which is clearly right. Let N1 + 6 ≤ n ≤ N . To apply the Jacobi identities for determi-

nants, we introduce three kinds of determinants:

D2 =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Ψ(x, y)

∣∣∣∣
1≤i,j≤n−N+N2+1

= τn+1, (3.13)

D2

[
i

j

]
= the determinant obtained by striking out the ith row

and jth column of D2,

(3.14)

D2

[
i, j

k, l

]
= the determinant obtained by striking out the ith

and jth rows and the kth and lth columns of D2,

(3.15)

which are the determinant, and a first minor and a second minor of a corresponding

matrix, respectively. In terms of this determinant notation, we can easily obtain

τn = D2

[
n−N + N2 + 1

n−N + N2 + 1

]
, τn−1 = D2

[
n−N + N2, n−N + N2 + 1

n−N + N2, n−N + N2 + 1

]
,

∂τn

∂x
= D2

[
n−N + N2

n−N + N2 + 1

]
,

∂τn

∂y
= D2

[
n−N + N2 + 1

n−N + N2

]
,

∂2τn

∂x∂y
= D2

[
n−N + N2

n−N + N2

]
.

Then it follows from these formulas that for each N1 +6 ≤ n ≤ N , the 2DTM equation

(3.3) is equivalent to

D2

[
n−N + N2

n−N + N2

]
D2

[
n−N + N2 + 1

n−N + N2 + 1

]

−D2

[
n−N + N2

n−N + N2 + 1

]
D2

[
n−N + N2 + 1

n−N + N2

]

= D2

[
n−N + N2, n−N + N2 + 1

n−N + N2, n−N + N2 + 1

]
D2.

These are exactly the Jacobi identities for determinants. Therefore, τn defined by (3.5)

solves the 2DTM equation (3.3) when N1 + 5 ≤ n ≤ N .

Satisfying the boundary conditions: To satisfy two boundary conditions in (3.4),

we require that

Φ(x, y) =

N1+1∑
j=1

uj(x)vj(y), Ψ(x, y) =

N2+1∑
j=1

rj(x)sj(y), (3.16)

where all functions uj, vj, rj and sj are to be determined.
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Let us first compute τ0 as follows:

τ0 =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)k−1

Φ(x, y)

∣∣∣∣
1≤i,k≤N1+1

=

∣∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)k−1
N1+1∑
j=1

uj(x)vj(y)

∣∣∣∣∣
1≤i,k≤N1+1

=

∣∣∣∣∣
N1+1∑
j=1

( ∂

∂x

)i−1

uj(x)
( ∂

∂y

)k−1

vj(y)

∣∣∣∣∣
1≤i,k≤N1+1

= det(UN1+1VN1+1) = det(UN1+1) det(VN1+1), (3.17)

where

UN1+1 =
( ∂i−1

∂xi−1
uj(x)

)
1≤i,j≤N1+1

, VN1+1 =
( ∂k−1

∂xk−1
vj(y)

)
1≤j,k≤N1+1

. (3.18)

We can now take

φ1(x) = det(UN1+1), χ1(y) = det(VN1+1). (3.19)

For two given functions φ1(x) and χ1(y), we fix N1 functions among uj and vj, 1 ≤
j ≤ N1 + 1, and then the conditions in (3.19) present two linear ordinary differential

equations on the unfixed functions, let us say uk and vk, respectively. The existence

theory of linear differential equations guarantees that we have solutions for uk and vk.

Therefore, the first boundary condition in (3.4) can be satisfied.

Similarly, it can be shown that

τN+1 = det(RN2+1) det(SN2+1), (3.20)

where

RN2+1 =
( ∂i−1

∂xi−1
rj(x)

)
1≤i,j≤N2+1

, SN2+1 =
( ∂k−1

∂xk−1
sj(y)

)
1≤j,k≤N2+1

. (3.21)

By the same reason, we can achieve

φ2(x) = det(RN2+1), χ2(y) = det(SN2+1). (3.22)

Therefore, the second boundary condition in (3.4) can be satisfied, too.

To conclude, τn defined by (3.5) and (3.16) solves the 2DTM equation (3.3) and

satisfies the boundary conditions in (3.4).
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3.2 Semi-infinite lattice

There are two semi-infinite lattice equations: one is with −∞ < n ≤ K and the other is

with L ≤ n < ∞, where K,L ∈ Z are arbitrarily fixed. Note that the 2DTM equation

is invariant under the reflection n → −n and the translation n → n+m with any given

m ∈ Z. Thus we only need to consider the following semi-infinite 2DTM equation with

one separated-variable boundary condition at n = 0:





∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1, 1 ≤ n < ∞,

τ0 = φ(x)χ(y),

(3.23)

where φ and χ are two arbitrarily given functions of the indicated variables.

In (3.5), setting M = N1 ≥ 0 and letting N →∞, we obtain the required combined

molecule bi-directional Wronskian solution:




τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Φ(x, y)

∣∣∣∣
1≤i,j≤M−n+1

, 0 ≤ n ≤ M,

τM+1 = 1, τM+2 = 0, τM+3 = 0, τM+4 = 1,

τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Ψ(x, y)

∣∣∣∣
1≤i,j≤n−M−4

, M + 5 ≤ n < ∞,

(3.24)

where Ψ(x, y) is arbitrary but Φ(x, y) is defined by

Φ(x, y) =
M+1∑
j=1

uj(x)vj(y), (3.25)

which satisfies
∣∣∣∣

∂i−1

∂xi−1
uj(x)

∣∣∣∣
1≤i,j≤M+1

= φ(x),

∣∣∣∣
∂k−1

∂xk−1
vj(y)

∣∣∣∣
1≤j,k≤M+1

= χ(y). (3.26)

As shown before, there is no problem for existence of those functions uj’s and vj’s.

3.3 Infinite lattice

The infinite 2DTM equation is

∂2τn

∂x∂y
τn − ∂τn

∂x

∂τn

∂y
= τn+1τn−1, −∞ < n < ∞. (3.27)
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Similarly, by extending two boundaries 0 and N to −∞ and ∞, respectively, we can

obtain a class of combined molecule bi-directional Wronskian solutions:




τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Φ(x, y)

∣∣∣∣
1≤i,j≤M−n+1

, −∞ < n ≤ M,

τM+1 = 1, τM+2 = 0, τM+3 = 0, τM+4 = 1,

τn =

∣∣∣∣
( ∂

∂x

)i−1( ∂

∂y

)j−1

Ψ(x, y)

∣∣∣∣
1≤i,j≤n−M−4

, M + 5 ≤ n < ∞,

(3.28)

where M ∈ Z, Φ(x, y) and Ψ(x, y) are all arbitrary.

4 Concluding remarks

The combined molecule bi-directional Wronskian solutions have been presented for the

finite, semi-infinite and infinite bilinear 2D Toda molecule (2DTM) equations. In the

first two cases, separated-variable boundary conditions were imposed. The Jacobi iden-

tities for determinants are the key tool employed. The success is to combine two pieces

of molecule bi-directional Wronskian solutions in formulating the solutions. Between

the two pieces of molecule bi-directional Wronskian solutions, we defined τn as either

zero or one to move from one piece to the other piece following the 2DTM equations.

It is known that the finite 2DTM equation (3.3) has double Wronskian solutions

which satisfy the boundary conditions [20]:

τ0 = φ(x), τN+1 = χ(y), (4.1)

where φ and χ are arbitrary functions of the indicated variables. Our construction tells

that there exist combined molecule bi-directional Wronskian solutions to the finite

2DTM equation (3.3) which satisfy the above boundary conditions. These solutions

correspond to the case of χ1(y) = 1 and φ2(x) = 1 in our formulation of solutions for

(3.3). Similarly, we can get combined molecule bi-directional Wronskian solutions to

the finite 2DTM equation (3.3) which satisfy the following boundary conditions:

τ0 = φ(x), τN+1 = ψ(x)χ(y), (4.2)

where φ, ψ and χ are arbitrary functions of the indicated variables. Moreover, forcing

one of the boundary conditions in (4.1) to be constant (there is no problem for existence

of such double Wronskian solutions, based on the previous discussion on the separated-

variable boundary conditions using the existence theory of solutions of linear differential

equations), the same idea in our construction can be used to connect the corresponding
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double Wronskian solution with a molecule bi-directional Wronskian solution to form

a new solution to the finite, semi-infinite or infinite 2DTM equations. But this kind of

solutions is not molecule.
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