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Abstract

In contrast to mono-constrained 
ows with N degrees of freedom, binary constrained

ows of soliton equations, admitting 2 � 2 Lax matrices, have 2N degrees of freedom.
By means of the existing method, Lax matrices only yield the �rst N pairs of canonical
separated variables. An approach for constructing the second N pairs of canonical sepa-
rated variables with additional N separated equations is introduced. The Jacobi inversion
problems for binary constrained 
ows are then established. Finally, the separability of
binary constrained 
ows together with the factorization of soliton equations by the spatial
and temporal binary constrained 
ows leads to the Jacobi inversion problems for soliton
equations.

1. Introduction

The separation of variables is one of the most universal methods for
solving completely integrable models, both classical and quantum. If a
�nite-dimensional integrable Hamiltonian system (FDIHS) with m degrees
of freedom has m functionally independent and involutive integrals of mo-
tion Pi; 1 � i � m, the separation of variables [1, 2] means to construct m
pairs of canonical variables

fuk; ulg = fvk; vlg = 0; fvk; ulg = Ækl; 1 � k; l � m; (1)

and m separated equations

fk(uk; vk; P1; :::; Pm) = 0; 1 � k � m: (2)

Such pairs of variables are called canonical separated variables.
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For a FDIHS admitting a 2�2 Lax matrix, there exists a general method
to construct canonical separated variables based on the Lax matrix (for ex-
ample, see [1]-[7]). The corresponding separated equations enable us to
express the generating function of canonical transformation in a completely
separated form as an Abelian integral on the associated invariant spectral
curve. The resulting linearizing map is essentially the Abel map to the Ja-
cobi variety of the spectral curve, thereby providing a link with the algebro-
geometric linearization method [8]. An important feature of the separation
of variables for a FDIHS is that the number of pairs of canonical separated
variables must be equal to the number of degrees of freedom. However, in
some cases, it is found that the existing method may not yield enough pairs
of canonical separated variables. It has been a challenging problem [1] how
to construct additional canonical separated variables which are required for
separation of variables.

Binary constrained 
ows of soliton hierarchies, recently attracting much
attention (for example, see [10]-[13]), are such speci�c cases, which need
to be handled by a di�erent approach. The degree of freedom of binary
constrained 
ows admitting 2� 2 Lax matrices is 2N . By using the existing
method [1, 2], the Lax matrices allow to directly construct the �rst N pairs
of canonical separated variables u1; :::; uN and v1; :::; vN . In this report,
we would like to show an approach for determining the second N pairs
of canonical separated variables and N additional separated equations for
binary constrained 
ows. The crucial point is to construct a new set of
generating functions eB(�) and eA(�) de�ning uN+1; :::; u2N by the set of
zeros of eB(�) and vN+k = eA(uN+k); 1 � k � N: To keep the canonical
conditions (1) and obtain the separated equations (2), it is found that certain
commutator relations need to be imposed on eB(�) and eA(�), and eA(�) has
some link with the common generating function of integrals of motion of
binary constrained 
ows, which also provides a clue to construct the eB(�)
and eA(�). Having analyzed the separation of variables, the Jacobi inversion
problems can be naturally presented for binary constrained 
ows.

The separation of variables for soliton equations consists of two steps of
separation of variables [7]. The �rst step is to factorize 1 + 1 dimensional
soliton equations into two commuting spatial and temporal FDIHSs resulted
from the spatial and temporal binary constrained 
ows. The second step
is to analyze the separation of variables for the spatial and temporal bi-
nary constrained 
ows to produce their Jacobi inversion problems. Finally,
combining the factorization of soliton equations with the Jacobi inversion
problems for the spatial and temporal binary constrained 
ows enables us
to establish the Jacobi inversion problems for soliton equations. We will
use the AKNS equations [9] to illustrate the whole process. Of course, the
approach adopted can be applied to the whole AKNS hierarchy and other
soliton hierarchies.
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2. Separation of variables for binary constrained 
ows

Let us �rst describe binary constrained 
ows admitting 2 � 2 Lax ma-
trices, and then show an approach for constructing 2N pairs of canonical
separated variables.

Assume that a soliton hierarchy

utn = Kn(u) = J
Æ ~Hn

Æu
; u = (u1; :::; uq)

T ; n � 0; (3)

where J is a Hamiltonian operator, is determined by a spectral problem

�x = U� = U(u; �)�; U = (Uij)2�2; � = (�1; �2)
T ; (4)

and the associated spectral problems

�tn = V (n)� = V (n)(u; ux; :::;�)�; V
(n) = (V

(n)
ij )2�2:

The compatability conditions of the adjoint spectral problem

 x = �UT (u; �) ;  = ( 1;  2)
T (5)

and the adjoint associated spectral problems

 tn = �V (n)T = �V (n)T (u; ux; :::;�) 

still give rise to the same soliton hierarchy (3).
Upon introducing N distinct eigenvalues �1; :::; �N , we have the spatial

system
�(j)x = U(u; �j)�

(j);  (j)x = �UT (u; �j) 
(j); (6)

where �(j) = (�1j ; �2j)
T ;  (j) = ( 1j ;  2j)

T ; 1 � j � N , and the temporal
system

�
(j)
t = V (n)(u; �j)�

(j);  
(j)
t = �V (n)T (u; �j) 

(j); (7)

where 1 � j � N . Let us take the Bargmann symmetry constraint

K0 = J
NX
j=1

EjJ
Æ�j

Æu
= J

NX
j=1

 (j)T
@U(u; �j)

@u
�(j); (8)

where the Ej are normalized constants, and suppose that (8) has an inverse
function

u = f(�1; :::; �q); �i =
NX
j=1

 (j)T
@U(u; �j)

@ui
�(j); 1 � i � q: (9)

Replacing u with f in N replicas of (6) and (7), we obtained the so-called
spatial constrained 
ow

�(j)x = U(f; �j)�
(j);  (j)x = �UT (f; �j) 

(j); (10)
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and the so-called temporal constrained 
ow

�
(j)
t = V (n)(f; fx; :::;�j)�

(j);  
(j)
t = �V (n)T (f; fx; :::;�j) 

(j); (11)

where 1 � j � N . Now if �ij and  ij solve two constrained 
ows, then
u = f(�1; :::; �q) gives rise to a solution to the soliton equation utn = Kn(u).
The above manipulation is called binary nonlinearization [10, 14].

It is known that constrained 
ows (CFs) have natural Lax matrices gen-
erated from a solution

M(�) =

 
A(�) B(�)

C(�) �A(�)

!

to Mx = [U;M ] and Mtn = [V (n);M ] (for example, see [15, 16]). To deter-
mine 2N pairs of canonical separated variables for binary CFs, based on Lax
matricesM(�), we search for two sets of generating functionsA(�); B(�) and
~A(�); ~B(�) such that8>>>>><>>>>>:

fB(�); B(�)g = f eB(�); eB(�)g = fA(�); A(�)g = f eA(�); eA(�)g = 0;

fB(�); eB(�)g = fB(�); eA(�)g = f eB(�); A(�)g = fA(�); eA(�)g = 0;

fA(�); B(�)g = B(�)�B(�)

�� �
; f eA(�); eB(�)g = eB(�)� eB(�)

�� �
;

(12)
under the standard Poisson bracket

fF;Gg =
2X

i=1

NX
j=1

� @F
@ ij

@G

@�ij
� @F

@�ij

@G

@ ij

�
: (13)

Such two sets of generating functions can be constructed from Lax matrices
M(�) and a common generating function of integrals of motion for binary
CFs. We expect each pair of generating functions can yield N pairs of
canonical separated variables, through de�ning u1; :::; uN by the set of zeros
of B(�), uN+1; :::; u2N by the set of zeros of eB(�), and

vk = A(uk); vN+k = eA(uN+k); 1 � k � N; (14)

which will also give us all 2N separated equations. Therefore, the separa-
tion of variables for binary CFs becomes the problem to �nd two sets of
generating functions satisfying the above commutator relations (12). The
whole process will be illustrated by the AKNS equations.

3. Binary constrained 
ows of the AKNS equations

Let us start from the AKNS spectral problem

�x = U� = U(u; �)�; U =

 �� q

r �

!
; � =

 
�1

�2

!
; u =

 
q

r

!
; (15)
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and take the associated spectral problems

�tn = V (n)� = V (n)(u; �)�; V (n) =
nX
i=0

 
ai bi

ci �ai

!
�n�i; (16)

with ai; bi; ci being de�ned by

a0 = �1; b0 = c0 = 0; a1 = 0; b1 = q; c1 = r; a2 =
1
2qr; :::; 

ck+1

bk+1

!
= L

 
ck

bk

!
; ak+1 = @�1(qck+1 � rbk+1); k � 1;

where L is given by

L =
1

2

 
@ � 2r@�1q 2r@�1r

�2q@�1q �@ + 2q@�1r

!
:

The compatibility conditions of (15) and (16) give the AKNS hierarchy

utn = J

 
cn+1

bn+1

!
= J

Æ ~Hn+1

Æu
; J =

 
0 �2
2 0

!
; ~Hn =

Z
2an+1
n+ 1

dx; n � 1;

(17)
which contains the AKNS equations

qt2 = �1

2
qxx + q2r; rt2 =

1

2
rxx � r2q: (18)

Introducing N distinct eigenvalues �j ; 1 � j � N , we have(
�1x = ���1 + q�2; �2x = r�1 +��2;

	1x = �	1 � r	2; 	2x = �q	1 � �	2;
(19)

and the Bargmann symmetry constraint reads as

ÆH1

Æu
�

NX
j=1

Æ�j

Æu
=

 
r

q

!
�
 h	1;�2i

h	2;�1i

!
= 0; (20)

where h�; �i denotes the standard inner product of IRN and

�i = (�i1; :::; �iN )
T ; 	i = ( i1; :::;  iN )

T ; i = 1; 2; � = diag(�1; :::; �N ):

Therefore, the spatial constrained 
ow (10) is the following x-FDIHS [10]

�1x =
@F1

@	1
; �2x =

@F1

@	2
; 	1x = �@F1

@�1
; 	2x = �@F1

@�2
; (21)

with the Hamiltonian

F1 = h�	2;�2i � h�	1;�1i+ h	2;�1ih	1;�2i:
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Under the symmetry constraint (20) and the x-FDIHS (21), the binary t2-
constrained 
ow (11) can be transformed into the following t2-FDIHS

�1t2 =
@F2

@	1
; �2t2 =

@F2

@	2
; 	1t2 = �@F2

@�1
; 	2t2 = �@F2

@�2
; (22)

with the Hamiltonian

F2 = h�2	2;�2i � h�2	1;�1i+ h	2;�1ih�	1;�2i+
h�	2;�1ih	1;�2i � 1

2(h	2;�2i � h	1;�1i)h	2;�1ih	1;�2i:

The Lax matrix M =

 
A(�) B(�)
C(�) �A(�)

!
for the FDIHSs (21) and (22) is

given by [17]

A(�) = �1 +
NX
j=1

 1j�1j �  2j�2j

2(�� �j)
; B(�) =

NX
j=1

 2j�1j

�� �j
; C(�) =

NX
j=1

 1j�2j

�� �j
:

(23)
A straightforward calculation yields

P (�) := A2(�) +B(�)C(�) = 1 +
NX
j=1

[
Pj

�� �j
+

P 2
N+j

(�� �j)2
]; (24)

where the Pj and PN+j are 2N involutive integrals of motion for (21) and
(22)

Pj =
1

2

X
k 6=j

1

�j � �k
[( 1j�1j �  2j�2j)( 1k�1k �  2k�2k)

+ 2j�2j �  1j�1j + 4 1j�2j 2k�1k]; 1 � j � N; (25)

PN+j =
1

2
( 1j�1j +  2j�2j); 1 � j � N: (26)

It is easy to verify that

F1 =
NX
j=1

(�jPj + P 2
N+j)� (

NX
j=1

Pj

2
)2; (27)

F2 =
NX
j=1

(�2jPj + 2�jP
2
N+j)� (

NX
j=1

Pj

2
)

NX
j=1

(�jPj + P 2
N+j) + (

NX
j=1

Pj

2
)3: (28)

With respect to the standard Poisson bracket (13), it is found [17] that8>>>>>><>>>>>>:

fA(�); A(�)g = fB(�); B(�)g = fC(�); C(�)g = 0;

fA(�); B(�)g = 1
���

[B(�)�B(�)];

fA(�); C(�)g = 1
���

[C(�)�C(�)];

fB(�); C(�)g = 2
���

[A(�)�A(�)]:

(29)
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Then fA2(�)+B(�)C(�); A2(�)+B(�)C(�)g = 0 implies that the integrals
of motion Pj and PN+j , 1 � j � N , are in involution in pairs. The AKNS
equations (18) are factorized by the x-FDIHS (21) and the t2-FDIHS (22).
Namely, if �1;�2;	1 and 	2 solve the x-FDIHS (21) and the t2-FDIHS (22)
simultaneously, then (q; r) given by (20) solves the AKNS equations (18).

4. Separation of variables for the AKNS equations

The commutator relations (29) and a common generating function of
integrals of motion

1

2

NX
j=1

�1j 1j + �2j 2j

�� �j
=

NX
j=1

PN+j

�� �j

enable us to construct two sets of generating functions which lead to 2N
pairs of canonical separated variables. The required two sets of generating
functions for the AKNS equations (18) are the following

A(�) = B(�)�A(�)� eA(�) = 1 +
NX
j=1

( 2j �  1j)�1j
�� �j

; (30)

B(�) = B(�)� 2A(�)� C(�) = 2 +
NX
j=1

( 2j �  1j)(�1j + �2j)

�� �j
; (31)

eA(�) = 1

2

NX
j=1

 1j�1j +  2j�2j

�� �j
; eB(�) = 1 +

1

2

NX
j=1

(�1j + �2j)
2

�� �j
: (32)

Let us now introduce uk; uN+k; 1 � k � N; by

B(�) = 2
R(�)

K(�)
; eB(�) = eR(�)

K(�)
; (33)

where R(�), eR(�) and K(�) read as

R(�) =
NY
k=1

(�� uk); eR(�) = NY
k=1

(�� uN+k); K(�) =
NY
k=1

(�� �k): (34)

A direct computation can show the following result.

Theorem 4.1. Assume that �j ; �ij ;  ij ; i = 1; 2; 1 � j � N , are all

real, and u1; :::; uN are single zeros of B(�). Then the variables u1; :::; u2N
de�ned by (33) and (34), and the variables v1; :::; v2N de�ned by the cor-

responding formula (14) are canonically conjugated, i.e., they satisfy the

commutator relations (1) with m = 2N .
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It follows from (33) and (34) that

( 2j �  1j)(�1j + �2j) = 2
R(�j)

K 0(�j)
; (�1j + �2j)

2 = 2
eR(�j)
K 0(�j)

; 1 � j � N;

which leads to

(�1j + �2j) =

vuut2 eR(�j)
K 0(�j)

; ( 2j �  1j) =

p
2R(�j)qeR(�j)K 0(�j)

; 1 � j � N: (35)

By substituting uk into A(�) of (30), uN+k into eA(�) of (32) and noting

(A(�)�B(�))2 �B(�)B(�) = A2(�) +B(�)C(�) = P (�);

one gets the separated equations

vk = B(uk)�A(uk)� eA(uk) = q
P (uk)� eA(uk)

=

vuut1 +
NX
j=1

[
Pj

uk � �j
+

P 2
N+j

(uk � �j)2
]�

NX
j=1

PN+j

uk � �j
; 1 � k � N; (36)

vN+k = eA(uN+k) =
NX
j=1

PN+j

uN+k � �j
; 1 � k � N: (37)

Replacing vk by the partial derivative @S
@uk

of the generating function S of
canonical transformation and interpreting the Pj and PN+j as integration
constants, the above separated equations give rise to the Hamilton-Jacobi
equations which are completely separated and can be integrated to give the
completely separated solution for S

S(u1; :::; u2N ) =
NX
k=1

[

Z uk

(
q
P (�)� eA(�))d� + Z uN+k eA(�)d�]

=
NX
k=1

[

Z ukq
P (�)d��

NX
j=1

PN+j ln j uk � �j

uN+k � �j
j]: (38)

The linearizing coordinates are then8>>>>>><>>>>>>:
Qj =

@S

@Pj
=

1

2

NX
k=1

Z uk 1

(�� �j)
p
P (�)

d�; 1 � j � N;

QN+j =
@S

@PN+j
=

NX
k=1

[

Z uk PN+j

(�� �j)2
p
P (�)

d�� ln j uk � �j

uN+k � �j
j];

(39)
where 1 � j � N: These coordinates Qj and QN+j , 1 � j � N , constitute
the action-angle variables together with the Pj and PN+j , 1 � j � N . By
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using (27) and (28), the linear 
ows induced by the x-FDIHS (21) and the
t2-FDIHS (22) lead to the Jacobi inversion problem for the x-FDIHS (21)8>><>>:

2Qj = 
j + (2�j �
NX
k=1

Pk)x;

QN+j = 
N+j + 2PN+jx;

(40)

and the Jacobi inversion problem for the t2-FDIHS (22)8>>>>>><>>>>>>:
2Qj = �
j + [2�2j �

NX
k=1

(�kPk + �jPk + P 2
N+k) +

3

4
(
NX
k=1

Pk)
2]t2;

QN+j = �
N+j + PN+j(4�j �
NX
k=1

Pk)t2;

(41)

where 1 � j � N , the Qj and QN+j are de�ned by (39), and 
j and
�
j; 1 � j � 2N , are arbitrary constants.

Since the AKNS equations (18) are factorized by the x-FDIHS (21) and
the t2-FDIHS (22), combining the Jacobi inversion problems (40) and (41)
together gives rise to the following theorem.

Theorem 4.2. The AKNS equations (18) have the Jacobi inversion prob-

lem determined by

NX
k=1

Z uk 1

(�� �j)
p
P (�)

d�= ~
j + (2�j �
NX
k=1

Pk)x

+[2�2j �
NX
k=1

(�kPk + �jPk + P 2
N+k) +

3

4
(
NX
k=1

Pk)
2]t2;

NX
k=1

[

Z uk PN+j

(�� �j)2
p
P (�)

d�� ln j uk � �j

uN+k � �j
j]

= ~
N+j + 2PN+jx+ PN+j(4�j �
NX
k=1

Pk)t2;

where 1 � j � N , and ~
j and ~
N+j; 1 � j � N , are arbitrary constants.

We remark that the above Jacobi inversion problem for the AKNS equa-
tions (18) is di�erent from that in [18], which was generated from another
class of canonical separated variables for the binary constrained 
ows (21)
and (22). The above manipulation may also be similarly made for the whole
AKNS hierarchy, and the approach depicted in Section 2 can be applied to
other soliton hierarchies such as the KdV hierarchy and the Kaup-Newell
hierarchy.
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