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We present some new matrix spectral problems, based on the real special orthogonal Lie algebra so.4,R/, and construct
corresponding soliton hierarchies by means of zero curvature equations associated with these spectral problems. With the
aid of symbolic computation by Maple, new soliton hierarchies of Kaup–Newell type, Ablowitz–Kaup–Newell–Segur type
and Wadati–Konno–Ichikawa type are obtained to illustrate the use of so.4,R/. Copyright © 2016 John Wiley & Sons, Ltd.
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1. Introduction

It is well known that zero curvature equations on real Lie algebras such as sl.2,R/ and so.3,R/ lay the foundation for constructing
soliton hierarchies. Usually, one starts with matrix spectral problems (or Lax pairs) associated with these algebras. Some useful soliton
hierarchies containing the Ablowitz–Kaup–Newell–Segur (AKNS) hierarchy, the Kaup–Newell (KN) hierarchy, the Wadati–Konno–
Ichikawa (WKI) hierarchy, the Korteweg-de Vries hierarchy, the modified Korteweg-de Vries hierarchy, the Benjamin–Ono hierarchy,
the Tu hierarchy, the Dirac hierarchy, the coupled Harry–Dym hierarchy and the coupled Burgers hierarchy have been derived in
References [1–38]. The so-called trace identity [8, 27, 31], or the variational identity [26, 32], provides a basic tool for generating Hamil-
tonian structures of soliton hierarchies. Generally speaking, the corresponding Hamiltonian pairs can generate hereditary recursion
operators if there exist bi-Hamiltonian structures for a given soliton hierarchy [39].

We will use the matrix loop algebra eso.4,R/ derived from the real Lie algebra so.4,R/, to construct new KN type hierarchy. Two
soliton hierarchies associated with this algebra have been constructed in Reference [40]. The relations between the hierarchy of
su.2,C/˝ su.2,C/ and the hierarchy of so.4,R/ also have been obtained. The Lie algebra so.4,R/ consisting of 4� 4 skew-symmetric
real matrices has a basis
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whose commutator relations are

Œe1, e2� D �e4, Œe1, e3� D �e5, Œe1, e4� D e2, Œe1, e5� D e3, Œe1, e6� D 0,

Œe2, e3� D e6, Œe2, e4� D �e1, Œe2, e5� D 0, Œe2, e6� D �e3,

Œe3, e4� D 0, Œe3, e5� D �e1, Œe3, e6� D e2,

Œe4, e5� D e6, Œe4, e6� D �e5,

Œe5, e6� D e4.

Then, the matrix loop algebra eso.4,R/we adopt in what follows is defined as

eso.4,R/ D

8<:X
j�0

Mj�
n�j

ˇ̌̌̌
ˇ̌Mj 2 so.4,R/, j � 0, n 2 Z

9=; ,

that is, the space of all Laurent series in � with a finite number of non-zero terms of positive powers of � and coefficient matrices in
so.4,R/.

Next, we give a brief account of the procedure for building soliton hierarchies associated with so.4,R/, which is called the Tu scheme.

Step 1: Usually, one need to select a suitable U D U.u,�/ 2 eso.4,R/ to fit the spatial spectral problem �x D U.u,�/�, where u denotes
a column dependent variable and � is the spectral parameter.

Step 2: We need to construct an appropriate Laurent series solution W D W.u,�/ such as W D
P1

kD0 Wk�
�2k , Wk 2 so.4,R/ to the

stationary zero curvature equation Wx D ŒU, W�.
Step3: By means of the solution obtained in the aforementioned step, we construct suitable temporal spectral problems �tn D

VŒn��, n � 0 to guarantee the zero curvature equations

Utn � VŒn�x C
h

U, VŒn�
i
D 0, n � 0 (1.1)

can generate a soliton hierarchy utn D Kn.u/, n � 0.
Step4: Finally, we construct Hamiltonian structures of the obtained soliton hierarchy

utn D Kn.u/ D J
ıHn

ıu
, n � 0,

by applying the trace identity [8, 27, 31],

ı

ıu

Z
tr

�
@U

@�
W

�
dx D ���

@

@�
�� tr

�
@U

@u
W

�
, � D �

�

2

d

d�
ln
ˇ̌
tr
�

W2
�ˇ̌

. (1.2)

Here, we must point out that the formula � D ��2
d

d� ln
ˇ̌
tr
�

W2
�ˇ̌

is given by Guo and Zhang in References [27, 31].

In this paper, we would like to introduce some new spectral problems associated with the Lie algebra so.4,R/ and construct the
corresponding soliton hierarchies. New soliton hierarchies of KN type, AKNS type and WKI type will be worked out respectively in
Sections 2–4, which form our main results. In our analysis, we will use software Maple to deal with some complicated computations.
The last section is devoted to some conclusions and discussions.

2. New soliton hierarchy of Kaup–Newell type

In this section, we will construct new soliton hierarchy of KN type from the following spatial matrix spectral problem,

�x D U� D U.u,�/�, u D

2664
p1

p2

q1

q2

3775 , � D

2664
�1

�2

�3

�4

3775 , (2.1)

with the matrix U being chosen as

U D �2e1 C �q1e2 C �q2e3 C �p1e4 C �p2e5

D

2664
0 ��q1 ��q2 ��

2

�q1 0 0 ��p1

�q2 0 0 ��p2

�2 �p1 �p2 0

3775 2 eso.4,R/.
(2.2)

We can take it as the four-component generalized form of the soliton hierarchy obtained in Reference [38].
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Then, let W be of the following form

W D ae1 C c1e2 C c2e3 C b1e4 C b2e5 C de6

D

2664
0 �c1 �c2 �a
c1 0 �d �b1

c2 d 0 �b2

a b1 b2 0

3775 2 eso.4,R/,
(2.3)

we solve the stationary zero curvature equation Wx D ŒU, W�, and it becomes

ax D �.p1c1 C p2c2 � q1b1 � q2b2/,

dx D �.q1c2 C p1b2 � q2c1 � p2b1/,

b1x D ��
2c1 C �q1aC �p2d,

b2x D ��
2c2 C �q2a � �p1d,

c1x D �
2b1 � �p1aC �q2d,

c2x D �
2b2 � �p2a � �q1d.

(2.4)

According to the relations of the spectral parameter � in these equations (2.4), we take the following Laurent series expansions

a D
1X

kD0

a.k/��2k , d D
1X

kD0

d.k/��2k ,

bi D

1X
kD0

b.k/i ��2k�1, ci D

1X
kD0

c.k/i ��2k�1, i D 1, 2,

(2.5)

namely,

W D
1X

kD0

Wk�
�2k , Wk D

26664
0 �c.k/1 ��1 �c.k/2 ��1 �a.k/

c.k/1 ��1 0 �d.k/ �b.k/1 ��1

c.k/2 ��1 d.k/ 0 �b.k/2 ��1

a.k/ b.k/1 ��1 b.k/2 ��1 0

37775 .

Substituting (2.5) into (2.4), we arrive at

a.k/x D p1c.k/1 C p2c.k/2 � q1b.k/1 � q2b.k/2 ,

d.k/x D q1c.k/2 C p1b.k/2 � q2c.k/1 � p2b.k/1 ,

b.0/1 D p1a.0/ � q2d.0/,

b.0/2 D p2a.0/ C q1d.0/,

c.0/1 D q1a.0/ C p2d.0/,

c.0/2 D q2a.0/ � p1d.0/,

b.kC1/
1 D c.k/1x C p1a.kC1/ � q2d.kC1/,

b.kC1/
2 D c.k/2x C p2a.kC1/ C q1d.kC1/,

c.kC1/
1 D �b.k/1x C q1a.kC1/ C p2d.kC1/,

c.kC1/
2 D �b.k/2x C q2a.kC1/ � p1d.kC1/, k � 0.

(2.6)

To determine the sequence of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

, we rewrite a.kC1/
x and d.kC1/

x as

a.kC1/
x D p1c.kC1/

1 C p2c.kC1/
2 � q1b.kC1/

1 � q2b.kC1/
2

D p1

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
C p2

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
� q1

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
� q2

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
D �p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x ,

d.kC1/
x D q1c.kC1/

2 C p1b.kC1/
2 � q2c.kC1/

1 � p2b.kC1/
1

D q1

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
C p1

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
� q2

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
� p2

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
D q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x .
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Thus, we can obtain the following recursion relations:

b.kC1/
1 D c.k/1x C p1@

�1
�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
� q2@

�1
�

q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

b.kC1/
2 D c.k/2x C p2@

�1
�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
C q1@

�1
�

q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

c.kC1/
1 D �b.k/1x C q1@

�1
�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
C p2@

�1
�

q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

c.kC1/
2 D �b.k/2x C q2@

�1
�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
� p1@

�1
�

q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

namely, 26664
b.kC1/

1

b.kC1/
2

c.kC1/
1

c.kC1/
2

37775 D
2664

L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

3775
26664

b.k/1

b.k/2

c.k/1

c.k/2

37775 ,

L11 D �p1@
�1p1@ � q2@

�1q2@, L12 D �p1@
�1p2@C q2@

�1q1@,

L13 D @ � p1@
�1q1@C q2@

�1p2@, L14 D �p1@
�1q2@ � q2@

�1p1@,

L21 D �p2@
�1p1@C q1@

�1q2@, L22 D �p2@
�1p2@ � q1@

�1q1@,

L23 D �p2@
�1q1@ � q1@

�1p2@, L24 D @ � p2@
�1q2@C q1@

�1p1@,

L31 D �@ � q1@
�1p1@C p2@

�1q2@, L32 D �q1@
�1p2@ � p2@

�1q1@,

L33 D �q1@
�1q1@ � p2@

�1p2@, L34 D �q1@
�1q2@C p2@

�1p1@,

L41 D �q2@
�1p1@ � p1@

�1q2@, L42 D �@ � q2@
�1p2@C p1@

�1q1@,

L43 D �q2@
�1q1@C p1@

�1p2@, L44 D �q2@
�1q2@ � p1@

�1p1@.

Furthermore, we take a.0/ D 1, d.0/ D 0 and impose the integration conditions

a.k/juD0 D d.k/juD0 D b.k/i juD0 D c.k/i juD0 D 0, i D 1, 2, k � 1,

which are used to guarantee the uniformity of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

. Therefore, by means of symbolic computation software

Maple, the first few sets can be computed as follows:

b.0/1 D p1, b.0/2 D p2, c.0/1 D q1, c.0/2 D q2,

a.1/ D �
1

2

�
p2

1 C p2
2 C q2

1 C q2
2

�
, d.1/ D p1q2 � q1p2,

b.1/1 D q1x �
1

2
p1

�
p2

1 C p2
2 C q2

1 C q2
2

�
� q2.p1q2 � q1p2/,

b.1/2 D q2x �
1

2
p2

�
p2

1 C p2
2 C q2

1 C q2
2

�
C q1.p1q2 � q1p2/,

c.1/1 D �p1x �
1

2
q1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C p2.p1q2 � q1p2/,

c.1/2 D �p2x �
1

2
q2

�
p2

1 C p2
2 C q2

1 C q2
2

�
� p1.p1q2 � q1p2/,

a.2/ D �p1q1x C q1p1x � p2q2x C p2x q2 C
3

8
p4

1 C
3

4
p2

1p2
2 C

3

4
p2

1q2
1 C

9

4
p2

1q2
2 � 3p2q1q2p1

C
9

4
p2

2q2
1 C

3

4
p2

2q2
2 C

3

8
p4

2 C
3

4
q2

1q2
2 C

3

8
q4

1 C
3

8
q4

2,

d.2/ D �p1p2x C p2p1x � q1q2x C q1x q2 �
3

2
q3

2p1 C
3

2
q1p2

1p2 �
3

2
q2p3

1 �
3

2
p2

2q2p1

�
3

2
q2

1q2p1 C
3

2
q3

1p2 C
3

2
q1q2

2p2 C
3

2
p3

2q1,

b.2/1 D �p1xx C 3p2x.p1q2 � p2q1/ �
3

2
q1x

�
p2

1 C p2
2 C q2

1 C q2
2

�
C

3

8
p5

1 C
3

4
p3

1p2
2 C

3

4
p3

1q2
1

C
15

4
p3

1q2
2 �

9

2
p2q1q2p2

1 C
3

8
p1p4

2 C
9

4
p1p2

2q2
1 C

9

4
p1p2

2q2
2 C

3

8
p1q4

1 C
9

4
p1q2

1q2
2

C
15

8
p1q4

2 �
3

2
q2p3

2q1 �
3

2
q2q3

1p2 �
3

2
q1q3

2p2,
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b.2/2 D �p2xx � 3p1x.p1q2 � p2q1/ �
3

2
q2x

�
p2

1 C p2
2 C q2

1 C q2
2

�
C

3

8
p2p4

1 �
3

2
q1q2p3

1 C
3

4
p2

1p3
2

C
9

4
p2p2

1q2
1 C

9

4
p2p2

1q2
2 �

9

2
p2

2q1q2p1 �
3

2
q3

1q2p1 �
3

2
q1q3

2p1 C
3

8
p5

2 C
15

4
p3

2q2
1

C
3

4
p3

2q2
2 C

15

8
p2q4

1 C
9

4
p2q2

1q2
2 C

3

8
p2q4

2,

c.2/1 D �q1xx C 3q2x.p1q2 � p2q1/C
3

2
p1x

�
p2

1 C p2
2 C q2

1 C q2
2

�
C

3

8
q1p4

1 �
3

2
p2q2p3

1 C
3

4
p2

1q3
1

C
9

4
q1p2

1p2
2 C

9

4
q1p2

1q2
2 �

3

2
p3

2q2p1 �
9

2
p2q2

1q2p1 �
3

2
p2q3

2p1 C
15

8
q1p4

2 C
15

4
p2

2q3
1

C
9

4
q1p2

2q2
2 C

3

8
q5

1 C
3

4
q3

1q2
2 C

3

8
q1q4

2,

c.2/2 D �q2xx � 3q1x.p1q2 � p2q1/C
3

2
p2x

�
p2

1 C p2
2 C q2

1 C q2
2

�
C

15

8
q2p4

1 �
3

2
q1p3

1p2 C
9

4
q2p2

1p2
2

C
9

4
q2p2

1q2
1 C

15

4
p2

1q3
2 �

3

2
p1p3

2q1 �
3

2
p1q3

1p2 �
9

2
p2q1q2

2p1 C
3

8
q2p4

2 C
9

4
q2p2

2q2
1

C
3

4
p2

2q3
2 C

3

8
q2q4

1 C
3

4
q2

1q3
2 C

3

8
q5

2,

� � � � � � � � � � � � � � � � � � .

We point out that the localness of the first two sets of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

is not an accident, and in fact, the functionsn
a.k/, d.k/, b.k/i , c.k/i , i D 1, 2

o
are all local. We prove this fact as follows, first from Wx D ŒU, W�, we have

d

dx
tr
�

W2
�
D 2tr.WWx/ D 2tr .WŒU, W�/ D 0,

and so, due to tr.W2/ D �2
�

a2 C d2 C b2
1 C b2

2 C c2
1 C c2

2

�
, we can obtain

a2 C d2 C b2
1 C b2

2 C c2
1 C c2

2 D
�

a2 C d2 C b2
1 C b2

2 C c2
1 C c2

2

� ˇ̌
uD0
D 1,

the last step of which follows from the initial data. Then, by using the Laurent expansions (2.5), a balance of coefficients of �k for each
k � 1 tells that

a.kC1/ C d.kC1/ D �
1

2

264 X
iCjDkC1

i,j�1

�
a.i/a.j/ C d.i/d.j/

�
C

X
iCjDk

�
b.i/1 b.j/1 C b.i/2 b.j/2 C c.i/1 c.j/1 C c.i/2 c.j/2

�375 . (2.7)

Similarly, for the determinant jWj D .ad � c2b1 C c1b2/
2, we can compute

d

dx
.ad � c2b1 C c1b2/ D ax dC adx � c2x b1 � c2b1x C c1xb2 C c1b2x

D �.p1c1 C p2c2 � q1b1 � q2b2/dC a�.q1c2 C p1b2 � q2c1 � p2b1/

� .�2b2 � �p2a � �q1d/b1 � c2.��
2c1 C �q1aC �p2d/

C .�2b1 � �p1aC �q2d/b2 C c1.��
2c2 C �q2a � �p1d/

D 0.

Thus, we arrive at

d.kC1/ D �
X

iCjDkC1
i,j�1

a.i/d.j/ C
X

iCjDk

c.i/2 b.j/1 �
X

iCjDk

c.i/1 b.j/2 . (2.8)

Based on these two recursion relations and the last four recursion relations in (2.22), an application of the mathematical induc-
tion finally shows that all functions

n
a.k/, d.k/, b.k/i , c.k/i , i D 1, 2

o
are differential polynomials in u, and so, they are all local. This

method to prove the localness is also applicable to the new hierarchies of AKNS type and WKI type which will be proposed in
Sections 3 and 4, respectively.

Now, taking

VŒn� D �.�2nC1W/C D �
2nC2W0 C �

2nW1 C � � � C �
2Wn

D

26664
0 �

Pn
kD0 �

2.n�k/C1c.k/1 �
Pn

kD0 �
2.n�k/C1c.k/2 �

Pn
kD0 �

2.n�k/C2a.k/Pn
kD0 �

2.n�k/C1c.k/1 0 �
Pn

kD0 �
2.n�k/C2d.k/ �

Pn
kD0 �

2.n�k/C1b.k/1Pn
kD0 �

2.n�k/C1c.k/2

Pn
kD0 �

2.n�k/C2d.k/ 0 �
Pn

kD0 �
2.n�k/C1b.k/2Pn

kD0 �
2.n�k/C2a.k/

Pn
kD0 �

2.n�k/C1b.k/1

Pn
kD0 �

2.n�k/C1b.k/2 0

37775 ,
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S. ZHU ET AL.

the zero curvature equations (1.1)

Utn � VŒn�x C
h

U, VŒn�
i
D 0, n � 0

engender a new four-component soliton hierarchy of KN type

2664
p1

p2

q1

q2

3775
tn

D Kn D

26664
b.n/1x

b.n/2x

c.n/1x

c.n/2x

37775 D ˆn

26664
b.0/1x

b.0/2x

c.0/1x

c.0/2x

37775 D ˆn

2664
p1x

p2x

q1x

q2x

3775 , n � 0. (2.9)

Here,ˆ can be determined by the aforementioned recursion relations,

ˆ D

2664
ˆ11 ˆ12 ˆ13 ˆ14

ˆ21 ˆ22 ˆ23 ˆ24

ˆ31 ˆ32 ˆ33 ˆ34

ˆ41 ˆ42 ˆ43 ˆ44

3775 ,

ˆ11 D �@p1@
�1p1 � @q2@

�1q2, ˆ12 D �@p1@
�1p2 C @q2@

�1q1,

ˆ13 D @ � @p1@
�1q1 C @q2@

�1p2, ˆ14 D �@p1@
�1q2 � @q2@

�1p1,

ˆ21 D �@p2@
�1p1 C @q1@

�1q2, ˆ22 D �@p2@
�1p2 � @q1@

�1q1,

ˆ23 D �@p2@
�1q1 � @q1@

�1p2, ˆ24 D @ � @p2@
�1q2 C @q1@

�1p1,

ˆ31 D �@ � @q1@
�1p1 C @p2@

�1q2, ˆ32 D �@q1@
�1p2 � @p2@

�1q1,

ˆ33 D �@q1@
�1q1 � @p2@

�1p2, ˆ34 D �@q1@
�1q2 C @p2@

�1p1,

ˆ41 D �@q2@
�1p1 � @p1@

�1q2, ˆ42 D �@ � @q2@
�1p2 C @p1@

�1q1,

ˆ43 D �@q2@
�1q1 C @p1@

�1p2, ˆ44 D �@q2@
�1q2 � @p1@

�1p1.

Next, we consider Hamiltonian structures by using the trace identity (1.2). The calculation of this part is very direct, without any
additional mathematical skills. In the following sections, we will omit these contents for simplification. It is direct to see

@U

@�
D

2664
0 �q1 �q2 �2�

q1 0 0 �p1

q2 0 0 �p2

2� p1 p2 0

3775 , tr

�
W
@U

@�

�
D �4�a � 2.q1c1 C q2c2 C p1b1 C p2b2/.

Similarly, we have

tr

�
W
@U

@pi

�
D �2�bi , tr

�
W
@U

@qi

�
D �2�ci , i D 1, 2.

Now, the corresponding trace identity becomes

ı

ıu

Z
.2�aC p1b1 C p2b2 C q1c1 C q2c2/dx D ���

@

@�
��

2664
�b1

�b2

�c1

�c2

3775 .

Balancing coefficients of each power of � in the aforementioned equality, we have

ı

ıu

Z �
2a.nC1/ C p1b.n/1 C p2b.n/2 C q1c.n/1 C q2c.n/2

�
dx D .� � 2n/

26664
b.n/1

b.n/2

c.n/1

c.n/2

37775 , n � 0.

Checking a particular case with n D 1 yields � D 0, and thus, we obtain

ı

ıu

Z  
�

2a.nC1/ C p1b.n/1 C p2b.n/2 C q1c.n/1 C q2c.n/2

2n

!
dx D

26664
b.n/1

b.n/2

c.n/1

c.n/2

37775 , n � 1.
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S. ZHU ET AL.

Consequently, we obtain the following Hamiltonian structure for the soliton hierarchy of KN type

2664
p1

p2

q1

q2

3775
tn

D Kn D

26664
b.n/1x

b.n/2x

c.n/1x

c.n/2x

37775 D J

26664
b.n/1

b.n/2

c.n/1

c.n/2

37775 D J
ıHn

ıu
, n � 0, (2.10)

with the Hamiltonian operator

J D

2664
@ 0 0 0
0 @ 0 0
0 0 @ 0
0 0 0 @

3775 ,

and the Hamiltonian functionals

H0 D

Z
1

2

�
p2

1 C p2
2 C q2

1 C q2
2

�
dx,

Hn D

Z  
�

2a.nC1/ C p1b.n/1 C p2b.n/2 C q1c.n/1 C q2c.n/2

2n

!
dx, n � 1.

It is now a direct computation that this new soliton hierarchy is bi-Hamiltonian,

utn D Kn D J
ıHn

ıu
D M

ıHn�1

ıu
, n � 1, (2.11)

where the second Hamiltonian operator M is given by

M D ˆJ D

2664
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

3775 ,

M11 D �@p1@
�1p1@ � @q2@

�1q2@, M12 D �@p1@
�1p2@C @q2@

�1q1@,

M13 D @
2 � @p1@

�1q1@C @q2@
�1p2@, M14 D �@p1@

�1q2@ � @q2@
�1p1@,

M21 D �@p2@
�1p1@C @q1@

�1q2@, M22 D �@p2@
�1p2@ � @q1@

�1q1@,

M23 D �@p2@
�1q1@ � @q1@

�1p2@, M24 D @
2 � @p2@

�1q2@C @q1@
�1p1@,

M31 D �@
2 � @q1@

�1p1@C @p2@
�1q2@, M32 D �@q1@

�1p2@ � @p2@
�1q1@,

M33 D �@q1@
�1q1@ � @p2@

�1p2@, M34 D �@q1@
�1q2@C @p2@

�1p1@,

M41 D �@q2@
�1p1@ � @p1@

�1q2@, M42 D �@
2 � @q2@

�1p2@C @p1@
�1q1@,

M43 D �@q2@
�1q1@C @p1@

�1p2@, M44 D �@q2@
�1q2@ � @p1@

�1p1@.

Thus, the new soliton hierarchy of KN type (2.9) is Liouville integrable (see [41] for definition), that is, it possesses infinitely many
conserved functionals and symmetries which form Abelian algebras:

fHl ,HmgJ D

Z �
ıHl

ıu

�T

J
ıHm

ıu
dx D 0, l, m � 0,

fHl ,HmgM D

Z �
ıHl

ıu

�T

M
ıHm

ıu
dx D 0, l, m � 0,

and

ŒKl , Km� D K 0l .u/ŒKm� � K 0m.u/ŒKl� D 0, l, m � 0.

These commuting relations are also consequences of the Virasoro algebras of Lax operators.

Remark 1
If we let the spectral matrix U be

U D .�2 C s/e1 C �q1e2 C �q2e3 C �p1e4 C �p2e5 C re6

D

2664
0 ��q1 ��q2 ��

2 � s
�q1 0 �r ��p1

�q2 r 0 ��p2

�2 C s �p1 �p2 0

3775 ,
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S. ZHU ET AL.

and
r D ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/,

s D ˇ3

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ4.p1q2 � p2q1/,

following the procedure of constructing the aforementioned soliton hierarchy of KN type, we can obtain a generalized soliton hierarchy
of KN type.

Although, we can consider the following .NC 2/ � .NC 2/matrix spectral problem,

�x D U�, U D

24 0 ��q �m�2

�qT 0 ��p
m�2 �pT 0

35 , u D

�
p

qT

	
, (2.12)

where p D .p1, p2, � � � , pN/
T , q D .q1, q2, � � � , qN/ and � is the spectral parameter. When N D m D 1, (2.12) is nothing but the one

considered by Ma in Reference [38], and when N D 2, m D 1, it corresponds to (2.2), but we can only solve this problem formally
because the localness can not be proved. Firstly, the stationary zero curvature equation Wx D ŒU, W� becomes

ax D �.cp � qb/,

bx D �m�2cT C �aqT � �dp,

cx D m�2bT � �apT C �qd,

dx D �
�
�qT c � pbT C cT qC bpT

�
,

(2.13)

if we assume that W is of the form

W D

24 0 �c �a
cT d �b
a bT 0

35 , (2.14)

where a is a scalar, cT and b are N-dimensional column vectors, and generally speaking d is an N � N non-zero matrix. To consider
furthermore, we let

W D
1X

kD0

Wk�
�2k , Wk D

24 0 �c.k/��1 �a.k/

c.k/T��1 d.k/ �b.k/��1

a.k/ b.k/T��1 0

35 . (2.15)

Thus, the system (2.13) gives rise to

b.0/ D p,

c.0/ D q,

a.k/x D c.k/p � qb.k/,

d.k/x D �qT c.k/ � pb.k/T C c.k/T qC b.k/pT ,

b.k/x D �mc.kC1/T C a.kC1/qT � d.kC1/p,

c.k/Tx D mb.kC1/ � a.kC1/p � d.kC1/qT , k � 0.

(2.16)

So substituting

a.kC1/ D @�1
�

c.kC1/p � qb.kC1/
�

,

d.kC1/ D @�1
�
�qT c.kC1/ � pb.kC1/T C c.kC1/T qC b.kC1/pT

�
,

into the last two equations in the aforementioned system (2.16), we have"
b.k/x

c.k/Tx

#
D L

�
b.kC1/

c.kC1/T

	
,

L D
�

0 �m
m 0

	
C

�
�qT@�1q qT@�1pT

p@�1q �p@�1pT

	
C

� �
@�1p.�/T

�
p �

�
@�1.�/pT

�
p

�
@�1qT .�/

�
p �

�
@�1.�/T q

�
p�

@�1p.�/T
�

qT �
�
@�1.�/pT

�
qT

�
@�1qT .�/

�
qT �

�
@�1.�/T q

�
qT

	
.

Finally, taking

VŒn� D �.�2nC1W/C

D �2nC2W0 C �
2nW1 C � � � C �

2Wn,
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S. ZHU ET AL.

the zero curvature Eqs (1.1) generate a new multi-component soliton hierarchy of KN type formally

�
px

qT
x

	
D

"
b.0/x

c.0/Tx

#
D L�

"
b.1/x

c.1/Tx

#

D .L�/2

"
b.2/x

c.2/Tx

#
D � � � D .L�/n

"
b.n/x

c.n/Tx

#

D .L�/n

�
p

qT

	
tn

D � n

�
p

qT

	
tn

,

(2.17)

namely, �
p

qT

	
tn

D Kn D

"
b.n/x

c.n/Tx

#
D ˆn

�
px

qT
x

	
, n � 0, (2.18)

where � D

�
@�1 0

0 @�1

	
,ˆ D ��1 D

�
@ 0
0 @

	
L�1.

Remark 2
In fact, we can take another form of matrix spectral problem (2.1) with spectral matrix,

U D �2re1 C �q1e2 C �q2e3 C �p1e4 C �p2e5

D

2664
0 ��q1 ��q2 ��

2r
�q1 0 0 ��p1

�q2 0 0 ��p2

�2r �p1 �p2 0

3775 2 eso.4,R/,
(2.19)

and

r D ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/, ˇ2

1 C ˇ
2
2 ¤ 0. (2.20)

Then, let W be of the form (2.3), we solve the stationary zero curvature equation Wx D ŒU, W�, and it becomes

ax D �.p1c1 C p2c2 � q1b1 � q2b2/,

dx D �.q1c2 C p1b2 � q2c1 � p2b1/,

b1x D ��
2rc1 C �q1aC �p2d

b2x D ��
2rc2 C �q2a � �p1d

c1x D �
2rb1 � �p1aC �q2d

c2x D �
2rb2 � �p2a � �q1d.

(2.21)

Further setting (2.5), the aforementioned system (2.21) gives rise to

a.k/x D p1c.k/1 C p2c.k/2 � q1b.k/1 � q2b.k/2 ,

d.k/x D q1c.k/2 C p1b.k/2 � q2c.k/1 � p2b.k/1 ,

b.0/1 D
1

r

�
p1a.0/ � q2d.0/

�
,

b.0/2 D
1

r

�
p2a.0/ C q1d.0/

�
,

c.0/1 D
1

r

�
q1a.0/ C p2d.0/

�
,

c.0/2 D
1

r

�
q2a.0/ � p1d.0/

�
,

b.kC1/
1 D

1

r

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
,

b.kC1/
2 D

1

r

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
,

c.kC1/
1 D

1

r

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
,

c.kC1/
2 D

1

r

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
, k � 0.

(2.22)
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S. ZHU ET AL.

To construct recursion relations, we rewrite

a.kC1/
x D p1c.kC1/

1 C p2c.kC1/
2 � q1b.kC1/

1 � q2b.kC1/
2

D
p1

r

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
C

p2

r

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
�

q1

r

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
�

q2

r

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
D

1

r

�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
,

d.kC1/
x D q1c.kC1/

2 C p1b.kC1/
2 � q2c.kC1/

1 � p2b.kC1/
1

D
q1

r

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
C

p1

r

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
�

q2

r

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
�

p2

r

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
D

1

r

�
q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
.

Thus, we arrive at

b.kC1/
1 D c.k/1x C p1@

�1 1

r

�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
� q2@

�1 1

r

�
q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

b.kC1/
2 D c.k/2x C p2@

�1 1

r

�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
C q1@

�1 1

r

�
q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

c.kC1/
1 D �b.k/1x C q1@

�1 1

r

�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
C p2@

�1 1

r

�
q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
,

c.kC1/
2 D �b.k/2x C q2@

�1 1

r

�
�p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x

�
� p1@

�1 1

r

�
q2b.k/1x � q1b.k/2x � p2c.k/1x C p1c.k/2x

�
.

Combined with the aforementioned recursion relations and a set of appropriate initial values

a.0/ D 1, d.0/ D 0, b.0/1 D
p1

r
, b.0/2 D

p2

r
, c.0/1 D

q1

r
, c.0/2 D

q2

r
,

we can determine the sequence of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

uniquely, where the integration conditions

a.k/
ˇ̌̌

uD0 D d.k/
ˇ̌̌

uD0
D b.k/i

ˇ̌̌
uD0 D c.k/i

ˇ̌̌
uD0
D 0, i D 1, 2, k � 1

also need be imposed. For readability, these tedious expressions are omitted, and one can obtain them by using symbolic computation
software Maple.

Now, we let VŒn� be the following form:

VŒn� D �.�2nC1W/C C�n

D �2nC2W0 C �
2nW1 C � � � C �

2Wn C

2664
0 ��h1,n ��h2,n ��

2fn

�h1,n 0 0 ��g1,n

�h2,n 0 0 ��g2,n

�2fn �g1,n �g2,n 0

3775 ,
(2.23)

where functions fn, gi,n, hi,n, i D 1, 2 need be determined. Thus, the zero curvature equations Utn � VŒn�x C



U, VŒn�
�
D 0, n � 0 give

g1,n D
p1fn

r
, g2,n D

p2fn

r
, h1,n D

q1fn

r
, h2,n D

q2fn

r
,

fnx D rtn C p1h1,n C p2h2,n � q1g1,n � q2g2,n D rtn ,

p1tn
D b.n/1x C g1,nx D b.n/1x C

�
p1fn

r

�
x

,

p2tn
D b.n/2x C g2,nx D b.n/2x C

�
p2fn

r

�
x

,

q1tn
D c.n/1x C h1,nx D c.n/1x C

�
q1fn

r

�
x

,

q2tn
D c.n/2x C h2,nx D c.n/2x C

�
q2fn

r

�
x

.
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S. ZHU ET AL.

So we can obtain

fnx D rtn

D 2ˇ1

�
p1p1tn

C p2p2tn
C q1q1tn

C q2q2tn

�
C ˇ2

�
p1tn

q2 C p1q2tn
� p2tn

q1 � p2q1tn

�
D 2ˇ1

�
p1

�
b.n/1x C

�
p1fn

r

�
x

	
C p2

�
b.n/2x C

�
p2fn

r

�
x

	
C q1

�
c.n/1x C

�
q1fn

r

�
x

	
C q2

�
c.n/2x C

�
q2fn

r

�
x

	

C ˇ2

�
q2

�
b.n/1x C

�
p1fn

r

�
x

	
C p1

�
c.n/2x C

�
q2fn

r

�
x

	
� q1

�
b.n/2x C

�
p2fn

r

�
x

	
� p2

�
c.n/1x C

�
q1fn

r

�
x

	

D �2ˇ1

�
�p1b.n/1x � p2b.n/2x � q1c.n/1x � q2c.n/2x

�
C ˇ2

�
q2b.n/1x � q1b.n/2x � p2c.n/1x C p1c.n/2x

�
C 2fnx � 2

rx

r
fn.

This equation can be changed to�
fn

r

�
x

D 2ˇ1a.nC1/
x � ˇ2d.nC1/

x ) fn D
�

2ˇ1a.nC1/ � ˇ2d.nC1/
�

r. (2.24)

This means that another new soliton hierarchy of KN type2664
p1

p2

q1

q2

3775
tn

D Kn D

26664
b.n/1x C 2ˇ1.p1a.nC1//x � ˇ2.p1d.nC1//x

b.n/2x C 2ˇ1.p2a.nC1//x � ˇ2.p2d.nC1//x

c.n/1x C 2ˇ1.q1a.nC1//x � ˇ2.q1d.nC1//x

c.n/2x C 2ˇ1.q2a.nC1//x � ˇ2.q2d.nC1//x

37775 (2.25)

has been derived.

3. New soliton hierarchy of Ablowitz–Kaup–Newell–Segur type

To construct new soliton hierarchy of AKNS type, let us introduce the matrix spectral problem (2.1) with the spectral matrix U being
chosen as

U D �e1 C q1e2 C q2e3 C p1e4 C p2e5 C re6

D

2664
0 �q1 �q2 ��

q1 0 �r �p1

q2 r 0 �p2

� p1 p2 0

3775 2 eso.4,R/,
(3.1)

and

r D ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/. (3.2)

This spectral problem is of the same type as the soliton hierarchies of AKNS type associated with sl.2,R/ or so.3,R/ [1, 37, 42], but its
underlying loop algebra is different.

Then, let W be of the form (2.3), we solve the stationary zero curvature equation Wx D ŒU, W�, and it becomes

ax D p1c1 C p2c2 � q1b1 � q2b2,

dx D q1c2 C p1b2 � q2c1 � p2b1,

b1x D ��c1 C q1aC p2d � rb2

b2x D ��c2 C q2a � p1dC rb1

c1x D �b1 � p1aC q2d � rc2

c2x D �b2 � p2a � q1dC rc1.

(3.3)

Further setting

a D
1X

kD0

a.k/��k , d D
1X

kD0

d.k/��k ,

bi D

1X
kD0

b.k/i ��k , ci D

1X
kD0

c.k/i ��k , i D 1, 2,

(3.4)

namely,

W D
1X

kD0

Wk�
�k , Wk D

26664
0 �c.k/1 �c.k/2 �a.k/

c.k/1 0 �d.k/ �b.k/1

c.k/2 d.k/ 0 �b.k/2

a.k/ b.k/1 b.k/2 0

37775 ,
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S. ZHU ET AL.

system (3.3) gives rise to

a.k/x D p1c.k/1 C p2c.k/2 � q1b.k/1 � q2b.k/2 ,

d.k/x D q1c.k/2 C p1b.k/2 � q2c.k/1 � p2b.k/1 ,

b.0/1 D b.0/2 D c.0/1 D c.0/2 D 0,

b.kC1/
1 D c.k/1x C p1a.k/ � q2d.k/ C rc.k/2 ,

b.kC1/
2 D c.k/2x C p2a.k/ C q1d.k/ � rc.k/1 ,

c.kC1/
1 D �b.k/1x C q1a.k/ C p2d.k/ � rb.k/2 ,

c.kC1/
2 D �b.k/2x C q2a.k/ � p1d.k/ C rb.k/1 , k � 0.

(3.5)

We take a.0/ D 1, d.0/ D 0 and impose the integration conditions

a.k/juD0 D d.k/juD0 D b.k/i juD0 D c.k/i juD0 D 0, i D 1, 2, k � 1

to determine the sequence of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

uniquely. Therefore, by means of symbolic computation software Maple,

the first few sets can be computed as follows:

b.1/1 D p1, b.1/2 D p2, c.1/1 D q1, c.1/2 D q2,

a.1/ D 0, d.1/ D 0,

b.2/1 D q1x C


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�
q2,

b.2/2 D q2x �


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�
q1,

c.2/1 D �p1x �


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�
p2,

c.2/2 D �p2x C


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�
p1,

a.2/ D �
1

2

�
p2

1 C p2
2 C q2

1 C q2
2

�
, d.2/ D p1q2 � p2q1,

b.3/1 D �p1xx � Œ2ˇ1 .p1p1x C p2p2x C q1q1x C q2q2x/C ˇ2 .p1x q2 C p1q2x � p2x q1 � p2q1x/� p2

� 2


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�
p2x C



ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2 .p1q2 � p2q1/

�2
p1

�
1

2
p1

�
p2

1 C p2
2 C q2

1 C q2
2

�
� q2.p1q2 � p2q1/,

b.3/2 D �p2xx C Œ2ˇ1 .p1p1x C p2p2x C q1q1x C q2q2x/C ˇ2.p1x q2 C p1q2x � p2x q1 � p2q1x/� p1

C 2


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�
p1x C



ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�2
p2

�
1

2
p2

�
p2

1 C p2
2 C q2

1 C q2
2

�
C q1.p1q2 � p2q1/,

c.3/1 D �q1xx � Œ2ˇ1 .p1p1x C p2p2x C q1q1x C q2q2x/C ˇ2.p1x q2 C p1q2x � p2x q1 � p2q1x/� q2

� 2


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�
q2x C



ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�2
q1

�
1

2

�
p2

1 C p2
2 C q2

1 C q2
2

�
q1 C p2.p1q2 � p2q1/,

c.3/2 D �q2xx C Œ2ˇ1.p1p1x C p2p2x C q1q1x C q2q2x/C ˇ2.p1x q2 C p1q2x � p2x q1 � p2q1x/� q1

C 2


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�
q1x C



ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�2
q2

�
1

2

�
p2

1 C p2
2 C q2

1 C q2
2

�
q2 � p1.p1q2 � p2q1/,

a.3/ D �p1q1x C p1x q1 � q2x p2 C p2x q2 � 2.p1q2 � p2q1/


ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�
,

d.3/ D �p2x p1 C p2p1x � q2x q1 C q1x q2 C
�

p2
1 C p2

2 C q2
1 C q2

2

� 

ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/

�
.

Now, taking

VŒn� D .�nW/C C�n

D .�nW/C C

2664
0 0 0 0
0 0 �fn 0
0 fn 0 0
0 0 0 0

3775 ,
(3.6)
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S. ZHU ET AL.

the zero curvature equations Utn � VŒn�x C



U, VŒn�
�
D 0, n � 0 give

fnx D rtn D 2ˇ1

�
p1p1tn

C p2p2tn
C q1q1tn

C q2q2tn

�
C ˇ2

�
p1tn

q2 C p1q2tn
� p2tn

q1 � p2q1tn

�
,

p1tn
D �c.nC1/

1 � p2fn,

p2tn
D �c.nC1/

2 C p1fn,

q1tn
D b.nC1/

1 � q2fn,

q2tn
D b.nC1/

2 C q1fn.

Here, PC denotes the polynomial part of P of �, and the modification terms �n aims at guarantee the zero curvature equations can
engender a soliton hierarchy. Thus, we can obtain

fnx D 2ˇ1

�
p1p1tn

C p2p2tn
C q1q1tn

C q2q2tn

�
C ˇ2

�
p1tn

q2 C p1q2tn
� p2tn

q1 � p2q1tn

�
D 2ˇ1

h
p1

�
�c.nC1/

1 � p2fn

�
C p2

�
�c.nC1/

2 C p1fn

�
C q1

�
b.nC1/

1 � q2fn

�
C q2

�
b.nC1/

2 C q1fn

�i
C ˇ2

h
q2

�
�c.nC1/

1 � p2fn

�
C p1

�
b.nC1/

2 C q1fn

�
� q1

�
�c.nC1/

2 C p1fn

�
� p2

�
b.nC1/

1 � q2fn

�i
D �2ˇ1

�
p1c.nC1/

1 C p2cnC1
2 � q1b.nC1/

1 � q2b.nC1/
2

�
C ˇ2

�
q1c.nC1/

2 C p1b.nC1/
2 � q2c.nC1/

1 � p2b.nC1/
1

�
D �2ˇ1a.nC1/

x C ˇ2d.nC1/
x ,

so we can set
fn D �2ˇ1a.nC1/ C ˇ2d.nC1/. (3.7)

This means that a new soliton hierarchy of AKNS type2664
p1

p2

q1

q2

3775
tn

D Kn D

26664
�c.nC1/

1 C 2ˇ1p2a.nC1/ � ˇ2p2d.nC1/

�c.nC1/
2 � 2ˇ1p1a.nC1/ C ˇ2p1d.nC1/

b.nC1/
1 C 2ˇ1q2a.nC1/ � ˇ2q2d.nC1/

b.nC1/
2 � 2ˇ1q1a.nC1/ C ˇ2q1d.nC1/

37775
has been derived. In fact, we can rewrite the aforementioned soliton hierarchy to more useful form by a matrix operator ˆ. Next, we
will construct a matrix operatorˆ that satisfies

Kn D ˆKn�1 D

2664
ˆ11 ˆ12 ˆ13 ˆ14

ˆ21 ˆ22 ˆ23 ˆ24

ˆ31 ˆ32 ˆ33 ˆ34

ˆ41 ˆ42 ˆ43 ˆ44

3775 Kn�1,

namely, 2664
p1

p2

q1

q2

3775
tn

D Kn D ˆ
n

26664
�c.1/1

�c.1/2

b.1/1

b.1/2

37775 D ˆn

2664
�q1

�q2

p1

p2

3775 . (3.8)

Firstly, for (3.5), we have

a.nC1/
x D p1c.nC1/

1 C p2c.nC1/
2 � q1b.nC1/

1 � q2b.nC1/
2

D p1

�
�b.n/1x C q1a.n/ C p2d.n/ � rb.n/2

�
C p2

�
�b.n/2x C q2a.n/ � p1d.n/ C rb.n/1

�
� q1

�
c.n/1x C p1a.n/ � q2d.n/ C rc.n/2

�
� q2

�
c.n/2x C p2a.n/ C q1d.n/ � rc.n/1

�
D �p1b.n/1x � p2b.n/2x � q1c.n/1x � q2c.n/2x � p1rb.n/2 C p2rb.n/1 � q1rc.n/2 C q2rc.n/1

D



q1@ � q2r � 2ˇ1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@
�1p1 � ˇ2.p1@q2 � p2@q1

�q1@p2 C q2@p1/@
�1q2

� �
�c.n/1 C 2ˇ1p2a.n/ � ˇ2p2d.n/

�
C



q2@C q1r � 2ˇ1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@
�1p2 C ˇ2.p1@q2 � p2@q1

�q1@p2 C q2@p1/@
�1q1

� �
�c.n/2 � 2ˇ1p1a.n/ C ˇ2p1d.n/

�
C


�p1@C p2r � 2ˇ1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1 C ˇ2.p1@q2 � p2@q1

�q1@p2 C q2@p1/@
�1p2

� �
b.n/1 C 2ˇ1q2a.n/ � ˇ2q2d.n/

�
C


�p2@ � p1r � 2ˇ1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2 � ˇ2.p1@q2 � p2@q1

�q1@p2 C q2@p1/@
�1p1

� �
b.n/2 � 2ˇ1q1a.n/ C ˇ2q1d.n/

�

(3.9)
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S. ZHU ET AL.

and

d.nC1/
x D q1c.nC1/

2 C p1b.nC1/
2 � q2c.nC1/

1 � p2b.nC1/
1

D q1

�
�b.n/2x C q2a.n/ � p1d.n/ C rb.n/1

�
C p1

�
c.n/2x C p2a.n/ C q1d.n/ � rc.n/1

�
� q2

�
�b.n/1x C q1a.n/ C p2d.n/ � rb.n/2

�
� p2

�
c.n/1x C p1a.n/ � q2d.n/ C rc.n/2

�
D �q1b.n/2x C p1c.n/2x C q2b.n/1x � p2c.n/1x C q1rb.n/1 � p1rc.n/1 C q2rb.n/2 � p2rc.n/2

D



p2@C p1rC 2ˇ1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@
�1p1 C ˇ2.q1@q1 C p1@p1

Cq2@q2 C p2@p2/@
�1q2

� �
�c.n/1 C 2ˇ1p2a.n/ � ˇ2p2d.n/

�
C


�p1@C p2rC 2ˇ1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 � ˇ2.q1@q1 C p1@q1

Cq2@q2 C p2@p2/@
�1q1

� �
�c.n/2 � 2ˇ1p1a.n/ C ˇ2p1d.n/

�
C



q2@C q1rC 2ˇ1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@
�1q1 � ˇ2.q1@q1 C p1@p1

Cq2@q2 C p2@p2/@
�1p2

� �
b.n/1 C 2ˇ1q2a.n/ � ˇ2q2d.n/

�
C


�q1@C q2rC 2ˇ1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 C ˇ2.q1@q1 C p1@p1

Cq2@q2 C p2@p2/@
�1p1

� �
b.n/2 � 2ˇ1q1a.n/ C ˇ2q1d.n/

�
.

(3.10)

By means of (3.5) again, we have

�c.nC1/
1 C 2ˇ1p2a.nC1/ � ˇ2p2d.nC1/ D ˆ11

�
�c.n/1 C 2ˇ1p2a.n/ � ˇ2p2d.n/

�
Cˆ12

�
�c.n/2 � 2ˇ1p1a.n/ C ˇ2p1d.n/

�
Cˆ13

�
b.n/1 C 2ˇ1q2a.n/ � ˇ2q2d.n/

�
Cˆ14

�
b.n/2 � 2ˇ1q1a.n/ C ˇ2q1d.n/

�
,

with
ˆ11 D 2ˇ1p2@

�1q1@ � 2ˇ1p2@
�1q2r � 4ˇ2

1 p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1

� 2ˇ1ˇ2p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2 � ˇ2p2@
�1p2@C ˇ2p2@

�1p1r

� 2ˇ1ˇ2p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 C .2ˇ1@q2 � 2ˇ1rq1 C q1/@
�1p1

� ˇ2
2 p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 C .ˇ2@q2 � ˇ2rq1 � p2/@
�1q2,

ˆ12 D 2ˇ1p2@
�1q2@C 2ˇ1p2@

�1q1r � 4ˇ2
1 p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2

C 2ˇ1ˇ2p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1 C ˇ2p2@
�1p1@ � ˇ2p2@

�1p2r

� 2ˇ1ˇ2p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 C .2ˇ1@q2 � 2ˇ1rq1 C q1/@
�1p2

C ˇ2
2 p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 � .ˇ2@q2 � ˇ2rq1 � p2/@
�1q1,

ˆ13 D @ � 2ˇ1p2@
�1p1@C 2ˇ1p2@

�1p2r � 4ˇ2
1 p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1

C 2ˇ1ˇ2p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1 � ˇ2p2@
�1q2@ � ˇ2p2@

�1q1r

� 2ˇ1ˇ2p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 C .2ˇ1@q2 � 2ˇ1rq1 C q1/@
�1q1

C ˇ2
2 p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 � .ˇ2@q2 � ˇ2rq1 � p2/@
�1p2,

ˆ14 D r � 2ˇ1p2@
�1p2@C 2ˇ1p2@

�1p1r � 4ˇ2
1 p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2

� 2ˇ1ˇ2p2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2 C ˇ2p2@
�1q1@ � ˇ2p2@

�1q2r

C 2ˇ1ˇ2p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 C .2ˇ1@q2 � 2ˇ1rq1 C q1/@
�1q2

� ˇ2
2 p2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 C .ˇ2@q2 � ˇ2rq1 � p2/@
�1p1.

Through a similar calculation, we can arrive at

ˆ21 D �2ˇ1p1@
�1q1@ � 2ˇ1p1@

�1q2rC 4ˇ2
1 p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1

C 2ˇ1ˇ2p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2 C ˇ2p1@
�1p2@ � ˇ2p1@

�1p1r

C 2ˇ1ˇ2p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 � .2ˇ1@q1 C 2ˇ1rq2 � q2/@
�1p1

C ˇ2
2 p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 � .ˇ2@q1 C ˇ2rq2 � p1/@
�1q2,

ˆ22 D �2ˇ1p1@
�1q2@ � 2ˇ1p1@

�1q1rC 4ˇ2
1 p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2

� 2ˇ1ˇ2p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1 � ˇ2p1@
�1p1@C ˇ2p1@

�1p2r

C 2ˇ1ˇ2p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 � .2ˇ1@q1 C 2ˇ1rq2 � q2/@
�1p2

� ˇ2
2 p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 C .ˇ2@q1 C ˇ2rq2 � p1/@
�1q1,
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ˆ23 D �rC 2ˇ1p1@
�1p1@ � 2ˇ1p1@

�1p2r C 4ˇ2
1 p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1

� 2ˇ1ˇ2p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2 C ˇ2p1@
�1q2@C ˇ2p1@

�1q1r

C 2ˇ1ˇ2p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 � .2ˇ1@q1 C 2ˇ1rq2 � q2/@
�1q1

� ˇ2
2 p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 C .ˇ2@q1 C ˇ2rq2 � p1/@
�1p2,

ˆ24 D @C 2ˇ1p1@
�1p2@C 2ˇ1p1@

�1p1rC 4ˇ2
1 p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2

C 2ˇ1ˇ2p1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1 � ˇ2p1@
�1q1@C ˇ2p1@

�1q2r

C 2ˇ1ˇ2p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 � .2ˇ1@q1 C 2ˇ1rq2 � q2/@
�1q2

C ˇ2
2 p1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 � .ˇ2@q1 C ˇ2rq2 � p1/@
�1p1,

ˆ31 D �@C 2ˇ1q2@
�1q1@ � 2ˇ1q2@

�1q2r � 4ˇ2
1 q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1

� 2ˇ1ˇ2q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2 � ˇ2q2@
�1p2@C ˇ2q2@

�1p1r

� 2ˇ1ˇ2q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 � .2ˇ1@p2 � 2ˇ1rp1 C p1/@
�1p1

� ˇ2
2 q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 � .ˇ2@p2 � ˇ2rp1 C q2/@
�1q2,

ˆ32 D �rC 2ˇ1q2@
�1q2@C 2ˇ1q2@

�1q1r � 4ˇ2
1 q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2

C 2ˇ1ˇ2q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1 C ˇ2q2@
�1p1@ � ˇ2q2@

�1p2r

� 2ˇ1ˇ2q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 � .2ˇ1@p2 � 2ˇ1rp1 C p1/@
�1p2

C ˇ2
2 q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 C .ˇ2@p2 � ˇ2rp1 C q2/@
�1q1,

ˆ33 D �2ˇ1q2@
�1p1@C 2ˇ1q2@

�1p2r � 4ˇ2
1 q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1

C 2ˇ1ˇ2q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2 � ˇ2q2@
�1q2@ � ˇ2q2@

�1q1r

� 2ˇ1ˇ2q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 � .2ˇ1@p2 � 2ˇ1rp1 C p1/@
�1q1

C ˇ2
2 q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 C .ˇ2@p2 � ˇ2rp1 C q2/@
�1p2,

ˆ34 D �2ˇ1q2@
�1p2@ � 2ˇ1q2@

�1p1r � 4ˇ2
1 q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2

� 2ˇ1ˇ2q2@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1 C ˇ2q2@
�1q1@ � ˇ2q2@

�1q2r

� 2ˇ1ˇ2q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 � .2ˇ1@p2 � 2ˇ1rp1 C p1/@
�1q2

� ˇ2
2 q2@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 � .ˇ2@p2 � ˇ2rp1 C q2/@
�1p1,

ˆ41 D r � 2ˇ1q1@
�1q1@C 2ˇ1q1@

�1q2rC 4ˇ2
1 q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1

C 2ˇ1ˇ2q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2 C ˇ2q1@
�1p2@ � ˇ2q1@

�1p1r

C 2ˇ1ˇ2q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 C .2ˇ1@p1 C 2ˇ1rp2 � p2/@
�1p1

C ˇ2
2 q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 C .ˇ2@p1 C ˇ2rp2 C q1/@
�1q2,

ˆ42 D �@ � 2ˇ1q1@
�1q2@ � 2ˇ1q1@

�1q1r C 4ˇ2
1 q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2

� 2ˇ1ˇ2q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1 � ˇ2q1@
�1p1@C ˇ2q1@

�1p2r

C 2ˇ1ˇ2q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 C .2ˇ1@p1 C 2ˇ1rp2 � p2/@
�1p2

� ˇ2
2 q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 � .ˇ2@p1 C ˇ2rp2 C q1/@
�1q1,

ˆ43 D 2ˇ1q1@
�1p1@ � 2ˇ1q1@

�1p2rC 4ˇ2
1 q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q1

� 2ˇ1ˇ2q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p2 C ˇ2q1@
�1q2@C ˇ2q1@

�1q1r

C 2ˇ1ˇ2q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q1 C .2ˇ1@p1 C 2ˇ1rp2 � p2/@
�1q1

� ˇ2
2 q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p2 � .ˇ2@p1 C ˇ2rp2 C q1/@
�1p2,

ˆ44 D 2ˇ1q1@
�1p2@C 2ˇ1q1@

�1p1r C 4ˇ2
1 q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1q2

C 2ˇ1ˇ2q1@
�1.p1@q2 � p2@q1 � q1@p2 C q2@p1/@

�1p1 � ˇ2q1@
�1q1@C ˇ2q1@

�1q2r

C 2ˇ1ˇ2q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1q2 C .2ˇ1@p1 C 2ˇ1rp2 � p2/@
�1q2

C ˇ2
2 q1@
�1.q1@q1 C p1@p1 C q2@q2 C p2@p2/@

�1p1 C .ˇ2@p1 C ˇ2rp2 C q1/@
�1p1.

Remark 3
If we let the spectral matrix U be

U D .�C s/e1 C q1e2 C q2e3 C p1e4 C p2e5 C re6

D

2664
0 �q1 �q2 �� � s

q1 0 �r �p1

q2 r 0 �p2

�C s p1 p2 0

3775
Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 680–698
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and

r D ˇ1

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ2.p1q2 � p2q1/,

s D ˇ3

�
p2

1 C p2
2 C q2

1 C q2
2

�
C ˇ4.p1q2 � p2q1/,

following the procedure of constructing the aforementioned soliton hierarchy of AKNS type, we can obtain a generalized soliton
hierarchy of AKNS type.

4. New soliton hierarchy of Wadati–Konno–Ichikawa type

In this section, we will construct new soliton hierarchy of WKI type from the matrix spectral problem (2.1) with the spectral matrix U
being chosen as

U D �e1 C �q1e2 C �q2e3 C �p1e4 C �p2e5

D

2664
0 ��q1 ��q2 ��

�q1 0 0 ��p1

�q2 0 0 ��p2

� �p1 �p2 0

3775 2 eso.4,R/.
(4.1)

This spectral problem is of the same type as the WKI hierarchies associated with sl.2,R/ [3], but its underlying loop algebra is different.
Let W be of the form (2.3), we solve the stationary zero curvature equation Wx D ŒU, W�, and it becomes

ax D �.p1c1 C p2c2 � q1b1 � q2b2/,

dx D �.q1c2 C p1b2 � q2c1 � p2b1/,

b1x D ��c1 C �q1aC �p2d

b2x D ��c2 C �q2a � �p1d

c1x D �b1 � �p1aC �q2d

c2x D �b2 � �p2a � �q1d.

(4.2)

Further setting W be (3.4), the aforementioned system (4.2) gives rise to

a.k/x D p1c.kC1/
1 C p2c.kC1/

2 � q1b.kC1/
1 � q2b.kC1/

2 ,

d.k/x D q1c.kC1/
2 C p1b.kC1/

2 � q2c.kC1/
1 � p2b.kC1/

1 ,

b.kC1/
1 D c.k/1x C p1a.kC1/ � q2d.kC1/,

b.kC1/
2 D c.k/2x C p2a.kC1/ C q1d.kC1/,

c.kC1/
1 D �b.k/1x C q1a.kC1/ C p2d.kC1/,

c.kC1/
2 D �b.k/2x C q2a.kC1/ � p1d.kC1/, k � 0,

(4.3)

and

p1c.0/1 C p2c.0/2 � q1b.0/1 � q2b.0/2 D 0,

q1c.0/2 C p1b.0/2 � q2c.0/1 � p2b.0/1 D 0,

b.0/1 D p1a.0/ � q2d.0/,

b.0/2 D p2a.0/ C q1d.0/,

c.0/1 D q1a.0/ C p2d.0/,

c.0/2 D q2a.0/ � p1d.0/.

(4.4)

To determine the sequence of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

, we rewrite a.k/x to the following form:

a.k/x D p1c.kC1/
1 C p2c.kC1/

2 � q1b.kC1/
1 � q2b.kC1/

2

D p1

�
�b.k/1x C q1a.kC1/ C p2d.kC1/

�
C p2

�
�b.k/2x C q2a.kC1/ � p1d.kC1/

�
� q1

�
c.k/1x C p1a.kC1/ � q2d.kC1/

�
� q2

�
c.k/2x C p2a.kC1/ C q1d.kC1/

�
D �p1b.k/1x � p2b.k/2x � q1c.k/1x � q2c.k/2x .

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 680–698
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Thus, a.kC1/
x becomes

a.kC1/
x D �p1b.kC1/

1x � p2b.kC1/
2x � q1c.kC1/

1x � q2c.kC1/
2x

D �p1

h
c.k/1xx C

�
p1a.kC1/

�
x
�
�

q2d.kC1/
�

x

i
� p2

h
c.k/2xx C

�
p2a.kC1/

�
x
C
�

q1d.kC1/
�

x

i
� q1

h
�b.k/1xx C

�
q1a.kC1/

�
x
C
�

p2d.kC1/
�

x

i
� q2

h
�b.k/2xx C

�
q2a.kC1/

�
x
�
�

p1d.kC1/
�

x

i
,

namely, �
p2

1 C p2
2 C q2

1 C q2
2 C 1

�
a.kC1/

x C .p1p1x C p2p2x C q1q1x C q2q2x/ a.kC1/

D 2.p1q2 � p2q1/d
.kC1/
x C .p1x q2 C p1q2x � p2x q1 � p2q1x/ d.kC1/

� p1c.k/1xx � p2c.k/2xx C q1b.k/1xx C q2b.k/2xx .

(4.5)

Similarly, we can obtain�
p2

1 C p2
2 C q2

1 C q2
2 C 1

�
d.kC1/

x C .p1p1x C p2p2x C q1q1x C q2q2x/ d.kC1/

D 2.p1q2 � p2q1/a
.kC1/
x C .p1x q2 C p1q2x � p2x q1 � p2q1x/ a.kC1/

� p1b.k/2xx C q2c.k/1xx � q1c.k/2xx C p2b.k/1xx .

(4.6)

Equation (4.5) minus (4.6) yieldsp
.p1 � q2/2 C .p2 C q1/2 C 1

hp
.p1 � q2/2 C .p2 C q1/2 C 1

�
a.kC1/ � d.kC1/

�i
x

D .p1 C q2/
�

b.k/2xx � c.k/1xx

�
C .q1 � p2/

�
b.k/1xx C c.k/2xx

�
,

so we have

a.kC1/ D d.kC1/ C
1p

.p1 � q2/2 C .p2 C q1/2 C 1
@�1

24 .p1 C q2/
�

b.k/2xx � c.k/1xx

�
C .q1 � p2/

�
b.k/1xx C c.k/2xx

�
p
.p1 � q2/2 C .p2 C q1/2 C 1

35 .

Substituting this equation into (4.6), we arrive at

d.kC1/ D
1p

.p1 � q2/2 C .p2 C q1/2 C 1
@�1

8<: 2
p

p1q2 � p2q1p
.p1 � q2/2 C .p2 C q1/2 C 1

� @

24 p
p1q2 � p2q1p

.p1 � q2/2 C .p2 C q1/2 C 1
@�1

0@ .p1 C q2/
�

b.k/2xx � c.k/1xx

�
C .q1 � p2/

�
b.k/1xx C c.k/2xx

�
p
.p1 � q2/2 C .p2 C q1/2 C 1

1A35
C
�p1b.k/2xx C q2c.k/1xx � q1c.k/2xx C p2b.k/1xxp

.p1 � q2/2 C .p2 C q1/2 C 1

9=; .

(4.7)

Thus, a.kC1/ has the following form:

a.kC1/ D
1p

.p1 � q2/2 C .p2 C q1/2 C 1
@�1

8<: 2
p

p1q2 � p2q1p
.p1 � q2/2 C .p2 C q1/2 C 1

� @

24 p
p1q2 � p2q1p

.p1 � q2/2 C .p2 C q1/2 C 1
@�1

0@ .p1 C q2/
�

b.k/2xx � c.k/1xx

�
C .q1 � p2/

�
b.k/1xx C c.k/2xx

�
p
.p1 � q2/2 C .p2 C q1/2 C 1

1A35
C
�p1c.k/1xx � p2c.k/2xx C q1b.k/1xx C q2b.k/2xxp

.p1 � q2/2 C .p2 C q1/2 C 1

9=; ,

(4.8)

so one can obtain the sequence of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

by Eqs (4.3), (4.7), (4.8) and a set of given initial values

a.0/ D d.0/ D
1p

.p1 � q2/2 C .p2 C q1/2 C 1
,

b.0/1 D �c.0/2 D
p1 � q2p

.p1 � q2/2 C .p2 C q1/2 C 1
,

b.0/2 D c.0/1 D
q1 C p2p

.p1 � q2/2 C .p2 C q1/2 C 1
.

Copyright © 2016 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 40 680–698
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d.1/ D
1

Œ.p1 � q2/2 C .p2 C q1/2 C 1�3=2
.p1x p2 � p1x q1 � p2q2x � q1q2x � p2x p1 C p2x q2 � q1x p1 C q1x q2/ ,

a.1/ D d.1/ C
1p

.p1 � q2/2 C .p2 C q1/2 C 1
,

b.1/1 D
1

Œ.p1 � q2/2 C .p2 C q1/2 C 1�3=2

�
p2x C q1x C p3

1 � 2p2
1q2 C p1q2

2 C p1p2
2 C 2p1p2q1 C p1q2

1 C p1

�
,

b.1/2 D
1

Œ.p1 � q2/2 C .p2 C q1/2 C 1�3=2

�
p1x � q2x � p2

1p2 C 2p1p2q2 � p2q2
2 � p3

2 � 2p2
2q1 � p2q2

1 � p2

�
,

c.1/1 D
1

Œ.p1 � q2/2 C .p2 C q1/2 C 1�3=2

�
p1x � q2x � p2

1q1 C 2p1q1q2 � q1q2
2 � p2

2q1 � 2p2q2
1 � q3

1 � q1

�
,

c.1/2 D
1

Œ.p1 � q2/2 C .p2 C q1/2 C 1�3=2

�
p2x C q1x � p2

1q2 C 2p1q2
2 � q3

2 � p2
2q2 � 2p2q1q2 � q2

1q2 � q2

�
.

To guarantee the uniqueness of
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

, we also need to impose the integration conditions

a.k/juD0 D d.k/juD0 D b.k/i juD0 D c.k/i juD0 D 0, i D 1, 2, k � 2.

Therefore, we can determine the sequence by means of Maple and prove the localness of the functions
n

a.k/, d.k/, b.k/i , c.k/i , i D 1, 2
o

.

However, we omit these tedious expressions for the sake of simplification.
Now, taking

VŒn� D �2.�nW/C C�n

D �2.�nW/C C

26664
0 �b.n/1x �b.n/2x 0

��b.n/1x 0 0 ��c.n/1x

��b.n/2x 0 0 ��c.n/2x

0 �c.n/1x �c.n/2x 0

37775 ,

the zero curvature equations Utn � VŒn�x C



U, VŒn�
�
D 0, n � 0 engender a new soliton hierarchy of WKI type2664

p1

p2

q1

q2

3775
tn

D Kn D

26664
c.n/1xx

c.n/2xx

�b.n/1xx

�b.n/2xx

37775 , n � 0. (4.9)

5. Conclusions and discussions

There are many soliton hierarchies obtained by means of matrix spectral problems based on the real Lie algebras such as sl.2,R/ and
so.3,R/ [1–19, 23–26, 28, 30, 32–38]. In this paper, we have introduced some new 4� 4 matrix spectral problems based on so.4,R/ and
new soliton hierarchies of KN type AKNS type and WKI type which have been derived. In addition, we use Maple to deal with some
complex symbolic computation.

Different from semisimple Lie algebras, there is a growing interest in soliton hierarchies generated from matrix spectral problems
associated with non-semisimple Lie algebras. Recently, various bi-integrable couplings and tri-integrable couplings from certain soliton
hierarchies bring us ideas to construct and classify integrable systems [20–22, 29, 32]. In a subsequent study, we will consider these
issues including the construction of n-coupled integrable coupling systems based on non-semisimple Lie algebras, the classification
problem of multi-component soliton hierarchies and the guarantee conditions of variational identity for non-semisimple Lie algebras.
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