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1. Introduction

Lump solutions are a kind of analytical solutions, which are rationally localized in all directions in
space. The study of lump solutions has a long history and recently new solutions have been presented for
(241)-dimensional integrable equations including the KP and the BKP equations [1-5]. The main idea to
get lumps in soliton theory is to take long wave limit of multi-soliton solutions obtained by the inverse
scattering transformation (IST) [6] or Hirota bilinear method [7-9] and a new algorithm to look for lumps
is given via symbolic computations [10]. Based on the Hirota method, there are many discussions for (241)-
dimensional systems recently for lump and interaction solutions [11-26] and other kinds of exact solutions
(see, e.g, [27-40]).
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In this paper, we try to find lump solutions to (3+1)-dimensional evolution equations by the Hirota
bilinear method. Two approaches can be applied: direct search and taking long wave limit of 2N-solitons.
Many studies [37-42] found two-wave lump solutions to (3+1)-dimensional nonlinear evolution equations
which can also be obtained by taking long wave limit of two-solitons. These solutions are not rationally
localized in all directions in space and we refer to them as lump-type solutions [11]. The aim of our current
paper is to find three-wave lump solutions which are rationally localized in all directions in space and them
cannot be long wave limit of any 2N-solitons. In the rest of paper, we simply call three-wave lump solutions
to (3 + 1)-dimensional evolution equations as lump solutions.

The research [11,12] shows that the existence of lump solutions for higher dimension is very restricted.
For example, in [11], we showed that any (N + 1)-dimensional KP equation with N > 2 cannot have lump
solutions generated by quadratic functions. However, only recently lump solutions have been found widely
exist in (341)-dimensional linear partial differential equations [43,44]. It is extremely important to explore
lump solutions to nonlinear partial differential equations in (341)-dimensions. In the following, we will show
the existence of lump solutions to a generalized Calogero-Bogoyavlenskii—Schiff (gCBS) equation in (3+1)
dimensions.

The (2+1)-dimensional integrable Calogero-Bogoyavlenskii-Schiff (CBS) equation [45-47] reads

vy + 4oy + 21)338;1% + Vgay =0, (1.1)

where

Ol f = /fdx.

It can be reduced to the famous KdV equation by setting d, = 0.
If we introduce the potential v = u,, we get the potential form of the (2+1)-dimensional CBS equation

Uzt + Mgy + 2Ugply + Upgay = 0. (1.2)
It is the special case of the (241)-dimensional gCBS equation [21,48]
Ugt + QUgUgy + DUgpty + Uggay = 0. (1.3)

We are interested in the following gCBS equation in (3+1) dimensions

Upzzy + SUaUzy + SUzaly + 200Uzt + 200Uy + 203Uz + auy = 0, (1.4)
where a1, ..., a4 are constants. It is not hard to show that (1.4) has the Hirota bilinear form
(D2Dy + 201D, Dy + 29Dy Dy + 203D, Dy + D) f - f = 0 (1.5)

under the Hopf-Cole transformation

u=2(In f)ye. (1.6)

Based on the Hirota method, we use the approach proposed in [11] to find lump solutions to the (3+1)-
dimensional generalized CBS Eq. (1.4). We first study properties of lump solutions to (3+1)-dimensional
evolution equations generated by quadratic polynomials. Then we present the calculation process to get
lump solutions for the (34+1)-dimensional gCBS equation. Next we have two examples with 3d and contour
plots. Finally, we have some concluding remarks.



Y. Zhou, X. Zhang, C. Zhang et al. Applied Mathematics Letters 141 (2023) 108598

2. Lump solutions in (3+1)-dimensions and applications to the (3+1)-dimensional gCBS equation

In order to solve the bilinear Eq. (1.5), we can choose any polynomial for f. Then the function u defined
by (1.6) is a rational function solution to the gCBS Eq. (1.4). In particular, u is analytic (with non—vanishing
denominator) when f > 0. In this work, we only consider positive quadratic functions solving (1.5). By the
research in [11], the positive quadratic function solutions to Eq. (1.5) can be written in the form of

f=R+B+f+d, (2.1)
where f; = ajz + by + cj2 + djt + e; with a;,b;,¢;,d;,e5,57 = 1,2,3 being constants. Then
fo =2a1f1 + 2022+ 2a3fs,  fax = 203 + 203 + 2a3.

In this case
o 2(a1f1 +azfo+asf3)

and
2
_ e+ a3+ ad)(E+ 3+ f3+d) = 2ah +azfo+asfs)’] (2.3)

(fE+f3+ f3+d)?

We assume that functions f1, fa, f3 are linearly independent. Otherwise, function f can be reduced to the

case f3 = 0.
Define
ar b o
D = det a2 bQ Co . (24)
a3 by c3

We prove an important property on a function of f1, fo and fs.

Theorem 1. Suppose D # 0. Then any continuous function w( f1, fa, f3) has the property that it maintains
its shape while it moves at a fized velocity.

Proof. By the condition that D # 0, we know the system of equations

a1z + b1y + 1z = —dqt,
asx + boy + coz = —dot, (2.5)
azx + b3y + c3z = —dst.
has a unique solution (xot, yot, zot) = (x0, Yo, 20)t for any fixed t.
Therefore we have f; = a;(x — zot) + b;(y — yot) + ¢;(z — zot) + €; for i = 1,2, 3. This imply any function
w keeps its shape and shift steadily at a velocity (zo, yo, 20). O

In [2], two-dimensional lump solutions were described as “the solutions that decay to a uniform state in
all directions and the amplitude of these solutions is rational in its independent variables”. Therefore, three-
dimensional lump solutions are rational function solutions that decay to a uniform state in all directions.
This state usually is the origin (0,0,0).

In the following, we will give the conditions that v (or v) is a lump solution of an evolution equation.

Theorem 2. If D # 0 then u(x,y, z,t) defined by (2.3) and v(z,y, z,t) defined by (2.2) satisfy

lim u(zx,y,z,t) =0, lim v(x,y,z,t) =0, 2.6
Il (z,y,2) | =400 (:9,21) H(ryy»Z)ll—>+oo( b21) (2:6)

for any fized t > 0.
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Proof. Under the above condition, along any direction in space, the numerate of (2.3) is a polynomial of
degree 2 whereas the denominator of (2.3) is of degree 4. So u will decay to 0 along any direction in space.
The same is true for v. 0O

Corollary 1. When ag = bs = c3 =d3 =e3 =0, u and v do not decay along all directions in space.

In this case, f = fZ + f2 + d. More generally, if u (or v) is a function of f; and f,, then it can not be a
lump solution in (3+1)-dimensions.

Corollary 2. Suppose a nonzero function w(-,-) is a differentiable function in two variables. Then w(f1, f2)
does not decay along all directions in space.

Proof. Suppose that w = h(f1, f2). We can easily find a direction (a,b,¢) which is perpendicular to
(a1,b1,c1) and (ag,be, c2). When t is fixed, f; and fo keep unchanged when (z,y, z) goes along the direction
(a,b,c). Since w is not zero, it cannot always decay to a zero along the direction (a, b, ¢). Therefore, w is not
a lump solution. [J

Remark 1. Lump solutions of any (3+1)-dimensional nonlinear evolution equation cannot be obtained by
taking long wave limit of a two-soliton solutions.

Unlike many researches for (2+1)-dimensional equations, it is not easy to search for f as sum of three
squares via (2.1) to present a lump solution in (3+1)-dimensions. Here we use the algorithm proposed in [11].

Let
f(z,y,2z,t) = wl Aw +d, (2.7)

where A = [a;;] is a 4 x 4 symmetric matrix, w = (2,9, z,t)7, d is a constant.
Introduce two matrices

0 0 0 (651 ay ag as Qa4
o 0 0 0 (%) o as ay Qg ar
Q= 0 0 0 a3 |’ A= as ag asg ag (28)
Qa1 Q2 a3 Gy aq ar a9 QAo
Let Q(4,7), A(i, j) be the entry of ith row and jth column in @ and A respectively. Then we define
4
1 N, 1
k= 3 Z Qi,7)A@, j) = 5(20(1@4 + 20007 + 20309 + 4a10). (2.9)

ij=1

According to the Theorem 3.4 in [11], the function f defined by (2.7) is a solution to the bilinear Eq. (3.5)
if and only if

3(11(12 + kd = 0, (210)
kA — AQA = 0. (2.11)

By using Maple with condition Rank(A) = 3, we get & = 0. Plug into (2.10), we have d > 0 is arbitrary
and ajas = 0. However, all principal minors of A are non-negative since A is positive semi-definite. If a; = 0,
we have

ara
det | "2 = ajas — a3 = —a3 >0,
a9 as

4
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as = 0 follows. By the same reason, ag = a4 = 0. Then we get a trivial solution for f which does not depend
on x and no lump solutions can be expected since D = 0. Therefore, we must have ay = 0. The nontrivial
solution of (2.11) can be expressed as

20[3&3 + agaq

a1 =
! 20&1
20[30,6 “+ agar
a5 = ——+——,
2a
2a1a3 +22a2a6 + ayag (2.12)
ag = —
8 2&3 )
2(anaq + a2ar + azag)
aijp = — o4 )

where a3, a4, ag, a7, ag are free parameters such that A > 0 and Rank(A) = 3, and ay, as, a3, a4 are all
nonzero constants.
We get the matrix A by substituting (2.12) into A in (2.8):

r Q303+ qqaq _
—— 0 as ay
20[1
2a3a¢ + agaz
0 - ag ar
2(12
2a1a3 + 2a0a6 + aqag
as ag - ag
20&3
2(0[1(14 —+ a7 + 0130,9)
aq ar ag -
L Qg _
and the function defined by (2.7) reads
Qasa a 2 aua 2c > aza « 2
RS A IV P
o a32 2001 a42 a9 Qs (2.13)
Quary 209 Q409 203
- y— 2t) — -2 44
209 oy 2a3 oy
If we choose agz, a4, ag, az,ag and d such that
Qasas aga asa aga aaa
358 <0, 22 <0, 220 0, T <0, 22 <0,d>0 (2.14)
aq a1 (%) Q2 a3
then function f is positive.
By symbolic computation, we derive from (2.13)
a a 2 a a 2
flz,y,2,t) = A (m—i— 2t 4t> + Ay (y—i— =t 7t>
Al A1 5 A2 A2 (2.15)
2
Ay ( - a%) T+
Oy
where
A= — 2aza3 + agay
20[1
2asag + agaz
Ay im ———————— 2.16
2 20[2 ) ( )
An = Q4a9 Q1 04a3ay Qo
3 203 053(20436l3 + a4a4) 043(20436% + a4a7) '
We can choose parameters as, a4, ag, a7 and ag such that
A > 0, Ag > 0, A3 >0 (2.17)

5
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then when d > 0 function f is positive. It is not hard to check that (2.17) is guaranteed by (2.14). Since
functions f; = xz+ %Z—F%t, fo= y—|—fT62Z+ Z—;t and f3 = z—%t are linearly independent. If condition (2.17)
is satisfied then D # 0 is also true. Therefore f defined by (2.15) generates a lump solution to the gCBS

equation.
Remark 2. The decomposition (2.15) is not unique simply because
2 2
a® + b2 = <a+b) + <a_b) .
V2 V2
In general, if a1, ag, a3, ay are fixed nonzero real numbers then according to [11] we have the following
lump solution for Eq. (1.4)

U(Jf, Y, 2, t) = 2 ln(f(a:, Y, z, t))$$
with

2 2
f(xvyaz7t) :Al (x‘i‘a32’+a4t+€1> +A2<y+aﬁz+a7t+62)

Ay ) A Ay A (2.18)
+A; <z - 2By e3> +d,
Oy

where as, a4, ag, az, ag are real numbers such that (2.17) is true for A, Ay, A3 given by (2.16), e1, e, e3 are
arbitrary real numbers and d is a positive real number.
There are an interesting class of solutions which are static (solutions that do not depend on t)

f(fﬂ, Y, z, t) = 111962 + a5y2 + a822 + asxz + agyz

2 2 2 2
a a a a 2.19
:al(x—i—Bz) +a5<y—|—6z) +(a8—3—6>22+d. ( )
ay as aq as
The aforementioned function f generates a lump solution to the gCBS equation if and only if
a3 a?
ap >0, as>0, ag———-L>0, d>0. (2.20)
aq as

3. Two illustrative examples

In this section, we will show examples of lump solutions to the (3+1)-dimensional gCBS equation
according to previous discussions.

Example 1. We take oy =as =ag=a4 =1and az3 =0,a4 = —2,a6 = —1,a7 = ag = —2,d = 1. Then

1 0 0 -2
0 2 -1 -2
A= o -1 2 =2
-2 -2 -2 12

possesses eigenvalues 0,1, 3,13.
By the eigenvalue decomposition of quadratic forms, we know

flz,y,2,t) = wl Aw 4+ d = 2% + 2y + 222 + 12t — dat — 2yz — 4yt — 4zt + 1
2t —y—2)?  3(y—2)? x+y+2z—6t)?
+

- 6 T3 3

+1. (3.1)

Also, by (2.15) 3
Fxoy,2,t) = (x — 20 +2(y — % — 1P+ 520+ 1. (3.2)
6
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3D surface plot fory=0 3D surface plot for =0

Deasiy plot for =0 Deasity plt for =0 Deasiy lotfor 20

Fig. 1. 3d plots (top) and density plots (bottom) of u for (a)z = 0, (b)y = 0, (¢)z = 0 when ¢t = 0.

Then the function

u(z,y,2,t) = (2In f(z,y,2,t))za
4(—2% + 2y + 222 + 4% + dtw — Aty — Atz — 2yz + 1)
(22 4 292 + 222 + 12t2 — dat — 2yz — 4yt — 4zt + 1)2

is a lump solution to the following special gCBS equation
(D:D, +2D,D;+2D,D; +2D,D, + D) f - f = 0. (3.3)

Fig. 1 illustrates 3d plots and contour plots of the lump solution projecting to (a) x = 0, (b) y = 0, (¢)
z =0, when t = 0.

Example 2. We take a1 = a3 =1,a3 =a4 = —1and ag = 1,a4 = 0,a6 = 1,a7 = 0,a9 = —1,d = 2. Then

1 0 1 0
0 1 1 0
A=11 1 52 21
0o 0 -1 2
possesses eigenvalues 0,1, (11 + V1T )/4.
By (2.15)
flz,y,z,t) = (x+2)2 +2(t —2/2)* + (y + 2)* + 2. (3.4)

Then the rational function

U’(may’zvt) = (21nf(a:,y,z,t))m
A+ 22422t —2)2 + 4y +2)2 + 8
2220t —2/2)2 4 (y+2)2 +2]2
7
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3D surface plo for x=0 3D surface plot fory=0 3D surface plo for =0

-1 10 10
Density plot for z=0 Densy plot for y=0 Density plot for z=0

Fig. 2. 3d plots (top) and density plots (bottom) of u for (a)z = 0, (b)y = 0, (¢)z = 0 when ¢t = 0.

is a lump solution to the following special gCBS equation
(D3D, +2D,D; +2D,D; —2D,D; — D?)f - f = 0. (3.5)

Fig. 2 illustrates 3d plots and contour plots of the lump solution projecting to (a) = 0, (b) y = 0, (¢)
z =0, when t = 0.

4. Conclusion

In this paper, we first introduce a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation
and then explored the three-wave lump solutions generated by positive quadratic functions solutions to the
corresponding bilinear equation. We find that these three-wave lump solutions are localized in all directions
in space which is different from two-wave lump solutions. We also analyzed the conditions for parameters
which lead to lump solutions. A set of three-wave lump solutions including a class of static ones to the
(341)-dimensional gCBS was discovered and two illustrative examples are given with 3d-plots and density
plots. Our computations are based on Hirota bilinear equations and the symbolic computation software
Maple.

The formulation of lump solutions is closed to that of rogue waves. In recent study, we find lump solutions
and line rogue waves exist in some (2+1) evolution equations [49,50]. We point out that it is possible for
line rogue waves appear in some (3+1) systems and we will study the problem in future.

Data availability

No data was used for the research described in the article.
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