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a b s t r a c t

The aim of this paper is to show the existence of three-wave lump solutions to a
(3+1)-dimensional generalized CBS (gCBS) equation. Based on the Hirota method,
the quadratic functions of the form f = f2

1 + f2
2 + f2

3 + d with nondegenerate
condition are applied to solve the corresponding bilinear equation and to generate
lump solutions to the gCBS equation. We present two examples of such nonlinear
equations and their lump solutions. Moreover, 3-dimensional plots and contour
plots are exhibited for three reduced lump solutions.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Lump solutions are a kind of analytical solutions, which are rationally localized in all directions in
space. The study of lump solutions has a long history and recently new solutions have been presented for
(2+1)-dimensional integrable equations including the KP and the BKP equations [1–5]. The main idea to
get lumps in soliton theory is to take long wave limit of multi-soliton solutions obtained by the inverse
scattering transformation (IST) [6] or Hirota bilinear method [7–9] and a new algorithm to look for lumps
is given via symbolic computations [10]. Based on the Hirota method, there are many discussions for (2+1)-
dimensional systems recently for lump and interaction solutions [11–26] and other kinds of exact solutions
(see, e.g, [27–40]).
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In this paper, we try to find lump solutions to (3+1)-dimensional evolution equations by the Hirota
bilinear method. Two approaches can be applied: direct search and taking long wave limit of 2N-solitons.
Many studies [37–42] found two-wave lump solutions to (3+1)-dimensional nonlinear evolution equations
which can also be obtained by taking long wave limit of two-solitons. These solutions are not rationally
localized in all directions in space and we refer to them as lump-type solutions [11]. The aim of our current
paper is to find three-wave lump solutions which are rationally localized in all directions in space and them
cannot be long wave limit of any 2N-solitons. In the rest of paper, we simply call three-wave lump solutions
to (3 + 1)-dimensional evolution equations as lump solutions.

The research [11,12] shows that the existence of lump solutions for higher dimension is very restricted.
For example, in [11], we showed that any (N + 1)-dimensional KP equation with N > 2 cannot have lump
olutions generated by quadratic functions. However, only recently lump solutions have been found widely
xist in (3+1)-dimensional linear partial differential equations [43,44]. It is extremely important to explore
ump solutions to nonlinear partial differential equations in (3+1)-dimensions. In the following, we will show
he existence of lump solutions to a generalized Calogero–Bogoyavlenskii–Schiff (gCBS) equation in (3+1)
imensions.

The (2+1)-dimensional integrable Calogero–Bogoyavlenskii–Schiff (CBS) equation [45–47] reads

vt + 4vvy + 2vx∂−1
x vy + vxxy = 0, (1.1)

where
∂−1

x f :=
∫

fdx.

It can be reduced to the famous KdV equation by setting ∂y = ∂x.
If we introduce the potential v = ux, we get the potential form of the (2+1)-dimensional CBS equation

uxt + 4uxuxy + 2uxxuy + uxxxy = 0. (1.2)

t is the special case of the (2+1)-dimensional gCBS equation [21,48]

uxt + auxuxy + buxxuy + uxxxy = 0. (1.3)

We are interested in the following gCBS equation in (3+1) dimensions

uxxxy + 3uxuxy + 3uxxuy + 2α1uxt + 2α2uyt + 2α3uzt + α4utt = 0, (1.4)

where α1, . . . , α4 are constants. It is not hard to show that (1.4) has the Hirota bilinear form

(D3
xDy + 2α1DxDt + 2α2DyDt + 2α3DzDt + α4D2

t )f · f = 0 (1.5)

nder the Hopf–Cole transformation
u = 2(ln f)xx. (1.6)

Based on the Hirota method, we use the approach proposed in [11] to find lump solutions to the (3+1)-
dimensional generalized CBS Eq. (1.4). We first study properties of lump solutions to (3+1)-dimensional
evolution equations generated by quadratic polynomials. Then we present the calculation process to get
lump solutions for the (3+1)-dimensional gCBS equation. Next we have two examples with 3d and contour

plots. Finally, we have some concluding remarks.
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2. Lump solutions in (3+1)-dimensions and applications to the (3+1)-dimensional gCBS equation

In order to solve the bilinear Eq. (1.5), we can choose any polynomial for f . Then the function u defined
y (1.6) is a rational function solution to the gCBS Eq. (1.4). In particular, u is analytic (with non–vanishing

denominator) when f > 0. In this work, we only consider positive quadratic functions solving (1.5). By the
research in [11], the positive quadratic function solutions to Eq. (1.5) can be written in the form of

f = f2
1 + f2

2 + f2
3 + d, (2.1)

where fj = ajx + bjy + cjz + djt + ej with aj , bj , cj , dj , ej , j = 1, 2, 3 being constants. Then

fx = 2a1f1 + 2a2f2 + 2a3f3, fxx = 2a2
1 + 2a2

2 + 2a2
3.

In this case
v = (ln f)x = fx

f
= 2(a1f1 + a2f2 + a3f3)

f2
1 + f2

2 + f2
3 + d

(2.2)

and

u = (ln f)xx = fxxf − f2
x

f2

= 2[(a2
1 + a2

2 + a2
3)(f2

1 + f2
2 + f2

3 + d) − 2(a1f1 + a2f2 + a3f3)2]
(f2

1 + f2
2 + f2

3 + d)2 . (2.3)

We assume that functions f1, f2, f3 are linearly independent. Otherwise, function f can be reduced to the
case f3 = 0.

Define

D := det

⎡⎣ a1 b1 c1
a2 b2 c2
a3 b3 c3

⎤⎦ . (2.4)

We prove an important property on a function of f1, f2 and f3.

Theorem 1. Suppose D ̸= 0. Then any continuous function w(f1, f2, f3) has the property that it maintains
its shape while it moves at a fixed velocity.

Proof. By the condition that D ̸= 0, we know the system of equations⎧⎨⎩ a1x + b1y + c1z = −d1t,
a2x + b2y + c2z = −d2t,
a3x + b3y + c3z = −d3t.

(2.5)

has a unique solution (x0t, y0t, z0t) = (x0, y0, z0)t for any fixed t.
Therefore we have fi = ai(x − x0t) + bi(y − y0t) + ci(z − z0t) + ei for i = 1, 2, 3. This imply any function

w keeps its shape and shift steadily at a velocity (x0, y0, z0). □

In [2], two-dimensional lump solutions were described as “the solutions that decay to a uniform state in
all directions and the amplitude of these solutions is rational in its independent variables”. Therefore, three-
dimensional lump solutions are rational function solutions that decay to a uniform state in all directions.
This state usually is the origin (0, 0, 0).

In the following, we will give the conditions that u (or v) is a lump solution of an evolution equation.

Theorem 2. If D ̸= 0 then u(x, y, z, t) defined by (2.3) and v(x, y, z, t) defined by (2.2) satisfy

lim
∥(x,y,z)∥→+∞

u(x, y, z, t) = 0, lim
∥(x,y,z)∥→+∞

v(x, y, z, t) = 0, (2.6)
for any fixed t > 0.
3
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Proof. Under the above condition, along any direction in space, the numerate of (2.3) is a polynomial of
egree 2 whereas the denominator of (2.3) is of degree 4. So u will decay to 0 along any direction in space.

The same is true for v. □

orollary 1. When a3 = b3 = c3 = d3 = e3 = 0, u and v do not decay along all directions in space.

In this case, f = f2
1 + f2

2 + d. More generally, if u (or v) is a function of f1 and f2, then it can not be a
lump solution in (3+1)-dimensions.

Corollary 2. Suppose a nonzero function w(·, ·) is a differentiable function in two variables. Then w(f1, f2)
does not decay along all directions in space.

Proof. Suppose that w = h(f1, f2). We can easily find a direction (a, b, c) which is perpendicular to
a1, b1, c1) and (a2, b2, c2). When t is fixed, f1 and f2 keep unchanged when (x, y, z) goes along the direction

(a, b, c). Since w is not zero, it cannot always decay to a zero along the direction (a, b, c). Therefore, w is not
lump solution. □

emark 1. Lump solutions of any (3+1)-dimensional nonlinear evolution equation cannot be obtained by
aking long wave limit of a two-soliton solutions.

Unlike many researches for (2+1)-dimensional equations, it is not easy to search for f as sum of three
quares via (2.1) to present a lump solution in (3+1)-dimensions. Here we use the algorithm proposed in [11].

Let
f(x, y, z, t) = wT Aw + d, (2.7)

here A = [aij ] is a 4 × 4 symmetric matrix, w = (x, y, z, t)T , d is a constant.
Introduce two matrices

Q =

⎡⎢⎢⎣
0 0 0 α1
0 0 0 α2
0 0 0 α3

α1 α2 α3 α4

⎤⎥⎥⎦ , A =

⎡⎢⎢⎣
a1 a2 a3 a4
a2 a5 a6 a7
a3 a6 a8 a9
a4 a7 a9 a10

⎤⎥⎥⎦ . (2.8)

Let Q(i, j), A(i, j) be the entry of ith row and jth column in Q and A respectively. Then we define

k := 1
2

4∑
i,j=1

Q(i, j)A(i, j) = 1
2(2α1a4 + 2α2a7 + 2α3a9 + α4a10). (2.9)

According to the Theorem 3.4 in [11], the function f defined by (2.7) is a solution to the bilinear Eq. (3.5)
f and only if

3a1a2 + kd = 0, (2.10)
kA − AQA = 0. (2.11)

By using Maple with condition Rank(A) = 3, we get k = 0. Plug into (2.10), we have d > 0 is arbitrary
and a1a2 = 0. However, all principal minors of A are non-negative since A is positive semi-definite. If a1 = 0,
we have

det
[

a1a2
]

= a1a5 − a2
2 = −a2

2 ≥ 0,

a2 a5

4
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a2 = 0 follows. By the same reason, a3 = a4 = 0. Then we get a trivial solution for f which does not depend
on x and no lump solutions can be expected since D = 0. Therefore, we must have a2 = 0. The nontrivial
solution of (2.11) can be expressed as

a1 = −2α3a3 + α4a4

2α1
,

a5 = −2α3a6 + α4a7

2α2
,

a8 = −2α1a3 + 2α2a6 + α4a9

2α3
,

a10 = −2(α1a4 + α2a7 + α3a9)
α4

,

(2.12)

here a3, a4, a6, a7, a9 are free parameters such that A ≥ 0 and Rank(A) = 3, and α1, α2, α3, α4 are all
onzero constants.

We get the matrix A by substituting (2.12) into A in (2.8):⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−α3a3 + α4a4

2α1
0 a3 a4

0 − 2α3a6 + α4a7

2α2
a6 a7

a3 a6 − 2α1a3 + 2α2a6 + α4a9

2α3
a9

a4 a7 a9 − 2(α1a4 + α2a7 + α3a9)
α4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
nd the function defined by (2.7) reads

f(x, y, z, t) = −α3a3

α1

(
x − α1

α3
z

)2
− α4a4

2α1

(
x − 2α1

α4
t

)2
− α3a6

α2

(
y − α2

α3
z

)2

−α4a7

2α2

(
y − 2α2

α4
t

)2
− α4a9

2α3

(
z − 2α3

α4
t

)2
+ d.

(2.13)

f we choose a3, a4, a6, a7, a9 and d such that
α3a3

α1
< 0,

α4a4

α1
< 0,

α3a6

α2
< 0,

α4a7

α2
< 0,

α4a9

α3
< 0, d > 0 (2.14)

hen function f is positive.
By symbolic computation, we derive from (2.13)

f(x, y, z, t) = A1

(
x + a3

A1
z + a4

A1
t

)2
+ A2

(
y + a6

A2
z + a7

A2
t

)2

+A3

(
z − 2α3

α4
t

)2
+ d,

(2.15)

here

A1 := −2α3a3 + α4a4

2α1
,

A2 := −2α3a6 + α4a7

2α2
, (2.16)

A3 := −α4a9

2α3
− α1α4a3a4

α3(2α3a3 + α4a4) − α2α4a6a7

α3(2α3a6 + α4a7) .

We can choose parameters a3, a4, a6, a7 and a9 such that

A > 0, A > 0, A > 0 (2.17)
1 2 3

5
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then when d > 0 function f is positive. It is not hard to check that (2.17) is guaranteed by (2.14). Since
unctions f1 = x+ a3

A1
z+ a4

A1
t, f2 = y+ a6

A2
z+ a7

A2
t and f3 = z− 2α3

α4
t are linearly independent. If condition (2.17)

s satisfied then D ̸= 0 is also true. Therefore f defined by (2.15) generates a lump solution to the gCBS
quation.

emark 2. The decomposition (2.15) is not unique simply because

a2 + b2 =
(

a + b√
2

)2
+

(
a − b√

2

)2
.

In general, if α1, α2, α3, α4 are fixed nonzero real numbers then according to [11] we have the following
ump solution for Eq. (1.4)

u(x, y, z, t) = 2 ln(f(x, y, z, t))xx

with
f(x, y, z, t) = A1

(
x + a3

A1
z + a4

A1
t + e1

)2
+ A2

(
y + a6

A2
z + a7

A2
t + e2

)2

+A3

(
z − 2α3

α4
t + e3

)2
+ d,

(2.18)

where a3, a4, a6, a7, a9 are real numbers such that (2.17) is true for A1, A2, A3 given by (2.16), e1, e2, e3 are
rbitrary real numbers and d is a positive real number.

There are an interesting class of solutions which are static (solutions that do not depend on t)

f(x, y, z, t) = a1x2 + a5y2 + a8z2 + a3xz + a6yz

= a1

(
x + a3

a1
z

)2
+ a5

(
y + a6

a5
z

)2
+

(
a8 − a2

3
a1

− a2
6

a5

)
z2 + d.

(2.19)

The aforementioned function f generates a lump solution to the gCBS equation if and only if

a1 > 0, a5 > 0, a8 − a2
3

a1
− a2

6
a5

> 0, d > 0. (2.20)

. Two illustrative examples

In this section, we will show examples of lump solutions to the (3+1)-dimensional gCBS equation
ccording to previous discussions.

xample 1. We take α1 = α2 = α3 = α4 = 1 and a3 = 0, a4 = −2, a6 = −1, a7 = a9 = −2, d = 1. Then

A =

⎡⎢⎢⎣
1 0 0 −2
0 2 −1 −2
0 −1 2 −2

−2 −2 −2 12

⎤⎥⎥⎦
possesses eigenvalues 0, 1, 3, 13.

By the eigenvalue decomposition of quadratic forms, we know

f(x, y, z, t) = wT Aw + d = x2 + 2y2 + 2z2 + 12t2 − 4xt − 2yz − 4yt − 4zt + 1

= (2x − y − z)2

6 + 3(y − z)2

2 + (x + y + z − 6t)2

3 + 1. (3.1)

lso, by (2.15)
f(x, y, z, t) = (x − 2t)2 + 2(y − z − t)2 + 3(z − 2t)2 + 1. (3.2)
2 2

6
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Fig. 1. 3d plots (top) and density plots (bottom) of u for (a)x = 0, (b)y = 0, (c)z = 0 when t = 0.

Then the function

u(x, y, z, t) = (2 ln f(x, y, z, t))xx

= 4(−x2 + 2y2 + 2z2 + 4t2 + 4tx − 4ty − 4tz − 2yz + 1)
(x2 + 2y2 + 2z2 + 12t2 − 4xt − 2yz − 4yt − 4zt + 1)2

s a lump solution to the following special gCBS equation

(D3
xDy + 2DxDt + 2DyDt + 2DzDt + D2

t )f · f = 0. (3.3)

Fig. 1 illustrates 3d plots and contour plots of the lump solution projecting to (a) x = 0, (b) y = 0, (c)
= 0, when t = 0.

xample 2. We take α1 = α2 = 1, α3 = α4 = −1 and a3 = 1, a4 = 0, a6 = 1, a7 = 0, a9 = −1, d = 2. Then

A =

⎡⎢⎢⎣
1 0 1 0
0 1 1 0
1 1 5/2 −1
0 0 −1 2

⎤⎥⎥⎦
ossesses eigenvalues 0, 1, (11 ±

√
17)/4.

By (2.15)
f(x, y, z, t) = (x + z)2 + 2(t − z/2)2 + (y + z)2 + 2. (3.4)

Then the rational function

u(x, y, z, t) = (2 ln f(x, y, z, t))xx

= −4(x + z)2 + 2(2t − z)2 + 4(y + z)2 + 8
2 2 2 2
[(x + z) + 2(t − z/2) + (y + z) + 2]

7
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Fig. 2. 3d plots (top) and density plots (bottom) of u for (a)x = 0, (b)y = 0, (c)z = 0 when t = 0.

is a lump solution to the following special gCBS equation

(D3
xDy + 2DxDt + 2DyDt − 2DzDt − D2

t )f · f = 0. (3.5)

Fig. 2 illustrates 3d plots and contour plots of the lump solution projecting to (a) x = 0, (b) y = 0, (c)
= 0, when t = 0.

. Conclusion

In this paper, we first introduce a (3+1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation
nd then explored the three-wave lump solutions generated by positive quadratic functions solutions to the
orresponding bilinear equation. We find that these three-wave lump solutions are localized in all directions
n space which is different from two-wave lump solutions. We also analyzed the conditions for parameters
hich lead to lump solutions. A set of three-wave lump solutions including a class of static ones to the

3+1)-dimensional gCBS was discovered and two illustrative examples are given with 3d-plots and density
lots. Our computations are based on Hirota bilinear equations and the symbolic computation software
aple.
The formulation of lump solutions is closed to that of rogue waves. In recent study, we find lump solutions

nd line rogue waves exist in some (2+1) evolution equations [49,50]. We point out that it is possible for
ine rogue waves appear in some (3+1) systems and we will study the problem in future.
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