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In this paper, a multi-component combined short pulse-mKdV equation is constructed as

a nonstreching invariant curve flow in the n-dimensional unit sphere S
n(1) = SO(n + 1)/SO(n).

The invariant subspace method is used to solve the resulting combined short pulse-mKdV equation

with n = 1. Through symbolic computation with the aid of mathematical software Maple, new

exact solutions are obtained from its two-dimensional invariant subspaces formed in forms of

the exponential functions and trigonometric functions.
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1. Introduction

Integrable equations arise in shallow water wave, condensed matter physics,
quantum field theory, optical communication and other applied sciences. Typical
ones include the KdV equation, the mKdV equation, the nonlinear Schrödinger
(NLS) equation, and the short pulse equation. Recently, it has been of great interest
to study geometric characteristics of integrable equations. In [1], Hasimoto has
published a pioneering result that the NLS equation

iφt + φss + |φ|2φ = 0 (1.1)

is equivalent to the system for the curvature κ and τ of curve γ in R
3,

κt = −2τκs − κτs,

τt =
κsss

κ
−

κsκss

κ2
− 2ττs + κκs (1.2)

via the so-called Hasimoto transformation φ = κexp(i
∫ s

τ(t, z)dz). Indeed, the

[339]
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system (1.2) is equivalent to the vortex filament equation γt = γs × γss = κb,
where b is the binormal vector of γ . In [2], the authors found that Hasimoto
transformation is a gauge transformation relating the Frenet frame {t, n, b} to the
parallel frame {t1, n1, b1}. The Hasimoto transformation has been generalized to
the Riemannian manifold with constant curvature, which is used to obtain the
corresponding integrable equations associated with the invariant nonstretching curve
flows [3]. It is also a Poisson map that transforms the Hamiltonian structure of
the NLS equation to that of the vertex filament flow [4]. The KdV equation, the
mKdV equation, the Camassa-Holm equation, the Sawada–Kotera equation and the
Kaup–Kuperschmidt equation have also been shown to arise from the invariant curve
flows in centro-equiaffine geometry, Euclidean geometry, special affine geometry and
projective geometry, respectively [5–12].

In Section 2, we will show that the following multi-component equation

Euxt +
α

2
(|Eu|2 Eux)x + αEu + β Euxxxx +

3

2
β|Eux |

2 Euxx = 0 (1.3)

can be generated from a nonstreching invariant curve flow in the n-dimensional unit
sphere S

n(1) = SO(n + 1)/SO(n). When α 6= 0 and β = 0, Eq. (1.3) becomes the
multi-component short pulse equation

Euxt +
α

2
(|Eu|2Eux)x + αEu = 0,

which has been presented in [12]. When α = 0 and β 6= 0, Eq. (1.3) reduces to
the well-known multi-component mKdV equation

Evt + β Evxxx +
3

2
β|Ev|2Evx = 0, Ev = Eux .

Thus, we call (1.3) a multi-component combined short pulse-mKdV equation when
α 6= 0 and β 6= 0.

Many symmetry-related methods provide efficient tools to reduce and solve
nonlinear partial differential equations (PDEs), which contain the Lie point sym-
metry, conditional symmetry, Lie–Bäcklund symmetry, and C∞-symmetry meth-
ods. Correspondingly, group-invariant solutions stemming from symmetries play
important roles in the study of their asymptotical behaviours, blow up phenom-
ena and geometric properties. These exact solutions can also be used to justify
the numerical scheme of solving nonlinear PDEs [13–18]. The invariant sub-
space method, related to the conditional Lie–Bäcklund symmetry method, can
be used to construct different types of exact solutions of evolution equations
[19–29]. For example, N -soliton solutions of integrable equations, derived by Hi-
rota’s bilinear method, belong to a linear subspace of exponential functions, upon
some change of dependent variables. In particular, Galaktionov and Svirshchevskii
[19] proposed a systematic approach to invariant subspaces of evolution equations,
and they obtained many interesting exact solutions of NLEEs in mechanics and
physics.
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In order to make a new application example of the invariant subspace method,
we will analyze Eq. (1.3) with n = 1, namely, the scale equation

uxt +
α

2
(u2ux)x + αu + βuxxxx +

3

2
βu2

xuxx = 0. (1.4)

We will show that this scalar equation admits two-dimensional invariant subspaces
in Section 3. Through symbolic computation with the aid of mathematical software
Maple, this equation will be reduced to some two-dimensional dynamical systems.
Then new exact solutions will be obtained, in terms of the exponential functions and
trigonometric functions. Section 4 will be devoted to conclusions and discussions.

2. A combined short pulse-mKdV equation

Firstly, we give a brief account of the curve flow theory on S
n(1) (see [12] for

details).
Assume that γ (x, t) is a curve flow on the unit sphere S

n(1) = SO(n+1)/SO(n),
which satisfies ‖γ ‖ = 1, where x is the invariant arc-length parameter and t is
the time. The natural frame of the curve γ ∈ S

n(1) is {e1 = γx, e2, . . . , en}. Let
ρ = (e0 = γ, e1, . . . , en) ∈ SO(n + 1) be the lift from S

n(1) to the bundle space
SO(n + 1), and Dx and Dt denote the tangent and evolutionary vector fields,
respectively. It follows that

ρx = ρω̂(Dx), ω̂(Dx) =




0 −1 E0T

1 0 −EkT

E0 Ek O


 , O ∈ so(n − 1),

where ω̂ is the Cartan connection and Ek = (k1, k2, . . . , kn−1) is the natural curvature
vector of γ .

Assume that the curve flow is governed by

γt = f e1 + h1e2 + h2e3 + · · · + hn−1en,

where the tangent velocity f and the normal velocities hi (i = 1, 2, . . . , n − 1)
depend on the curvatures and their derivatives with respect to the arc-length x. So
we let the time evolution for the frame read

ρt = ρω̂(Dt), ω̂(Dt) =




0 −f −EhT

f 0 −EξT

Eh Eξ 2


 , 2 ∈ so(n − 1),

where Eh = (h1, · · · , hn−1)
T and Eξ ∈ R

n−1 is an unknown vector to be determined
later by the structure equation.

Furthermore, we assume that the flow is intrinsic, namely, the distribution {Dx, Dt}
satisfies [Dx, Dt ] = 0 so that the integral submanifold is a smooth two-dimensional
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surface on the Lie group SO(n + 1). By means of the Cartan structure equation

d

dt
ω̂(Dx) −

d

dx
ω̂(Dt) −

[
ω̂(Dx), ω̂(Dt)

]
= 0,

one gets the following determining equations:

fx = 〈Ek, Eh〉, (2.1)

Eξ = Ehx + f Ek, (2.2)

2x = Ek ⊗ Eξ − Eξ ⊗ Ek, (2.3)

Ekt = Eξx − 2Ek + Eh, (2.4)

where (2.1) is the arc-length preserving condition, 〈Ea, Eb〉 = EaT Eb denotes the usual

Euclidean inner product, and Ea ⊗ Eb denotes the tensor product, namely,

Ea ⊗ Eb =




a1b1 a1b2 . . . a1bn−1

a2b1 a2b2 . . . a2bn−1

. . . . . . . . . . . .

an−1b1 an−1b2 . . . an−1bn−1




.

From (2.1) and (2.2), it follows that

f = ∂−1
x 〈Ek, Eh〉, Eξ = Ehx +

(
∂−1
x 〈Ek, Eh〉

)
Ek. (2.5)

Integrating (2.3) with respect to x once, we have

2 = ∂−1
x (Ek ∧ Eξ), (2.6)

upon setting Ea ∧ Eb = Ea ⊗ Eb − Eb ⊗ Ea for convenience. Substituting (2.5) and (2.6) into
(2.4) and using the identity for vectors

(Ea ∧ Eb) · Ec = 〈Eb, Ec〉Ea − 〈Ea, Ec〉Eb,

we can obtain an equation for the curvature vector

Ekt = Ehxx + 〈Ek, Ek〉Eh +
(
∂−1
x 〈Ek, Eh〉

)
Ekx +

(
∂−1
x (Ekx ∧ Eh)

)
Ek + Eh. (2.7)

In [12], the authors have considered the cases
{
Eh = Eu, Ek = −Eux

}
and

{
Eh =

Eux, Ek = Eu ∓ Euxx

}
which are used to construct the multi-component short pulse

equation and the Camassa–Holm type equation, respectively. In what follows, let us

study a new case
{
Eh = αEu+β Euxx, Ek = −Eux

}
, which has not been considered in the

literature including [12]. In this case, the tangent velocity f is determined by
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f = ∂−1
x 〈Ek, Eh〉

= ∂−1
x 〈−Eux, αEu + β Euxx〉

= −
α

2
|Eu|2 −

β

2
|Eux |

2 + c0, (2.8)

where c0 is an integration constant. Substituting (2.8) with c0 = α + β into (2.7),
and noting that 2 = −β∂−1

x (Eux ∧ Euxxx) = β Euxx ∧ Eux , we obtain the multi-component
combined short pulse-mKdV equation (1.3). When n = 1, the multi-component
equation (1.3) becomes (1.4). To summarize, we have the following result.

THEOREM 1. Assume that curves γ (x, t) on the sphere S
n(1) (n ≥ 1) are

governed by the flow

γt =

(
α + β −

α

2
|Eu|2 −

β

2
|Eux |

2

)
e1 +

n−1∑

j=1

uj,xej+1, (2.9)

where {e1, e2, . . . , en} is the natural frame of the curve γ (x, t), and (u1, u2, . . . , un−1)

is defined by the curvatures Ek = −Euxx . Then, the flow (2.9) is intrinsic and the
curvature vector Eu satisfies the combined short pulse-mKdV equation (1.3).

3. Exact solutions in the scalar case

Let us give a brief account of the invariant subspace method [19, 21–23, 25, 26,
29], which was carefully refined in [24]. Consider a (1 + 1)-dimensional evolution
equation

ut = F (x, u, ux, · · · , ukx) , (3.1)

where F (x, u, ux, · · · , ukx) is a given sufficiently smooth function of its arguments
and

ujx =
∂ju

∂xj
(j = 1, · · · , k).

Let {g1(x), g2(x), · · · , gm(x)} be a finite set of linearly independent functions and
Wm denote their linear span Wm = L{g1(x), g2(x), · · · , gm(x)}. The subspace Wm

is said to be invariant under the given operator F , namely, F is said to preserve
Wm if F(Wm) ⊆ Wm, that means

F
[ m∑

j=1

Cjgj (x)
]

=
m∑

j=1

9j (C1, C2, · · · , Cm)gj (x)

for any (C1, C2, · · · , Cm) ∈ R
m. It follows that if the linear subspace Wm is invariant

with respect to F , then Eq. (3.1) has an exact solution of the form

u(x, t) =
m∑

j=1

Cj (t)gj (x),
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where the coefficients {Cj (t), (j = 1, 2, · · · , m)} satisfy an m-dimensional dynamical
system

dCj (t)

dt
= 9 (C1(t), C2(t), · · · , Cm(t)) , j = 1, 2, · · · , m.

Assume that the invariant subspace Wm is defined as the space of solutions to
a linear mth-order ordinary differential equation (ODE),

L[y] ≡ y(m) + am−1(x)y(m−1) + · · · + a1(x)y ′ + a0(x)y = 0, (3.2)

then the invariant condition with respect to F takes the form

L [F [u]]
∣∣
[H ]

= 0, (3.3)

where [H ] denotes the equation L[u] = 0 and its differential consequences with
respect to x. This invariant condition (3.3) can be interpreted in terms of Lie–
Bäcklund symmetry of (3.1) of linear ODEs. Thus the maximal dimension of the
invariant subspaces preserved by F can be determined, which is included in the
following proposition proved by Galaktionov and Svirshchevskii [19].

PROPOSITION 1. Assume that a linear subspace Wm is invariant under a nonlinear
ordinary differential operator F of the order k, then m ≤ 2k + 1.

From the above proposition, we only need to consider the cases W2, W3, · · · , W9

defined by an ODE (3.2) with constant coefficients a0, a1, · · · , am−1.

We first analyze the case of m = 2. By setting

L[y] ≡ y ′′ + a1y
′ + a0y = 0

in (3.2) and

F =
α

2
(u2ux)x + αu + βuxxxx +

3

2
βu2

xuxx

in (1.4), we have
(
9a0a1β − 9a3

1β − 5a1α
)
u3

x +
(
9a2

0β + 4a2
1α − 21a0a

2
1β − 9a0α

)
uu2

x

+
(
7a0a1α − 15a2

0a1β
)
u2ux +

(
3a2

0α − 3a3
0β
)
u3 = 0 (3.4)

from the invariant condition (3.3). Here we use the software Maple to deal with
complicated calculations. To vanish all the coefficients of (3.4), we have three kinds
of invariant subspaces determined by the linear ODEs:

y ′′ +
α

β
y = 0 and y ′′ = 0.

Case 1: When α/β < 0, from y ′′ + αy/β = 0, we have an invariant subspace

L

{
exp

(
−

√
−

α

β
x

)
, exp

(√
−

α

β
x

)}
. (3.5)
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Thus the corresponding exact solution is given by

u(x, t) = C1(t)exp

(
−

√
−

α

β
x

)
+ C2(t)exp

(√
−

α

β
x

)
, (3.6)

where C1(t) and C2(t) satisfy the two-dimensional dynamical system

C ′
1 =

√
−

α

β
C1 (2C1C2α − α − β) ,

C ′
2 = −

√
−

α

β
C2 (2C1C2α − α − β) .

Exact solution of this dynamical system can be obtained as

C1 = c2e
c1t ,

C2 =
1

2c2α

(
c1

√
−

β

α
− α − β

)
e−c1t (3.7)

with two arbitrary constants c1 and c2.

Case 2: When α/β > 0, from y ′′ + αy/β = 0, we have an invariant subspace

L

{
sin

(√
α

β
x

)
, cos

(√
α

β
x

)}
. (3.8)

Thus the corresponding exact solution is given by

u(x, t) = C1(t)sin

(√
α

β
x

)
+ C2(t)cos

(√
α

β
x

)
, (3.9)

where C1(t) and C2(t) satisfy the two-dimensional dynamical system

C ′
1 =

√
α

β
C2

(
C2

1 + C2
2

2
α − α − β

)
,

C ′
2 = −

√
α

β
C1

(
C2

1 + C2
2

2
α − α − β

)
.

Exact solution of this dynamical system can be obtained as

C1 = c1sin

(√
α

β
|ξα − α − β|t

)
±
√

2ξ − c2
1cos

(√
α

β
|ξα − α − β|t

)
,

C2 = ∓
√

2ξ − c2
1sin

(√
α

β
|ξα − α − β|t

)
+ c1cos

(√
α

β
|ξα − α − β|t

)
(3.10)

with two arbitrary constants c1 and ξ .

Case 3: From y ′′ = 0, although we have an invariant subspace

L {1, x} ,
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no nontrivial exact solution of (1.4) can be obtained by u(x, t) = C1(t) + C2(t)x
because αC2(C

2
2 + 1) = 0 and C ′

2 = −αC1(C
2
2 + 1).

Moreover, we can show that there is no invariant subspace with m ≥ 3, through
complicated calculations. So we have established the following result.

THEOREM 2. The combined short pulse-mKdV equation (1.4) have two classes
of exact solutions, (3.6)–(3.7) and (3.9)–(3.10), which are generated from two-
dimensional invariant subspaces (3.5) and (3.8), respectively.

4. Concluding remarks

In this paper, a geometrical formulation for the multi-component curve flow
equation (1.3) has been established. More specifically, we have shown that the
combined short pulse-mKdV equation (1.3) is equivalent to a nonstreching invariant
curve flow in the n-dimensional unit sphere S

n(1). Eq. (1.3) provides a generalization
of the multi-component short pulse equation and the multi-component mKdV equation.
It is not clear to us, however, if there is any more general equation generated
from a curve flow in the n-dimensional unit sphere S

n(1), which admits invariant
subspaces of solutions with separated variables.

Furthermore, the invariant subspace method has been used to solve the scale
equation (1.4) through symbolic computation with the aid of mathematical software
Maple. Novel exact solutions (3.6)–(3.7) and (3.9)–(3.10), generated from two-
dimensional invariant subspaces, have been presented, in terms of the exponential
functions and trigonometric functions. On the other hand, we would like to point out
that a general question is more challenging: how to determine invariant subspaces
of the form W = W 1

m1
× W 2

m2
× · · · × W n

mn
for the combined short pulse-mKdV

equation (1.3).

Acknowledgements

The work is supported by the National Natural Science Foundation of
China (Grant No. 11371323) and the Natural Science Foundation of Zhejiang
Province (Grant No. LY14A010016).

REFERENCES

[1] H. Hasimoto: A soliton on a vortex filament, J. Fluid Mech. 51 (1972), 477.

[2] G. Marı́ Beffa, J. A. Sanders and J. P. Wang: Integrable systems in three-dimensional Riemannian geometry,

J. Nonl. Sci. 12 (2002), 143.

[3] J. A. Sanders and J. P. Wang: Integrable systems in n-dimensional Riemannian geometry, Mosc. Math.

J. 3 (2003), 1369.

[4] J. Langer and R. Perline: Poisson geometry of the filament equation, J. Nonl. Sci. 1 (1991), 71.

[5] U. Pinkall: Hamiltonian flows on the space of star-shaped curves, Results Math. 27 (1995), 328.

[6] K. S. Chou and C. Z. Qu: Integrable equations arising from motions of plane curves, Phys. D 162 (2002),

9.

[7] R. E. Goldstein and D.M. Petrich: The Korteweg-de Vries hierarchy as dynamics of closed curves in the

plane, Phys. Rev. Lett. 67 (1991), 3203.



A COMBINED SHORT PULSE-MKDV EQUATION AND ITS EXACT SOLUTIONS. . . 347

[8] K. S. Chou and C. Z. Qu: Integrable motions of space curves in affine geometry, Chaos, Solitons &

Fractals 14 (2002), 29.

[9] G. Marı́ Beffa: On completely integrable geometric evolutions of curves of Lagrangian planes, Proc. Roy.

Soc. Edinburgh Sect. A 137 (2007), 111.

[10] Y. Y. Li, C. Z. Qu and S. C. Shu: Integrable motions of curves in projective geometries, J. Geom. Phys.

60 (2010), 972.

[11] E. Musso: Motions of curves in the projective plane inducing the Kaup–Kupershmidt hierarchy, SIGMA

8 (2012), 030.

[12] C. Z. Qu, J. F. Song and R. X. Yao: Multi-component integrable systems and invariant curve flows in

certain geometries, SIGMA 9 (2013), 001.

[13] G. W. Bluman and S. Kumei: Symmetries and Differential Equations, Springer, New York 1989.

[14] P.J. Olver: Applications of Lie Groups to Differential Equations, Springer, New York 1993.

[15] A. S. Fokas and Q.M. Liu: Nonlinear interaction of travelling waves of nonintegrable equations, Phys.

Rev. Lett. 72 (1994), 3293.
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