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1. Introduction

The aim of this paper is to find lump and interaction solutions [1-3] to the Hirota-Satsuma-Ito (HSI) equation by the
Hirota direct method [4,5], which is a powerful tool for finding N-soliton solutions. The Hirota method can also be used to
find other kinds of exact solutions (see, e.g, [6-18]).

The Hirota-Satsuma shallow water wave equation [4]

U = Uyy + 33Ul — Uyl — Uy, Vx=—U (1.1)
has a Hirota bilinear form
(DD} — DDy~ D2)f - f =0 (12)

under the logarithm transformation u = 2(In f)x. It has an integrable (2 + 1)-dimensional extension called the Hirota-
Satsuma-Ito equation [19]:

We = Ugye + 33Ul — 3UxVr + XUy, Wx = —Uy, Ux=—U (1.3)
with the bilinear form
(D:D? + DDy +aD?)f - f =0, (1.4)
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where « is a real nonzero constant and Dy, Dy and D are all Hirota derivatives [4] which are defined as follows. Let f, g be
infinitely differentiable functions in R3,

(kaDythnf 'g) (x,y, t)

_ 3 3 k i i m 3 i n Y
= <8x - 8x/> <8y - ay) <ar - aw) fxy. 08Xy O (15)

where k, m, n are nonnegative integer.

A lump solution is a rational function solution which is real analytic and decays in all directions of space variables.
Lump solutions to many (2 + 1)-dimensional equations have been widely discussed. For example, in [20,21], lump solutions
to the Kadomtsev-Petviashvili (KP) equations [4,20] are obtained by taking a “long wave” limit of N-solition solutions. In
[11], a general theory for finding positive quadratic function solutions to a bilinear equation is presented. The results were
extended to generalized bilinear equation [12]. Recently, there have been some discussions on lump-soliton solutions by the
method of ansatz [3,22] and the interaction of multi-lump solutions have been intensively studied within the framework of
the KP-I equation [23,24]. In this paper, we will establish a general approach to find lump solutions and their interaction
with exponential waves. we find lump part first, then we determine soliton part. In Section 2, we give the necessary and
sufficient conditions for generating the lump-soliton solutions in Corollary 1. Unlike previous work [3,22], our soliton part
could contain a sum of exponential waves.

2. Lump and lump-soliton solutions

Let us consider bilinear equation
P(Dx,Dy,D)f - f=0, (2.1)

where P(x, y, t) is an even polynomial of (x, y, t) with P(0,0,0) = 0.
In order to find lump-soliton solutions, set

n
fey,t) =g(xy,t) + ) deexp(@x + by + Git), (2.2)
k=1

where g is a polynomial. When g is positive and d; >0 for k=1, 2,---n, the corresponding u = 2[In(f)]x or u = 2[In(f)]x
is a lump-soliton function.
By the property of the Hirota derivatives, we have

P(Dx, Dy, Dy) exp(§;) - exp(§;) = P(a; — a;j, by — bj, ¢; — ;) exp (§; + &;). (2.3)
In particular,
P(Dy, Dy, Dy) exp(§;) - exp(&;) = P(0, 0, 0) exp (2&;) = 0. (2.4)

Theorem 1. Let & = qyx + by + it # 0,6, + & # 0 and §;, &, + & are distinct for j, k,1=1,2,...,n. Assume g(x, y, t) is a
polynomial and h(x,y,t) = Y p_;drexp(&), dy #0,k=1,--- ,n. Then f =g+ h is a solution of (2.1) if and only if g (solution
of (2.1)) generates a rational solution and

P(Dx,Dy,D;)g-exp(&) =0, k=1,2,---,n, (2.5)
P(Dy, Dy, D;) exp(&) - exp(§j) =0k, j=1,2,--- ,n, k# j. (2.6)

Proof. By direct computation
P(Dx,Dy,D;)f - f =P(Dx,Dy,D;)g- g+ 2P(Dx, Dy, Dy)g - h + P(Dx, Dy, Dt)h - h. (2.7)

Notice that P(Dx, Dy, D;)g-g is a polynomial, P(Dx, Dy, D;)g-exp (&) is a polynomial of x, y and t multiplying exp (&) and
P(Dy, Dy, Dr)exp(&y)-exp(§;) is a multiple of exp(§, +&;). By the conditions of the theorem, their exponential parts are
different. Then the conclusion follows. O

In the case of n =1, (2.6) is true by the property (2.4). Therefore, we get the following corollary.

Corollary 1. Suppose function g is a polynomial solution of (2.1) and g generates a lump solution (u = 2[In(g)]x or u = 2[In(g) Jxx
is a lump solution) and h(x,y,t) = d exp(ax + by + ct) with d >0 and ax + by + ct # 0. Then f = g+ h generates a lump-soliton
solution if and only if

P(Dx, Dyy Dt)g' h=0. (2.8)
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3. Application to the HSI equation

In this part, we will apply the results of Section 2 to the HSI equation.
We first consider positive quadratic solutions of Eq. (1.4). By the result in [10,11], the largest class of quadratic functions
which generate lump solutions to a (2+1)-dimensional nonlinear PDEs can be expressed as:

g(x,y,t) = (X + azy + ast + ¢1)% + (agx + asy + ast + ¢2)? + a7. (3.1)
By using Maple, we can determine the parameters a,, as and a;
_a[(a% —a3)as + 2a1a406] o~ — o(a2ag — 2a,a304 — a3ag)
a}+ag C T a} +aZ
_3(a§ +a2)(a? + a3)(a1a3 + a4a6)
a(a1as — asas)?

a =

)

a; =

)

where « is a nonzero real number, ¢y, ¢, are arbitrary real constants. Parameters ay, as, a4, ag are all real constants satisfying
a10ag # a3a4 and o (aqas + asag) < 0. It is not difficult to show that a; > 0.

We define
al(a? — a2)as + 2a;a4a6]
gy t) = ax - —1 A2 TSy st 4y, (32)
a2 +aZ
a(a?ag — 2a,a304 — a%a
Gy, 1) = age 4 20106 T 2MAB0 Z0ls) L (3.3)

2 2
as + dg

3(a3 + a3)(af + a3)(a1a3 + a406)
a(ayas — azay)?

g(x.y.t) =g1 +8 — , (3.4)

Note the condition a;ag #asay implies a3 + a2 # 0 and a2 + aZ # 0 and so g is well defined. The property that functions g
o (a2 + a3)(a1a6 — a304)
7. 2
a% + a2

and g, are linearly independent is guaranteed by aias — aya4 = # 0, which make

u=2(ng)xx
_4{(a} +a3)g - 2(a1g1 + asag2)?)
= 2
decay in all directions, so that the corresponding solution u of (1.3) is a lump solution.

Example 1. For a group of parameters:
a=-1,a1=1,a3=-08,a4=1.25,a6=2,¢c1 =¢; =0,

we have
g(x,y.t) = (0.8t + x + 1.17y)? + (2t + 1.25x — 0.19y)? + 6.74,

and
Wiy, £y = 2444E% + (34851~ 52.53y)t — 26.27x” — 19.25%y + 745" + 69.06
V0= [(—0.8f +x+ 1.17y)% + (2t + 1.25x — 0.19y)? + 6.74]?

The plot of surface and contour of function u when t = 0 are depicted in Fig. 1.

In order to find lump-soliton solutions to HSI equation, we assume f =g+ h for g is given by (3.1) and
h(x,y.t) = c3exp(agx + agy + aot).
The corresponding lump-soliton solutions are given by

— 2
u=2(n(g + ) = Z(gxx+hxx><iggi hh>)2 28 +ho)?

By Corollary 1 and symbolic computation, we get two classes of solutions.
Case I. We have solution

3aga? 3a,a2 2000y
ay =— 8, a; = 8, as = ’
2a 2 3a2
9aga’ a 2a
8 8
as = , =0, a9g=-=, ap=—-——
>T T4a 7 9T TI0T T3
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Fig. 1. Plots of a lump solution for « = —1,a; = 1,a3 = —0.8,a4 = 1.25,a5 = 2,¢c; = ¢c; = 0 and t = 0. (a) 3d plot, (b) contour.

Assume that o #0, cq, ¢, are arbitrary real constants, c3 >0 and parameters ay, ag, dg are all real constants satisfying ag # 0.
Then

3aga2  3aua? 2ua 2 9aga? 2
g(x,y,t):(— 228x+ §8y+ 3az4t+c1) +<a4x+ 4(;8y+a5t+c2),

o 5 8 (3.5)
o
h(x,y,t) = cz ex (ax 2 ——t).
(X.y.t) = c3exp ( agx + =7y 345
.. 27a2a8+3a2a2a2 L. .
We need lump condition aias — aya4 = —W # 0, which is guaranteed if a4 and ag are not all zeros.

Example 2. For a group of parameters:
a=-1l,a4=-1,a6=2,a3=1,c1=c,=0,c3 =1,

we have

fx,y.t) = (3x— §y+ gt)

2 2

9 X+3y+3t
3 3 +<x+jy—2t> + X2y Tat

and we obtain a lump-soliton solution

2(20 + eXH5Y+3t)  2(20x + eXtiv+ir)2

ux,y,t)

fxy.ty — fxyr)?
~ 2[0+€5)[(3x — 3y + 30)% + (x + 3y — 26)*] + (20 — 40x)e’ — 400x?]
B fx,y.t)? ’

where & =x + %y + %t. Since the denominator contains e, u will decay exponentially when (x, y) is fixed as t goes to co.

The dynamics of the solution u shows that at first one lump and one line soliton are moving, and after interaction the
line soliton seems to absorb the lump and keeps moving. The plot of surfaces of function u when t = -3, 2,8 and 20 are
depicted in Fig. 2.

Case II: Assume that o #0, ¢y, ¢ are arbitrary real constants c3 >0 and parameters a;, ag, ajg are all real constants
satisfying a; # 0, 3a2a?, + 2cagayg < 0. Since wagayg <0, 9aZad, + 12cagasg = 3(3a3a?, + 2wagasp + 2eagasg) < 0. Let B :=
1/\/ —(9a§a§0 + 12agayg). The other parameters are determined by

_ a1ag(3asayp + 2a)

Gp=-—— . ;= 0, a4 = Ba;(3agay + 2a),
10
ayasB(9a2a3, + 12aaga + 20?) . 20,
5= b 6 — — 5
aqo 3,3(1%(3(18(1]0 +40l)
- 8u2a? (3agarp + 2wx) 0 — _a§ (agajg + o)
! 3a3aio(3asa + 4a)?’ ’ o '
202 Batag

It is easy to see ajas —apa4 = 4 #0,a; > 0. Therefore function g(x,y,t) = (a1X + azy + ¢1)? + (a4X + asy + agt +
10

¢3)? + a; with coefficients ay, a4, as, ag, a; defined above will generate a lump solution. The corresponding

aé(asaloﬂr)

u(x,y,t) = 2[In(g(x,y, t) + cze™ " o T,
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Fig. 2. Plots of a lump-soliton solution in Case I for « = —1,a3 = -1,a6 =2,a3 =1,c1 =, =0,c3 =1. (a) t

soliton solution of the HSI equation.

is a lump-

Example 3. For a group of parameters:

0=0,c3=1,

C1

)

l,a3=1,a10=0.5

-1,

o =

we have

)

1 2 32 (X+y+t)/2
E(x—7y+2t) + 75 +e

=x+y)?+

fx,y.t)

and we obtain a lump-soliton solution

£))xx

Y,
et
T

5

=2(nf(x

u(x,y,t)

16y+4t | e \2
= +5)°

)f(x’yv t) - (32)‘7

32
5+

2[(

fx.y.0)?

where £ = (x+y +t)/2. The dynamics of u are similar to those of Example 2. The plot of surfaces of function u when

t =—20,0, 20 and 40 are depicted in Fig. 3.

Note 1 The lump-soliton solutions of Examples 2 and 3 represent the result of instability of the line soliton and dynam-

ical formation of a lump soliton. Such exact solutions were constructed for the KP-I equation in [25,26].

Note 2 Above two classes of solutions are different. In the first case, ajg is determined by ag while in the second case,

2aay
3a;

+# 0 if a4 #0. Therefore,

2
8

in the second case, a; = 0, while in the first case, a3

ag and apo are independent. Conversely,

neither of these two classes can contain the other as a special case.
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In this paper, we have studied the lump and lump-soliton solutions of the (2+1)-dimensional Hirota-Satsuma-Ito equa-
tion generated by positive quadratic function solutions of bilinear equation (1.4). Our computations are based on Hirota
bilinear equations and the symbolic computation software Maple. We know that when « = —1 and y = —x, the Hirota-
Satsuma-Ito equation reduces to the (1+1)-dimensional Hirota-Satsuma equation. However, we are unable to find any lump
solution for the Hirota-Satsuma equation. The interaction of the lump solutions involve higher order polynomial solutions

of the bilinear equation (1.4) which will be studied in our future research.
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