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a b s t r a c t 

We apply the Hirota direct method to construct lump and interaction solutions to the 

Hirota–Satsuma–Ito (HSI) equation. We establish a general theory for finding the lump- 

soliton to (2+1)-dimensional nonlinear PDEs. We generate the corresponding lump and 

lump-soliton solutions to the HSI equation by the logarithm transformation of the depen- 

dent variables. 
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1. Introduction 

The aim of this paper is to find lump and interaction solutions [1–3] to the Hirota–Satsuma–Ito (HSI) equation by the

Hirota direct method [4,5] , which is a powerful tool for finding N -soliton solutions. The Hirota method can also be used to

find other kinds of exact solutions (see, e.g, [6–18] ). 

The Hirota–Satsuma shallow water wave equation [4] 

u t = u xxt + 3 uu t − 3 u x v t − u x , v x = −u (1.1)

has a Hirota bilinear form 

(D t D 

3 
x − D t D x − D 

2 
x ) f · f = 0 (1.2) 

under the logarithm transformation u = 2( ln f ) xx . It has an integrable (2 + 1) -dimensional extension called the Hirota–

Satsuma–Ito equation [19] : 

w t = u xxt + 3 uu t − 3 u x v t + αu x , w x = −u y , v x = −u (1.3)

with the bilinear form 

(D t D 

3 + D t D y + αD 

2 ) f · f = 0 , (1.4)
x x 
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where α is a real nonzero constant and D x , D y and D t are all Hirota derivatives [4] which are defined as follows. Let f, g be

infinitely differentiable functions in R 

3 , 

(D x 
k D y 

m D t 
n f · g)(x, y, t) 

= 

(
∂ 

∂x 
− ∂ 

∂ x ′ 

)
k 

(
∂ 

∂y 
− ∂ 

∂ y ′ 

)
m 

(
∂ 

∂t 
− ∂ 

∂ t ′ 

)
n f (x, y, t) g(x ′ , y ′ , t ′ ) 

∣∣∣
x ′ = x,y ′ = y,t ′ = t 

, (1.5)

where k, m, n are nonnegative integer. 

A lump solution is a rational function solution which is real analytic and decays in all directions of space variables.

Lump solutions to many (2 + 1) -dimensional equations have been widely discussed. For example, in [20,21] , lump solutions

to the Kadomtsev–Petviashvili (KP) equations [4,20] are obtained by taking a “long wave” limit of N -solition solutions. In

[11] , a general theory for finding positive quadratic function solutions to a bilinear equation is presented. The results were

extended to generalized bilinear equation [12] . Recently, there have been some discussions on lump-soliton solutions by the

method of ansatz [3,22] and the interaction of multi-lump solutions have been intensively studied within the framework of

the KP-I equation [23,24] . In this paper, we will establish a general approach to find lump solutions and their interaction

with exponential waves. we find lump part first, then we determine soliton part. In Section 2 , we give the necessary and

sufficient conditions for generating the lump-soliton solutions in Corollary 1 . Unlike previous work [3,22] , our soliton part

could contain a sum of exponential waves. 

2. Lump and lump-soliton solutions 

Let us consider bilinear equation 

P (D x , D y , D t ) f · f = 0 , (2.1)

where P ( x, y, t ) is an even polynomial of ( x, y, t ) with P (0 , 0 , 0) = 0 . 

In order to find lump-soliton solutions, set 

f (x, y, t) = g(x, y, t) + 

n ∑ 

k =1 

d k exp (a k x + b k y + c k t) , (2.2)

where g is a polynomial. When g is positive and d k > 0 for k = 1 , 2 , · · · n, the corresponding u = 2[ ln ( f )] x or u = 2[ ln ( f )] xx

is a lump-soliton function. 

By the property of the Hirota derivatives, we have 

P (D x , D y , D t ) exp (ξi ) · exp (ξ j ) = P (a i − a j , b i − b j , c i − c j ) exp (ξi + ξ j ) . (2.3)

In particular, 

P (D x , D y , D t ) exp (ξi ) · exp (ξi ) = P (0 , 0 , 0) exp (2 ξi ) = 0 . (2.4)

Theorem 1. Let ξk = a k x + b k y + c k t � = 0 , ξk + ξ j � = 0 and ξ j , ξk + ξl are distinct for j, k, l = 1 , 2 , · · · , n . Assume g ( x, y, t ) is a

polynomial and h (x, y, t) = 

∑ n 
k =1 d k exp (ξk ) , d k � = 0 , k = 1 , · · · , n . Then f = g + h is a solution of (2.1) if and only if g (solution

of (2.1) ) generates a rational solution and 

P (D x , D y , D t ) g · exp (ξk ) = 0 , k = 1 , 2 , · · · , n, (2.5)

P (D x , D y , D t ) exp (ξk ) · exp (ξ j ) = 0 , k, j = 1 , 2 , · · · , n, k � = j. (2.6)

Proof. By direct computation 

P (D x , D y , D t ) f · f = P (D x , D y , D t ) g · g + 2 P (D x , D y , D t ) g · h + P (D x , D y , D t ) h · h. (2.7)

Notice that P ( D x , D y , D t ) g · g is a polynomial, P ( D x , D y , D t ) g · exp ( ξ k ) is a polynomial of x, y and t multiplying exp ( ξ k ) and

P ( D x , D y , D t )exp ( ξ k ) · exp ( ξ j ) is a multiple of exp (ξk + ξ j ) . By the conditions of the theorem, their exponential parts are

different. Then the conclusion follows. �

In the case of n = 1 , (2.6) is true by the property (2.4) . Therefore, we get the following corollary. 

Corollary 1. Suppose function g is a polynomial solution of (2.1) and g generates a lump solution ( u = 2[ ln (g)] x or u = 2[ ln (g)] xx

is a lump solution) and h (x, y, t) = d exp (ax + by + ct) with d > 0 and ax + by + ct � = 0 . Then f = g + h generates a lump-soliton

solution if and only if 
P (D x , D y , D t ) g · h = 0 . (2.8) 
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3. Application to the HSI equation 

In this part, we will apply the results of Section 2 to the HSI equation. 

We first consider positive quadratic solutions of Eq. (1.4) . By the result in [10,11] , the largest class of quadratic functions

which generate lump solutions to a (2 + 1)-dimensional nonlinear PDEs can be expressed as: 

g(x, y, t) = (a 1 x + a 2 y + a 3 t + c 1 ) 
2 + (a 4 x + a 5 y + a 6 t + c 2 ) 

2 + a 7 . (3.1)

By using Maple, we can determine the parameters a 2 , a 5 and a 7 

a 2 = −α[(a 2 1 − a 2 4 ) a 3 + 2 a 1 a 4 a 6 ] 

a 2 
3 

+ a 2 
6 

, a 5 = 

α(a 2 1 a 6 − 2 a 1 a 3 a 4 − a 2 4 a 6 ) 

a 2 
3 

+ a 2 
6 

, 

a 7 = −3(a 2 3 + a 2 6 )(a 2 1 + a 2 4 )(a 1 a 3 + a 4 a 6 ) 

α(a 1 a 6 − a 3 a 4 ) 2 
, 

where α is a nonzero real number, c 1 , c 2 are arbitrary real constants. Parameters a 1 , a 3 , a 4 , a 6 are all real constants satisfying

a 1 a 6 � = a 3 a 4 and α(a 1 a 3 + a 4 a 6 ) < 0 . It is not difficult to show that a 7 > 0. 

We define 

g 1 (x, y, t) := a 1 x −
α[(a 2 1 − a 2 4 ) a 3 + 2 a 1 a 4 a 6 ] 

a 2 
3 

+ a 2 
6 

y + a 3 t + c 1 , (3.2) 

g 2 (x, y, t) := a 4 x + 

α(a 2 1 a 6 − 2 a 1 a 3 a 4 − a 2 4 a 6 ) 

a 2 
3 

+ a 2 
6 

y + a 6 t + c 2 , (3.3) 

g(x, y, t) := g 2 1 + g 2 2 −
3(a 2 3 + a 2 6 )(a 2 1 + a 2 4 )(a 1 a 3 + a 4 a 6 ) 

α(a 1 a 6 − a 3 a 4 ) 2 
, (3.4) 

Note the condition a 1 a 6 � = a 3 a 4 implies a 2 
3 

+ a 2 
6 

� = 0 and a 2 
1 

+ a 2 
4 

� = 0 and so g is well defined. The property that functions g 1

and g 2 are linearly independent is guaranteed by a 1 a 5 − a 2 a 4 = 

α(a 2 
1 

+ a 2 
4 
)(a 1 a 6 − a 3 a 4 ) 

a 2 
3 

+ a 2 
6 

� = 0 , which make 

u = 2( ln g) xx 

= 

4 { (a 2 1 + a 2 4 ) g − 2(a 1 g 1 + a 4 g 2 ) 
2 } 

g 2 

decay in all directions, so that the corresponding solution u of (1.3) is a lump solution. 

Example 1. For a group of parameters: 

α = −1 , a 1 = 1 , a 3 = −0 . 8 , a 4 = 1 . 25 , a 6 = 2 , c 1 = c 2 = 0 , 

we have 

g(x, y, t) = (−0 . 8 t + x + 1 . 17 y ) 2 + (2 t + 1 . 25 x − 0 . 19 y ) 2 + 6 . 74 , 

and 

u (x, y, t ) = 

24 . 44 t 2 + (−34 . 85 x − 52 . 53 y ) t − 26 . 27 x 2 − 19 . 25 xy + 7 . 45 y 2 + 69 . 06 

[( −0 . 8 t + x + 1 . 17 y ) 2 + ( 2 t + 1 . 25 x − 0 . 19 y ) 2 + 6 . 74] 2 
. 

The plot of surface and contour of function u when t = 0 are depicted in Fig. 1 . 

In order to find lump-soliton solutions to HSI equation, we assume f = g + h for g is given by (3.1) and 

h (x, y, t) = c 3 exp (a 8 x + a 9 y + a 10 t) . 

The corresponding lump-soliton solutions are given by 

u = 2( ln (g + h )) xx = 

2(g xx + h xx )(g + h ) − 2(g x + h x ) 
2 

(g + h ) 2 
. 

By Corollary 1 and symbolic computation, we get two classes of solutions. 

Case I : We have solution 

a 1 = −3 a 6 a 
2 
8 

2 α
, a 2 = 

3 a 4 a 
2 
8 

2 

, a 3 = 

2 αa 4 

3 a 2 
8 

, 

a 5 = 

9 a 6 a 
4 
8 

4 α
, a 7 = 0 , a 9 = 

a 3 8 

2 

, a 10 = − 2 α

3 a 8 
. 
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Fig. 1. Plots of a lump solution for α = −1 , a 1 = 1 , a 3 = −0 . 8 , a 4 = 1 . 25 , a 6 = 2 , c 1 = c 2 = 0 and t = 0 . (a) 3d plot, (b) contour. 

 

 

 

 

 

 

 

Assume that α � = 0, c 1 , c 2 are arbitrary real constants, c 3 > 0 and parameters a 4 , a 6 , a 8 are all real constants satisfying a 8 � = 0.

Then ⎧ ⎪ ⎨ 

⎪ ⎩ 

g(x, y, t) = 

(
− 3 a 6 a 

2 
8 

2 α
x + 

3 a 4 a 
2 
8 

2 

y + 

2 αa 4 

3 a 2 
8 

t + c 1 

)2 

+ 

(
a 4 x + 

9 a 6 a 
4 
8 

4 α
y + a 6 t + c 2 

)2 

, 

h (x, y, t) = c 3 exp 

(
a 8 x + 

a 3 8 

2 

y − 2 α

3 a 8 
t 

)
. 

(3.5)

We need lump condition a 1 a 5 − a 2 a 4 = − 27 a 2 
6 

a 6 
8 
+3 α2 a 2 

4 
a 2 

8 

8 α2 � = 0 , which is guaranteed if a 4 and a 6 are not all zeros. 

Example 2. For a group of parameters: 

α = −1 , a 4 = −1 , a 6 = 2 , a 8 = 1 , c 1 = c 2 = 0 , c 3 = 1 , 

we have 

f (x, y, t) = 

(
3 x − 3 

2 

y + 

2 

3 

t 

)2 

+ 

(
x + 

9 

2 

y − 2 t 

)2 

+ e x + 
1 
2 y + 2 3 t , 

and we obtain a lump-soliton solution 

u (x, y, t) = 

2(20 + e x + 
1 
2 y + 2 3 t ) 

f (x, y, t) 
− 2(20 x + e x + 

1 
2 y + 2 3 t ) 2 

f (x, y, t) 2 

= 

2[(20 + e ξ )[(3 x − 3 
2 

y + 

2 
3 

t) 2 + (x + 

9 
2 

y − 2 t) 2 ] + (20 − 40 x ) e ξ − 400 x 2 ] 

f (x, y, t) 2 
, 

where ξ = x + 

1 
2 y + 

2 
3 t . Since the denominator contains e 2 ξ , u will decay exponentially when ( x, y ) is fixed as t goes to ∞ . 

The dynamics of the solution u shows that at first one lump and one line soliton are moving, and after interaction the

line soliton seems to absorb the lump and keeps moving. The plot of surfaces of function u when t = −3 , 2 , 8 and 20 are

depicted in Fig. 2 . 

Case II : Assume that α � = 0, c 1 , c 2 are arbitrary real constants c 3 > 0 and parameters a 1 , a 8 , a 10 are all real constants

satisfying a 1 � = 0 , 3 a 2 8 a 
2 
10 + 2 αa 8 a 10 < 0 . Since αa 8 a 10 < 0, 9 a 2 8 a 

2 
10 + 12 αa 8 a 10 = 3(3 a 2 8 a 

2 
10 + 2 αa 8 a 10 + 2 αa 8 a 10 ) < 0 . Let β :=

1 / 
√ 

−(9 a 2 
8 
a 2 

10 
+ 12 αa 8 a 10 ) . The other parameters are determined by 

a 2 = −a 1 a 8 (3 a 8 a 10 + 2 α) 

a 10 

, a 3 = 0 , a 4 = βa 1 (3 a 8 a 10 + 2 α) , 

a 5 = −a 1 a 8 β(9 a 2 8 a 
2 
10 + 12 αa 8 a 10 + 2 α2 ) 

a 10 

, a 6 = − 2 a 1 α

3 βa 2 
8 
(3 a 8 a 10 + 4 α) 

, 

a 7 = − 8 α2 a 2 1 (3 a 8 a 10 + 2 α) 

3 a 3 
8 
a 10 (3 a 8 a 10 + 4 α) 2 

, a 9 = −a 2 8 (a 8 a 10 + α) 

a 10 

. 

It is easy to see a 1 a 5 − a 2 a 4 = 

2 α2 βa 2 1 a 8 

a 10 
� = 0 , a 7 > 0 . Therefore function g(x, y, t) = (a 1 x + a 2 y + c 1 ) 

2 + (a 4 x + a 5 y + a 6 t +
c 2 ) 

2 + a 7 with coefficients a 2 , a 4 , a 5 , a 6 , a 7 defined above will generate a lump solution. The corresponding 

u (x, y, t) = 2[ ln (g(x, y, t) + c 3 e 
a 8 x −

a 2 
8 
(a 8 a 10 + α) 

a 10 
y + a 10 t )] xx 
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Fig. 2. Plots of a lump-soliton solution in Case I for α = −1 , a 4 = −1 , a 6 = 2 , a 8 = 1 , c 1 = c 2 = 0 , c 3 = 1 . (a) t = -3, (b) t = 2, (c) t = 8, (d) t = 20. 

 

 

 

 

is a lump-soliton solution of the HSI equation. 

Example 3. For a group of parameters: 

α = −1 , a 1 = 1 , a 8 = 1 , a 10 = 0 . 5 , c 1 = c 2 = 0 , c 3 = 1 , 

we have 

f (x, y, t) = (x + y ) 2 + 

1 

15 

(x − 7 y + 2 t) 2 + 

32 

75 

+ e (x + y + t) / 2 , 

and we obtain a lump-soliton solution 

u (x, y, t) = 2( ln f (x, y, t)) xx 

= 

2[( 32 
15 

+ 

e ξ

4 
) f (x, y, t) − ( 32 x −16 y +4 t 

15 
+ 

e ξ

2 
) 2 ] 

f (x, y, t) 2 
, 

where ξ = (x + y + t) / 2 . The dynamics of u are similar to those of Example 2 . The plot of surfaces of function u when

t = −20 , 0 , 20 and 40 are depicted in Fig. 3 . 

Note 1 The lump-soliton solutions of Examples 2 and 3 represent the result of instability of the line soliton and dynam-

ical formation of a lump soliton. Such exact solutions were constructed for the KP-I equation in [25,26] . 

Note 2 Above two classes of solutions are different. In the first case, a 10 is determined by a 8 while in the second case,

a 8 and a 10 are independent. Conversely, in the second case, a 3 = 0 , while in the first case, a 3 = 

2 αa 4 
3 a 2 

8 

� = 0 if a 4 � = 0. Therefore,

neither of these two classes can contain the other as a special case. 
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Fig. 3. Plots of a lump-soliton solution in Case II for α = −1 , a 1 = 1 , a 8 = 1 , a 10 = 1 / 2 , c 1 = c 2 = 0 , c 3 = 1 . (a) t = -20, (b) t = 0, (c) t = 20, (d) t = 40. 

 

 

 

 

 

 

 

 

4. Conclusion 

In this paper, we have studied the lump and lump-soliton solutions of the (2 + 1)-dimensional Hirota–Satsuma–Ito equa-

tion generated by positive quadratic function solutions of bilinear equation (1.4) . Our computations are based on Hirota

bilinear equations and the symbolic computation software Maple. We know that when α = −1 and y = −x, the Hirota–

Satsuma–Ito equation reduces to the (1 + 1)-dimensional Hirota–Satsuma equation. However, we are unable to find any lump

solution for the Hirota-Satsuma equation. The interaction of the lump solutions involve higher order polynomial solutions

of the bilinear equation (1.4) which will be studied in our future research. 
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