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Summary. — It is shown that any solutions of the first and second members in the
(1+1)-dimensional coupled AKNS-Kaup-Newell equation hierarchy may give rise to
the solutions of the (2+1)-dimensional Gardner equation. Furthermore, the coupled
AKNS-Kaup-Newell equation hierarchy is reduced to solvable ordinary differential
equations. The Abel-Jacobi coordinates are introduced to straighten the flows,
from which the explicit algebro-geometric solution of the (2+1)-dimensional Gardner
equation is obtained in terms of the Riemann theta-functions.

PACS 02.90 — Other topics in mathematical methods in physics.
PACS 46.05 — General theory of continuum mechanics of solids.

1. — Introduction

Algebro-geometric solution is a remarkable class of exact solutions to soliton equations
and there are various approaches for it. As early as in the late of 1970s an approach,
analogue of inverse scattering transformation, has been developed by Dubrovin, Its and
Matveev et al., cf., e.g., [1-4], and the monograph [5]. Recently, an alternative approach,
based on the nonlinearization technique of Lax pairs or the restricted flow technique [6-9],
has been proposed in [10] and an essentially similar approach presented in [11]. From this
approach, algebro-geometric solutions for many-soliton equations in one spatial and one
temporal (i.e., 1+1) dimensions have been obtained. Very recently, this approach has
been generalized to the study of soliton equations in two spatial and one temporal (i.e.,
2+1) dimensions. The explicit solutions of several (2+1)-dimensional soliton equations
such as the Kadomtsev-Petviashvili (KP) equation, the modified KP(mKP) equation and
the coupled modified KP equation, have been constructed [12-14].
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In this paper, we extend this method to the (2+41)-dimensional Gardner equation
and obtain its algebro-geometric solutions. It is well-known that the (2+1)-dimensional
Gardner equation is closely connected with the KP equation [15] and its rational solu-
tions, including the decaying and plane lumps, solutions with functional parameters and
plane solitons, have been constructed explicitly by the d-dressing method in [16]. To
construct its algebro-geometric solution, we first establish a relation between it and the
(141)-dimensional coupled AKNS-Kaup-Newell soliton hierarchy [17,18]. It is shown
that any solutions of the first two members in the (141)-dimensional coupled AKNS-
Kaup-Newell soliton hierarchy may give rise to a solution of (2+1)-dimensional Gardner
equation. Then we reduce the solutions of the equations in the coupled AKNS-Kaup-
Newell hierarchy to solving systems of ordinary differential equations. We find that,
in the Abel-Jacobi coordinates, these flows are linear and thus can be integrated. Fi-
nally the explicit theta-function solutions of the (2+1)-dimensional Gardner equation are
obtained through the Abel-Jacobi inversion.

2. — Relation with the coupled AKNS-Kaup-Newell hierarchy

The aim of this section is to establish a relation between the (2+1)-dimensional Gard-
ner equation and the coupled AKNS-Kaup-Newell soliton hierarchy. Let us first recall
some useful facts on the coupled AKNS-Kaup-Newell soliton hierarchy presented in [18].

The coupled AKNS-Kaup-Newell soliton hierarchy is connected with the spectral
problem

A q $1
1 :t:U7 U= ) = )
) 6o =Us (mw _A) s <¢>

where A is a spectral parameter, and « and 8 are arbitrary constants. To deduce the soli-
ton hierarchy, we solve the stationary zero-curvature equation V, = [U, V] first. Suppose
that

)\(J, b a; bl i
@ V:<(a+,8)\)c —Aa>:;<(a+b’)\)ci —ai>>\ ’

and then the stationary zero-curvature equation becomes

Aa; = (a+ BA)(qe —rd),
(3) by = 2Ab — 2qal,
Ccy = 2ral — 2Xc.

which yields

aor =0, bo=aoq, co=aor

and

(4) KS;=JSju1, Sj=(cj,bj,a)",
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where
0 9 0 0 2 -2
(5) K = 0 o 0], J=| -2 0 2r
ag —ar 0 Bqg —Br 0O

Let us fix initial data

and set

Sj |(q,r):0 =0,

then all the S;'s can be recursively defined. In particular,

_%(Tac + B‘JTQ) i(rmc - 20“]7"2 + 38qrry + %62q27“3)
Si=| 3@—-8¢) |, S:=| 1@ —20¢*r —3Bqq.r + 38°¢*r?)
—3Bqr —Laqr + 1B(qre — qor) + 28%¢%r?

Choose an auxiliary problem

(6) ¢, =V Mg,

where

(7) v = Xn: %\ i g
=\ (et ,3)\) —Aa;

+

ad~t(qe, —rby) 0
0 —adt(qe, — rby) ’

then the zero-curvature equation yields the coupled AKNS-Kaup-Newell system

(8) (@t,,7t,) = X,
where

X, = bn,m + 2aqa_1(qcn - Tbn)
"\ ene —20g07 (qen —hy) )

The first two nontrivial equations are as follows (t; = y,t2 = t):
o) { @y = 34wz — 204 = B(¢°T)2),
ry = 3(—ree + 2aqr? — B(qr?).),
= 1 (@eze — 60qqer — 38(qqur)2 + 38°(6°) + 3aB¢’r?),
Tazz — 60qrre + 38(qrra)s + 28%(q*r?). — 3aBq?r?).
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To deduce the (1+2)-dimensional integrable systems, we impose the constraint as follows:
(11) u(z,y,t) = q(z,y,t)r(z,y,1),

where ¢, r are the solutions of eqs. (9) and (10), then we have

1

Uy = §(Qxacr — Tzaq — 36““%)5
_ 1 3
ax 1Uy = §(er - qrw) - Zﬁuza

_ 1
0 1uyy = _[(qrzzz + Quazal (qzzrz + QITzI) + 4ﬂU(qrm - TCIzz) +

1 )
+3Bu, (er - qrw)
)

— 4o, + 98 uu,],

1
Ut = Z[(qzzzr + qrez.) + 36“((]7'3” - q”r) +

15
+36Uz(qrz - er) - Gauuz + ?Bzuzuz]'
These imply
1 3 22 2 3 —1 ~1
(12) duy = Zumm — 3auu, — gﬂ u U, — §,Buz8 Uy + 307 Tuy,.

It is easy to see that as § = 0 this equation reduces to the well-known KP equation and
as a = 0 it reduces to the mKP equation. It is a mixed KP and mKP equation, called
(241)-dimensional Gardner equation, which can be transformed to the form in [15] after
a simple transformation of variables.

3. — Associated ordinary differential equations

Since the algebro-geometric solutions of the KP and mKP equation have been obtained
in much literature [5,12,13], in the rest of this paper we always assume that af # 0. In
what follows, we shall reduce the solutions of the (241)-dimensional Gardner equation
to solve three systems of ordinary differential equations.

Let ¢ = (¢1,19)T and ¢ = (¢1,¢2)7 be the basic solutions of eqs. (1) and (6). Define
a matrix W of three functions f, g, h by

1 0 -1
(13) W=§(¢wT+¢¢T)0=<£ _gf>, 02(1 0 >
A direct calculation shows that

(14) W, =[UW], W, =[V™ W],

which implies that the function det W is a constant of motion for both z-flow and ¢,
flow. Equation (14) can be written as

(15) fo=ah—gla+BNr,  g. =209 —2qf, he=2(a+ BN)rf —2Ah,
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and
(16)  fi, = V) — gVl g, = 20VY = 2fVSY, by, = 2fVap" — 20V

To construct the algebro-geometric solution of (12), we suppose that the functions
f, g, and h are finite-degree polynomials in A:

(17) fZiV:fjANH*j, QZingN’j, h= ia+ﬂ/\ AN
j=0 j=0 j=0

Substituting (17) into (15) yields

(18) KGj=JGjs1, JGy=0, KGnx=0, Gj=(hj,g;f)".

It is easy to see that equation JGo = 0 has the general solution

(19) Go = apSp,

where aq is a constant. We can determine G; recursively by the relation (18). In fact,

noticing that kerJ = {cSp|cis a constant} and acting with the operator (J 1 K)**! upon
(19), we obtain from (18) that

k
(20) Gr=3Y 0a;Skj, 0<k<N,
j=0
where ag,ay,...,q, are integral constants. Substituting (20) into KGn = 0 yields a

stationary equation:

ao XN+ a1 Xn_1+...+anXyg=0.

This means that (g,r) is a finite-band solution of the coupled AKNS-Kaup-Newell hier-
archy.
Without loss of generality, let ap = 1. Thus, from (19), we obtain using the recursion
relation (18):
f0:17 go = ¢, hOZT’
fi=—3B8qr + a1, g1 = 5(q — BEr) + auq, hy = 5 (=14 — Bar?) + aur,
(21)  fo=—3aqr + 3B(qrs — @) + 202¢*r? — JauBar + az,
(¢ee — 2a0°r = 3Baqer + 3 876°r?) + 501 (qz — Bar) + azq,
(rae — 2aqr® + 3qrry + 567¢°r%) + gai(=ry — Bgr?) + aar,

Q

v

I
N

where oy, @y are integral constants.
Taking into account (17), we set

2
2

(22) H/\ wi) b= (ot B [T =w).
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Thus we have

N N N N
(23)  gi=—q > pi, g2=q Y pipy, h=-rY v, ha=r1 Y v
j=1

i,5=1 ij=1 = =1
? i<j i<j

Only for convenience, let us denote by {0} }4_, and {5 }i_, the k-th order symmetric

products of the py,...,uny and vy, ..., vy, respectively. In particular,
N N N N
o= E Wi, O2= E Willj, 01 = E Vi, O3 = E vivj.
i—1 i,j=1 i=1 ij=1
J iJ<j J iJ<j

Thus from (21) and (23), after a simple calculation, we obtain

Olng — Bqr = —2(01 + a1),

(24) Olnr + Bqr = 2(61 + ay),

and

(25) Oylng+ 1Bgr(dlnr —dlng + 2pqr) = 2(02 + 101 + 0f — aw),
Oylnr — %qu(alnr —O0lng+ %qu) = —2(G2 + a161 + aF — an),

consequently

(26) Olngr =2(—01 + 1),

Oylngr = 2(0o2 — G2) + 2a1 (01 — 61).
On the other hand, from (9),(24) and the first expression of (26), we get
1
Oylngr = 3 [0*(lng —Inr) + (01ng)® — (81nr)® — 38qrolngr]
(27) :2(0%—&%)—6(01 +51)+(4a1—ﬂqr)(01 —5’1).

This, together with the second expression of (26), yields

N N ~
Zj:1 U? - Ej:l V]z — 901 +61)
g1 — 6’1

1 -
(28) u:qr:B 20y + 01 + 01 +

here we have used the equality

N N
2 2 ~ =2 2
202:01—2 Ky 202:01—2 vj.
j=1 j=1

As mentioned above, the function det W is a constant independent of z and ¢,. From
(17), we have

2N+2
(29) —detW = f>+gh= J] (A=) =R().

j=1
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Substituting (17) into (29) and comparing the coefficients of A2V +1 and A2V yield

2N+2

2fof1 + Bgoho = — D> A,
j=1

(30) 2N +2
2fofa+ f7 + Bhogr + (aho + Bh1)go = Y Aij,
i<j

which together with (21) lead to

1 2N+2 1 2N+2 1 2N+
(31) Cl1:—§ Z )\j, a2:§ Z /\Z/\]_g(z )\j)Q.

j=1 i<j j=1
In addition, from (29) we arrive at
(32) = = VR(pk),  fla=n, = vV R(vg).
From (22), we get
N
Gelampn = —apee [ (k= 1),
23 i=1,i%k
(33) N
hala=v, = —(a + Bug)rvg q H (vi — v4).
i=1,i#k
On the other hand, from (15) it follws that
(34) g:t|)\=uk = _2(]f|)\=uk = _2(]\/ R(,uk)a
(35) haln=v, = 2(a+ Bvi)rflr=v, = 2(a+ Bvg)rv/ R(vg).
Therefore,
_ 2/ R(pur)
Mk, = N )
Hi:l,i;ék(p’k — i)
(36) 1<k<N,
2 R(l/k)
Vgao = —

Hilil,iyék(yk - Vi)‘
From (7) and (22), we have

V1(21) |>\:Uk

(37) = q(p — 01 — 1),

(38) Vi mpe = ald — pwon + 02 + a1 (o1 = ) + o} — as),

(39) Vi nmun = (a+ Bug)r(ve — 51 — aa),

(40) V2(12)|>\:,,k =(a+ Buk)7“[l/,2C — Vb1 + 02 +a1(61 — vg) + a% — ).
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In a similar way to the calculation of (36), we get

2/ R(u)Vis” ()

Pr,t, = N )
q Hi:l,i;ék(lu'k = 1)
(41) 1<k<N,

2/Rw)Vy,” (vi)

(o + Brg)r Hﬁil,i;ék(’/k - ) -

Vit, = —

Therefore, if the parameters Ay, ..., Aan42 are given, and let u(z,t,) and v(z,t,) be
distinct solutions of ordinary differential equation (36) and (41), then (g,r) determined
by (24-26) is a solution of eqs. (9) and (10). Consequently, u = gr is a solution of the
(241)-dimensional Gardner equation (12).

4. — Algebro-geometric solution
We coordinatize a point on the hyperelliptic Riemann surface I':

2N 42

I: &€=RM), RN =[] A=),

j=1

by the ordered pair (A, ££). For the same )\, there are two points on different sheets of
I:

AVEA) ), (A =VERQA) ).

Since R(\) is a polynomial of order 2N + 2 in terms of A, co is not a branch point of T'.
Thus there are two infinite points: co1, 002 on I'. In the local coordinate z = A~!, they
are expressed as

01 = (071)7 02 = (0, _1)7

respectively. On I' we fix a set of regular cycle paths: ay,as,...,an;b1,ba,..., by, which
are independent and have the intersection numbers as follows:

(42) aioaj:biObj:0, aiObj:(Sm', i,jzl,...,N.
It is well known that

o Alax
W= —
R())

) — — )

are N linearly independent homomorphic differentials on I'.
Let

Aijz/@i, Bz’jz/@i, 1<4,j <N.
a

i bj

Then matrix A = (A;;) is invertible. We define the matrices C' and 7 by

C g A_l’ T :A_IB.
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Let us normalize w; into w;:
(43) w]':Zle(IJl, j:].,...,N,
then

(44) / w]- :6ji, /w]' = Tji-
a; b

i i

For a fixed point po, the Abel-Jacobi coordinates are defined as (1 < j < N):

uk(Ivyt) -1
(1) (2, 4,1) Z/ ZZ/ )\ d)\

k=1 1=1

(45)
N z,y,t) N N Vi )\l_ldA
a:y, / w; Cij——.
Z ’ 22 w VRO
Therefore
u ' dlg. wWlp
aptt “—2 Ci be  j=1,...,N.
’ lz;kz:l VE ;kz:l Hz 11#(/% )

Noting the following relations [19]:

N
(46) =Z =d0sn-1, 1<j<N-1,

k=1 z;ék(u — Hi)
and
(47) In=01In-1, INy1=01IN —02IN_1,
we have
(48) o) =, 1<j<N,
where

0
0 = 2055

In the same way, we have
(49) a0 =l g =P 1<j<N,

and

(50) op? =", 9,P = -V, 9, =-aP, 1<j<N,

1427
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where

QM =2(Cjno1 — i), QP =2[Ci N2 — a1 Cjnor + (aF — a2) Oy,
These relations imply that

(51) A = 00 + My + 0Pt 440, p2
= -0z -y Q(Z)t +7%, 1<j<N,

)

where 7;

(2)

and 7;”" are some constants defined as

1% (0,0 0) N - vi(0,0,0)
(1>_Z/ 7§2>:Z/ wj, 1<j<N.
pi

Let T be the lattice generated by 2N vectors {d;,7;}. Thus we can obtain the Jacobi
variety J(T) = CN/T. An Abel map A is defined by

A Div(l') — J(T),

Ap) =(/:w1,...,/:w>,

where py is a fixed point of Riemann surface I' and (¢, (co)) is not a branch point; p is
an arbitrary point. Moreover A(p) can be linearly extended into divisor:

A(Z nepr) = Z g A(pr).-

Riemann §-functions on I' are defined as follows [20]: for any ¢ € CV

(52) 0(¢) = > exp{mi(Bz,z) + 2mi((, 2)},
zEZN
(Bz,z) Z Bijzizj, ((,z Z%Q
t,j=1

Consider the divisors Ejvzl ¢(p;) and Ejvzl ¢(vj), from (52) we have

N N
(53) AQ ) =, A C) =

j=1

According to the Riemann theorem [20], there exists a constant vector (Riemann con-
stant) M € CN determined by T itself such that

i) FON) =0(ACN) — pM) — M) has exactly N zeros at A =y, ..., un; and
i) F@(X) = 0(A(C(N) — p — M) has exactly N zeros at A = vy, ..., vN.
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To make the function single valued, the surface I' is cut along all ag, b, to form a
simple connected region, whose boundary is denoted by 7. From [10], we know that the
integrals

1
Afdln () = I (T
= / n f0M () = 1,(T)
are constants independent of p(™) with
N
I(T) = Z/ pLmy
j=1"
Moreover, we have the residue formulas
N 2
(54) > w* = I(T) = ) Resy—oo; A¥dIn f1,
=1 j=1
N 2
(55) > uh =T(T) = > Resy—o, AedIn f).
=1 j=1

To get the explicit expression of the solution, we have to compute the residue of the
function A*dIn f()\) at points: co; and cos. In a way similar to calculations in [10], we
get

(56) Resy—oo, AdIn f(™()) = (—1)“’”%6111 6™,

Resy—oo, A2dIn f(M(N) = (—1)s+m%ay g™ + 362 In (™),
1<m<2 1<s5<2,

where

) =900z + Wy + 0@t 4+ 1) 42 = 9O — WMy — ¢ 4 1),

with
(67) @ =@f,.... o7, rO = ri)T A=, AT,
Po
T =7+ M+ [7 w, A§S>:7§2>+Mj+/ wj, 0<i<2, 1<j<N.

Thus from eq. (54) and (55) we arrive at

_ 2
(58) lg_l w = I (D) +§3ln 09),

_ L 1
(59) 15:1 v =0L()+ 2(31n 052)’
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1 o) 1 (1) (1)
(60) E pi = L)+ = 6 In g —Zazlnﬁl 65,

Ly 07 1o oy
(61) E v = L(I) + = (9 In 0(2) 18 In6;™6;

Substituting (58)—(61) into (28) we obtain algebro-geometric solutions of the (2+1)-
dimensional Gardner equation (12):

9(1)9(2) 9(1)(9(2))3

2 s 0% d
(62) u(z,y,t) = ﬁ 4oy +41(T)+01In 0( )0( )+ 0(1)9(2)
1 Y2 201n 22 0(1)9(2)

5. — Conclusions

In this paper, we have constructed the algebro-geometric solutions of the (2+1)-
dimensional Gardner equation. The essential step is to relate the (2+1)-dimensional
Gardner equation to the coupled AKNS-Kaup-Newell soliton hierarchy. To solve the
equations in the coupled AKNS-Kaup-Newell hierarchy, we reduce it to solvable systems
of ordinary differential equations. The solutions obtained in this way are quasi-periodic.
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