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We apply the Hirota direct method to construct complexiton solutions (complexitons).
The key is to use Hirota bilinear forms. We prove that taking pairs of conjugate wave
variables in the 2N-soliton solutions generates N-complexion solutions. The general
theory is used to construct multi-complexion solutions to the Korteweg—de Vries
equation. Published by AIP Publishing. https://doi.org/10.1063/1.4996358

I. INTRODUCTION

The aim of this paper is to apply the Hirota direct method'= to find complexiton solutions of
partial differential equations (PDEs). The Hirota method is a powerful tool invented by Hirota in 1971
in finding N-soliton solutions (solitons) for PDEs, which does not involve the use of complicated
mathematical calculations. The Hirota method has also been successfully extended to solve larger
classes of nonlinear PDEs.*

It is well known that the Korteweg—de Vries (KdV) equation’ is a mathematical model of shallow
water waves on surfaces. The Kadomtsev—Petviashvili (KP) equation® is a generalization to two spatial
dimensions, x and y, of the KdV equation. Both the KdV equation and the KP equation are notable
as the prototypical examples of an exactly solvable model.

It is an important research area to find exact solutions for nonlinear partial differential equations.
A lot of tools have been developed, such as the inverse scattering transform, the Hirota method, and the
Wronskian technique. The concept of complexiton solutions, which are a combination of exponential
waves and trigonometric waves, was first proposed for the KdV equation in Ref. 9 and then for the
KdV equation with self-consistent sources in Ref. 10. Various kinds of solutions of the KdV equation,
including complexion solutions, were further investigated in Ref. 11. The Wronskian technique'’'?
and the Riccati equation method '3 are two popular methods in searching for exact solutions especially
for complexitons. Recently, the authors'* established linear superposition principles to solitons and
complexitons which work for a large class of nonlinear PDEs. In this paper, we use the Hirota direct
method to seek complexitons for Hirota bilinear equations satisfying the Hirota condition.

Il. THE HIROTA METHOD

In this section, we introduce the Hirota method' to obtain a one-soliton solution of the KdV
equation. In the following discussion, we will consider the KdV equation:
Uy + 60Uty + Uy, =0. €))]

We introduce the Hirota derivatives first. Suppose that M > 1 is an integer and variables x € RM .
Let D= (D, ..., Dy), where Dj is the Hirota bilinear derivative with respect to x;, 1 <j <M, which
is defined as follows.
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Let f, g denote differentiable functions in RY and x = (x, - - - ,xp)7, x" = ], .x;)T. Then
k
Dj,Dj, - -+ Djkf 8= l_l(ale - 6)(]{/ W (@) ) v =x, 2)
I=1
where ji,j2,...,jk € {1,2,...,M} which need not be distinct. Here are some simple examples,

D.f-g=fi8 —f8x
Dy f -8 = fix8 — 2118 + f8xxs
DiD:f - g = DiDyf - §=fixg — J18x — Jx8t + 8-

One of the important properties of Hirota derivative is

D;Dj,---Dj f -g=(=1)D;Dj,---Dj,g - f, (3)
where ji,j2,...,jk €{1,2,...,M}. As a consequence, if k is an odd number, then
D; Dj, ---Dj,f - f =0. 4

In order to solve the KdV equation, we apply the transformation u = 2(In f),, from Eq. (1) to get
the bilinear KdV equation

(DxDy + DY) f +f =0, 5)
and we define the polynomial corresponding to the bilinear KdV equation by
Pi(x,t)=x" +xt. (©6)

Now we consider travelling wave solutions to the KdV equation (5). For any positive integer j,
define the function

nj(x,y, 1) =kix + w;t + 77](-), ki, wj, 77;) eR. @)
By the direct method, we have a one-soliton solution of (1),
ki m
u=2(Inf)x = ?lsechQ 5 ®)

where 171 satisfy the dispersion relation k13 +w; =0.

lll. GENERAL BILINEAR EQUATIONS

In this section, we apply the Hirota method to general bilinear equations.

Suppose P is a real polynomial of M variables with the properties that P(0) = 0 and P(—x) = P(x).
Functions f and g are differentiable on RM and§ = 4, . ..,0u)T. We consider the following bilinear
equation:

PD)f - f=0. €))

In order to find travelling wave solutions of (9), let complex wave variable

M
le=,30+Z,3ka, (10)
k=1

where B, e C,k=0,...,M.
Applying the Hirota method, we consider the expansion

f=l+efi+efr+---. (11)

For one-soliton solution, suppose f; =exp(r7). Substituting the above expansion into (9) and
collecting terms of each order of &, we have

g:P(D)fi-1+1-£1}=0,
e PD)fo-1+fi-fi+1-f}=0,
e PDNf-1+h-fi+fi-fo+1-f31=0,
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From the coefficient of &, we get

P@)fi=P(B1,--, Bu)f1=0. 12)

Therefore, a complex function f = 1 +exp(r) is a solution to (9) if and only if the following nonlinear
dispersion relation holds:

P(B1,---, Bu) =0. 13)

Since P and x are real, we have (the bar denoting complex conjugation)

P(ﬁh'" ’ﬁM):P(ﬁ_17"' 9BM)

Therefore, the functions 7 and 77 satisfy the same dispersion relation.
By the direct method, we have if 1, = Bjo + ZkM: 1 Bixxk,j = 1,2, satisfy the dispersion relation
(13) and P(B21 + P11, -+ » Bam + Bim) # 0, then the (complex) function

f=1+exp(n) +exp(n2) + a2 exp( + n2), (14)

P(B21 — Bi1,- -, Bom — Bim)

P(Bo1 + P11, Pam + Bim)
Jf=1+exp(n) +exp(i) + aiz exp(n +17)

=1+ 2exp(Re(n)) cos(Im(7n)) + a2 exp(2Re(n)) e R, (15)

where ajp = —

, is a solution of (9). Taking 1, =77, we get

since P is a real and even polynomial,

PQ2iIm(By), - - -, 2iIm(By))
P(2Re(B1), - -+ . 2Re(Bum))

Now we consider N > 3, according to Ref. 1, N-soliton solutions can be written as

Z exp Z Minj + ZA/k,uj,uk

j<k
where yj=0or1forj=1,2,--- ,N and i = ajr denoted by

P(ﬁkl_ﬁjl,“' ’ﬁkM_ﬂjM) '
k= = B l_ k_N 18
Ajk P(Br1 +,8j1,’ -, Bm +,8jM) Ayj <Jj<k< (18)

However, the polynomial P must satisfy the Hirota condition to have N-soliton solutions,

app =-— eR. (16)

; 17)

N
D P(D B Za,ﬁ]M [ [P@Bia =i ouBn = oiBoro; =0, (19)
j=1

k<j

where the summation over all possible combinations of oj =+1,j,k=1,2,--- ,N.
We have the following result for multi-complexitons.

Theorem 1. Let P be a real polynomial satisfying P(0) =0, P(—x) = P(x) for x € RY, and N be
a positive integer. Assume that the complex wave variables n; = Bjo + Z?” | Bix, j=1,3,- 1
satisfy the dispersion relation (13) and the Hirota condition (19). Suppose 1 = j2j-1,j = l

Then the function
=1+ Z D, e (Z Hjmj + Z%#kuj), (20)

n=1 2,2 | mj=n k<j

where yu;=0or 1 forj=1,2,--- ,2N, and aij = eA’f-f,j,k =1,2,---,2N, determined by (18) presents
a complexiton solution to (9).

Proof. We only need to show that function f given by (20) is real and we use the mathematical
induction. We have proved the case of N = 1. Suppose N’ >1 is an integer and we assume for
1<n<2N’,
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2N’
> aw(EZHmj+§:Awpmm)eR. 1)

2 Mj=n j=1 m<j
When N =N’ + 1, for any fixed n: 1 <n <2N, we want to show

2N'+2
D exp( Z M/U/+2Amj#mﬂj)eR. 22)

2 Mj=n j=1 m<j

For fixed n > 1, the sum in (22) consists of three parts: Z%Nl #j=n,n—1,n—2.In the first case
Honr+1 = Hanr+2 =0, by induction we know the sum is real.

In the second case pon41 =1, ponr+2 =0 or ponr41 =0, uonr42 = 1. Since we take all the possible
sums, this part of sum equals

2N’ 2 2N’
D, o (Z DY Am,-umu,) D exp (nwm Yy /le/,zN'+m)- (23)
j=1 =

52 g1 = = =
By (18), we have for 1 <j <k <N’ +1,

a2j_12k—1 = G2j2k> a2j k-1 = 2j-12k> 24)

and
PQilm(Bak-1.1), -, 2iIm(Bok-1.m)) eR (25)

 PQRe(Bo-1,1),- -+ 2Re(Boi))
We introduce a map *: N — N

Qj-1)*=2j, (j)*=2-1, VjeN

A2k—12k =

This map has the property
(J)'=j. VjeN

and
2N 2N
ZﬂjZZﬂj*, VN eN.
j=1 j*=1

Case L If (e, poss - - - Han -1y HN'y) = (H15 25 - - - Hon -1, Hon'), then woj—y = pp; for
1<j<N’,

H2j- 1121 + H2jN2j = poj—1(M2j—1 +J2j-1) ER. (26)
When ;1 = pox—1 = 1, we get
a2j-12k-1 + 2j-12k + A2j2k—1 + a2j 2k = 2Re(azj-1 211 + a2j-124). 27
Therefore
2N
exXp Z Hinj + Z Amjﬂmﬂj eR. (28)
j=1 m<j
On the other hand,
2N N’
MoNem + ) MiAj 2N +m = NoN"4m + Z H2j-1(A2j—1 2N"4m + A2j 2N"4m) (29)
= i
implies
2N %
exp| manr+1 + Z WiAjone1 | = exp| nonrs2 + Z HiAjoNr42 (30)
= =
and this concludes
2 2N
Z exp| manram + ) HiAjonem |ER
=1 =
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and hence (23) is real.

Case ILIf (u1+, poe, -+ -, ean—1y> Ny ) # (U1, 12, -+ 5 Hanr—1, Hane), then ppj_1 # po; for some
1 <j<N’. Because we have uj.n;. = u;7j;. Suppose u,, = yj = 1 and m <j,j#m", then by (24) and
(25) we have

ajj- =aj; € R, Amj = Qe jor G je = > - 31
Therefore
2N’ 2N’
exp Z =1y + Z A j* Hme | = €XP Z Ml + ZAm],Um/Jj . (32)
m*<j* m<j

In the same way, it is easy to see

2 2N’ 2 2N’
Z EXp | NN +m)* T Z M+ j*,(2N’+m)*) = Z exp (ﬁZN’+m + Z ,ujAj,ZN’+m >

m=1 jr=1 m=1 j=1

which means

MN

2N’ 2N’
exp Z,uj M + Z A j i e ) exp (772N’+m + Z ,Uj*Aj*,ZN’+m)

m* <j* m=1 Jjr=1
2N’ 2 2N’
=exp Z Hjnj + Z Apj in 1 Zl exXp| man+m + Zl HiAjoN +m |- (33)
m<j m= j=

So we know that (23) is real.
In the third case pon41 = ponr+2 = 1. Let

Co :=exp (Man+1 + Nonr42 + Aonrs1 onr+2) = donre1 28742 €Xp(2Re(m2n741)) €R.

And we also have

2N’ 2N’
eXP > fimr (A 41 + A aN) =EXD Y m(Amanret + Amany).
m*=1 m=1

Therefore

2N’ 2N’
exp Zu, 1+ Z A j ﬂm*uj*)eXp Z/Jj*(Aj*,ZN/H +Ajeanr42)
£

m*<j*

N WV
=exp (Z Himj + Z ApmjHm i |€Xp Z Hi(Ajan+1 + Aj, 2N’+2)) (34)
j=1 m<j j=1

This tells us that

2N’ 2
Z €Xp Z HjTj + ZAmj/lm,u]) exXp ( Z 2N’ +m

J?i\’l’llj:n ) j=1 m<j m=1
2 2N’
+Aonrr1oNr42 + Z Z HiAj 2N +m
m=1 j=1
2N’ 2 2N’
YRR DIVED R BH ) ) o
Z%i\/l’ wi=n—2 m<j m=1 j=1

is real.
Combining with the above proofs, we get (22) that is real for any n > 1, which concludes the
function f is real for N = N’ + 1. This completes the proof by the induction. O
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IV. THE BILINEAR KdV EQUATION

In this section, we will apply Theorem 1 to multi-complexiton solutions to the bilinear KdV
equation. By Refs. 1 and 3, we know that the bilinear KdV equation satisfies the Hirota condition.
We use the notation i := V—1. Suppose the function

n(x,y,t)zkx+wt+n0=m +iny, (35)

where k, w, ° are constants and 77, = Re(7), 172 = Im(1). Then f := 1 +¢" is a complex valued solution
to (5) if and only if the following dispersion relation holds:

Pi(k,w)=Py(k,w)=0. (36)
Let k; :==Re(k), ky :=Im(k), w; :=Re(w), wr := Im(w). Equation (36) is equivalent to
wp = —k? + 3k1k2,
(37)
wy = k; - Sk%kz.

Now suppose 1 satisfies (36) or (37). By the two-soliton formulation and the above discussion,
we get a one complexiton solution to (5),

f=1+e"+e" +ape™ =1+2" cos(i2) + appe’, (38)

P1Qiky, 2iwy) K3 . .
where aj; = ————————— = ——= € R. The solution for the KdV equation reads
2 P1(2ky,2w) k? q

u =2(Inf)x

_ 2[k; cos(i) + k7 sinh(71) = (k] = k3) exp(1)]
© cos(y) — sinh(py) + (1 = k2/k2) exp(ny )
 2[ky sin(72) = ki cosh(1) + (1 = k3 /kDky exp(y)]?
[cos(r72) — sinh(n1) + (1 — k3 /k?) exp(171)]?

(39)

where 01 :=kix + Bkik — kD)t + 1% n2 =kox + (k5 — 3k} ko)t + 19, ky #0, k2,19, 79, are all real
constants. Due to the part exp(n;) in the denominator of solution u, our solutions differ from the
result in Ref. 11. Figure 1 shows the 3d plot of complexitons.

(@) (b)

FIG. 1. Plots of complexitons with (a) k| = 0.4, k, =0.5, (b) k; =0.5, ky =—-0.8.
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Now we consider N = 4. Suppose that the dispersion relation (36) is true for 77| =1 + in2,

~ . ~ . ~ . _ () .
o =n1 — in2 and 7j3 =03 + i, fj4 =13 — in4, where n; = n; + kix +wjt,j=1,...,4 are all real.
Let
Py(ky — ki, by — ;)
ay=— BB By e, “0)
Pl(kj/ + kj, wj + wj)
Then we have
2.2
apn = _kZ/kl ER,
g Py(ky = k3 +i(ko = kg), w1 — w3 + i(w2 — wy))
13=— ; -
Pi(ky + ks +ilky + kg), wy + w3 + i(wy + wy)) ’
dn = P(ky — k3 + i(ky + kg), w1 — w3 + i(w2 + wy))
14 — — N N s
Py(ky + k3 +i(ka — kg), w1 + w3 +i(wz — wy))
4 Py(ky — k3 —i(ky + kg), w1 — w3 — i(wp + wy)) @1
23 = — - -
Py(ky + k3 — i(ky — ks), w1 + w3 — i(w2 — wa))
=ayg,
4 Pi(ky — k3 —i(ky — kq), w1 — w3 — i(w2 — wy))
24 = — -
Py(ky + k3 — i(ka + kg), w1 + w3 — (w2 + wy))
=ais,
azq = —ki/k% eR.
Let the function f be defined by
f=1+ M 4+ & 4 6 4 & 4 q MY 4 q 3B 4 g,
+a23gﬁ2+fl3 + a246772+ﬁ4 + a34€173+ﬁ4 + a123eﬁ1+ﬁ2+773 + a1246771+ﬁ2+f74 (42)
+a134eﬁ1+ﬁ3+f74 + a234e772+'73+ﬁ4 + a1234e771+772+773+774
with
a1234 = A12013014023024034 = A12024023023024034 € R,
@123 = A12013023 = 12024014 = 4124, 43)
a134 = A13014034 = 424023034 = 0234.
Then it is a two-complexiton solution to (5).
The function f can be simplified as
F =142 cos(n2) + 2™ cos(ng) + aine®™ + azse®™
+2Re{a13e'71+'73+i('72+'74) + a14em+773+i(77rn4)}
, . 44)
+ ZRe{a12362771+173+1774 + a134em+2773+1772}
+a123462711+2773.

In particular, if n4 = 0, then 773 =74 = 3. By (40), we get az4 = 0. It is clear that aj4 = a3, aj34
= aj234 = 0. Therefore we have

F =142 cos(n2) + 2™ + apne®™ +2Re{2a 3¢ 142}
(45)
+2Re{ajp3e® MY,

Then u =2(In f),, is an interaction of one-soliton and one-complexiton solutions.

V. CONCLUSION

In this paper, we presented a general scheme for constructing multi-complexitons to Hirota bilin-
ear equations satisfying the Hirota condition. The scheme can be used to compute multi-complexions
and interaction of complexitons and solitons.



101511-8 Y. Zhou and W.-X. Ma J. Math. Phys. 58, 101511 (2017)

ACKNOWLEDGMENTS

The work is supported in part by the National Natural Science Foundation of China under
Grant Nos. 11371326, 11271008, and 11371086 and the Distinguished Professorship by Shanghai
University of Electric Power and Shanghai Second Polytechnic University. The authors would also
like to thank S. T. Chen, X. Gu, X. Lii, S. Manukure, M. Mcanally, F. D. Wang, Y. Sun, and J. Yu for

their valuable discussions.

I R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, Cambridge, 2004).

2P. G. Drazin and R. S. Johnson, Solitons: An Introduction (Cambridge University Press, Cambridge, 1989).

3 ). Hietarinta, “Gauge symmetry and the generalization of Hirota’s bilinear method,” J. Nonlinear Math. Phys. 3, 260-265
(1996).

4W. X. Ma, “Generalized bilinear differential equations,” Stud. Nonlinear Sci. 2, 140-144 (2011).

SW. X. Ma, “Bilinear equations and resonant solutions characterized by Bell polynomials,” Rep. Math. Phys. 72, 41-56
(2013).

oW, X. Ma, “Trilinear equations, Bell polynomials, and resonant solutions,” Front. Math. China 8, 1139-1156 (2013).

7N. J. Zabusky and M. D. Kruskal, “Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states,”
Phys. Rev. Lett. 15, 240-243 (1965).

8S.V. Manakov, V. E. Zakhorov, L. A. Bordag, A. R. Its, and V. B. Matveev, “Two-dimensional solitons of the Kadomtsev—
Petviashvili equation and their interaction,” Phys. Lett. A 63, 205-206 (1977).

9W. X. Ma, “Complexiton solutions to the Korteweg—de Vries equation,” Phys. Lett. A 301, 35-44 (2002).

10w, X, Ma, “Complexiton solutions of the Korteweg—de Vries equation with self-consistent sources,” Chaos, Solitons Fractals

26, 1453-1458 (2005).
"W, X. Ma and Y. You, “Solving the Korteweg—de Vries equation by its bilinear form: Wronskian solutions,” Trans. Am.

Math. Soc. 357, 1753-1778 (2005).
12y, Q. Yao, D. I. Zhang, and D. Y. Chen, “The double Wronskian solution to the Kadomtsev—Petviashvili equation,” Mod.
Phys. Lett. B 22, 621-641 (2008).
I3E. G. Fan, “Extended tanh—function method and its applications to nonlinear equations,” Phys. Lett. A 277, 212-218 (2000).
14y, Zhou and W. X. Ma, “Applications of linear superposition principle to resonant solitons and complexitons,” Comput.

Math. Appl. 73(8), 1697-1706 (2017).


https://doi.org/10.2991/jnmp.1996.3.3-4.2
https://doi.org/10.1016/s0034-4877(14)60003-3
https://doi.org/10.1007/s11464-013-0319-5
https://doi.org/10.1103/physrevlett.15.240
https://doi.org/10.1016/0375-9601(77)90875-1
https://doi.org/10.1016/s0375-9601(02)00971-4
https://doi.org/10.1016/j.chaos.2005.03.030
https://doi.org/10.1090/s0002-9947-04-03726-2
https://doi.org/10.1090/s0002-9947-04-03726-2
https://doi.org/10.1142/s0217984908015176
https://doi.org/10.1142/s0217984908015176
https://doi.org/10.1016/s0375-9601(00)00725-8
https://doi.org/10.1016/j.camwa.2017.02.015
https://doi.org/10.1016/j.camwa.2017.02.015

