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We apply the Hirota direct method to construct complexiton solutions (complexitons).
The key is to use Hirota bilinear forms. We prove that taking pairs of conjugate wave
variables in the 2N-soliton solutions generates N-complexion solutions. The general
theory is used to construct multi-complexion solutions to the Korteweg–de Vries
equation. Published by AIP Publishing. https://doi.org/10.1063/1.4996358

I. INTRODUCTION

The aim of this paper is to apply the Hirota direct method1–3 to find complexiton solutions of
partial differential equations (PDEs). The Hirota method is a powerful tool invented by Hirota in 1971
in finding N-soliton solutions (solitons) for PDEs, which does not involve the use of complicated
mathematical calculations. The Hirota method has also been successfully extended to solve larger
classes of nonlinear PDEs.4–6

It is well known that the Korteweg–de Vries (KdV) equation7 is a mathematical model of shallow
water waves on surfaces. The Kadomtsev–Petviashvili (KP) equation8 is a generalization to two spatial
dimensions, x and y, of the KdV equation. Both the KdV equation and the KP equation are notable
as the prototypical examples of an exactly solvable model.

It is an important research area to find exact solutions for nonlinear partial differential equations.
A lot of tools have been developed, such as the inverse scattering transform, the Hirota method, and the
Wronskian technique. The concept of complexiton solutions, which are a combination of exponential
waves and trigonometric waves, was first proposed for the KdV equation in Ref. 9 and then for the
KdV equation with self-consistent sources in Ref. 10. Various kinds of solutions of the KdV equation,
including complexion solutions, were further investigated in Ref. 11. The Wronskian technique11,12

and the Riccati equation method13 are two popular methods in searching for exact solutions especially
for complexitons. Recently, the authors14 established linear superposition principles to solitons and
complexitons which work for a large class of nonlinear PDEs. In this paper, we use the Hirota direct
method to seek complexitons for Hirota bilinear equations satisfying the Hirota condition.

II. THE HIROTA METHOD

In this section, we introduce the Hirota method1 to obtain a one-soliton solution of the KdV
equation. In the following discussion, we will consider the KdV equation:

ut + 6uux + uxxx = 0. (1)

We introduce the Hirota derivatives first. Suppose that M ≥ 1 is an integer and variables x ∈RM .
Let D= (D1, . . . , DM ), where Dj is the Hirota bilinear derivative with respect to xj, 1 ≤ j ≤M, which
is defined as follows.
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Let f, g denote differentiable functions in RM and x = (x1, · · · , xM )T , x′ = (x′1, · · · , x′M )T . Then

Dj1 Dj2 · · ·Djk f · g=
k∏

l=1

(∂xjl
− ∂x′jl

)f (x)g(x′)|x′=x, (2)

where j1, j2, . . . , jk ∈ {1, 2, . . . , M} which need not be distinct. Here are some simple examples,

Dx f · g = fxg − fgx,

Dxx f · g = fxxg − 2fxgx + fgxx,

DxDt f · g = DtDxf · g= ftxg − ftgx − fxgt + fgtx.

One of the important properties of Hirota derivative is

Dj1 Dj2 · · ·Djk f · g= (−1)kDj1 Dj2 · · ·Djk g · f , (3)

where j1, j2, . . . , jk ∈ {1, 2, . . . , M}. As a consequence, if k is an odd number, then

Dj1 Dj2 · · ·Djk f · f = 0. (4)

In order to solve the KdV equation, we apply the transformation u= 2(ln f )xx from Eq. (1) to get
the bilinear KdV equation

(DxDt + D4
x ) f · f = 0, (5)

and we define the polynomial corresponding to the bilinear KdV equation by

P1(x, t)B x4 + xt. (6)

Now we consider travelling wave solutions to the KdV equation (5). For any positive integer j,
define the function

ηj(x, y, t)B kjx + wjt + η0
j , kj, wj, η

0
j ∈R. (7)

By the direct method, we have a one-soliton solution of (1),

u= 2(ln f )xx =
k2

1

2
sech2 η1

2
, (8)

where η1 satisfy the dispersion relation k3
1 + w1 = 0.

III. GENERAL BILINEAR EQUATIONS

In this section, we apply the Hirota method to general bilinear equations.
Suppose P is a real polynomial of M variables with the properties that P(0) = 0 and P(�x) = P(x).

Functions f and g are differentiable onRM , and ∂B (∂1, . . . , ∂M )T . We consider the following bilinear
equation:

P(D) f · f = 0. (9)

In order to find travelling wave solutions of (9), let complex wave variable

ηj = β0 +
M∑

k=1

βkxk , (10)

where βk ∈C, k = 0, . . . , M.
Applying the Hirota method, we consider the expansion

f = 1 + εf1 + ε2f2 + · · · . (11)

For one-soliton solution, suppose f1 = exp(η). Substituting the above expansion into (9) and
collecting terms of each order of ε, we have

ε : P(D){ f1 · 1 + 1 · f1} = 0,

ε2 : P(D){ f2 · 1 + f1 · f1 + 1 · f2} = 0,

ε3 : P(D){ f3 · 1 + f2 · f1 + f1 · f2 + 1 · f3} = 0,

· · · .
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From the coefficient of ε, we get

P(∂) f1 =P(β1, · · · , βM ) f1 = 0. (12)

Therefore, a complex function f = 1 + exp(η) is a solution to (9) if and only if the following nonlinear
dispersion relation holds:

P(β1, · · · , βM )= 0. (13)

Since P and x are real, we have (the bar denoting complex conjugation)

P(β1, · · · , βM )=P( β̄1, · · · , β̄M ).

Therefore, the functions η and η̄ satisfy the same dispersion relation.
By the direct method, we have if ηj = βj0 +

∑M
k=1 βjkxk , j = 1, 2, satisfy the dispersion relation

(13) and P(β21 + β11, · · · , β2M + β1M ), 0, then the (complex) function

f = 1 + exp(η1) + exp(η2) + a12 exp(η1 + η2), (14)

where a12 =−
P(β21 − β11, · · · , β2M − β1M )
P(β21 + β11, · · · , β2M + β1M )

, is a solution of (9). Taking η2 = η̄1, we get

f = 1 + exp(η) + exp(η̄) + a12 exp(η + η̄)

= 1 + 2 exp(Re(η)) cos(Im(η)) + a12 exp(2Re(η)) ∈R, (15)

since P is a real and even polynomial,

a12 =−
P(2iIm(β1), · · · , 2iIm(βM ))
P(2Re(β1), · · · , 2Re(βM ))

∈R. (16)

Now we consider N ≥ 3, according to Ref. 1, N-soliton solutions can be written as

∑
exp



N∑
j=1

µjηj +
∑
j<k

Ajk µjµk


, (17)

where µj = 0 or 1 for j = 1, 2, · · · , N and eAjk B ajk denoted by

ajkB−
P(βk1 − βj1, · · · , βkM − βjM )

P(βk1 + βj1, · · · , βkM + βjM )
= akj, 1 ≤ j < k ≤N . (18)

However, the polynomial P must satisfy the Hirota condition to have N-soliton solutions,∑
P
( N∑

j=1

σj βj1, · · · ,
N∑

j=1

σj βjM

) ∏
k<j

P(σk βk1 − σj βj1, · · · ,σk βkM − σj βjM )σkσj = 0, (19)

where the summation over all possible combinations of σj =±1, j, k = 1, 2, · · · , N .
We have the following result for multi-complexitons.

Theorem 1. Let P be a real polynomial satisfying P(0) = 0, P(�x) = P(x) for x ∈RM , and N be
a positive integer. Assume that the complex wave variables ηj = βj0 +

∑M
l=1 βjlxl, j = 1, 3, · · · , 2N − 1,

satisfy the dispersion relation (13) and the Hirota condition (19). Suppose η2j = η̄2j−1, j = 1, · · · , N.
Then the function

f = 1 +
2N∑
n=1

∑
∑2N

j=1 µj=n

exp *.
,

2N∑
j=1

µjηj +
∑
k<j

Akjµk µj
+/
-

, (20)

where µj = 0 or 1 for j = 1, 2, · · · , 2N, and akj = eAkj , j, k = 1, 2, · · · , 2N, determined by (18) presents
a complexiton solution to (9).

Proof. We only need to show that function f given by (20) is real and we use the mathematical
induction. We have proved the case of N = 1. Suppose N ′ ≥ 1 is an integer and we assume for
1 ≤ n ≤ 2N ′,
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∑
∑
µj=n

exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-
∈R. (21)

When N = N ′ + 1, for any fixed n : 1 ≤ n ≤ 2N , we want to show∑
∑
µj=n

exp *.
,

2N′+2∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-
∈R. (22)

For fixed n ≥ 1, the sum in (22) consists of three parts:
∑2N′

1 µj = n, n − 1, n − 2. In the first case
µ2N′+1 = µ2N′+2 = 0, by induction we know the sum is real.

In the second case µ2N′+1 = 1, µ2N′+2 = 0 or µ2N′+1 = 0, µ2N′+2 = 1. Since we take all the possible
sums, this part of sum equals∑

∑2N′
j=1 µj=n−1

exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-

2∑
m=1

exp *.
,
η2N′+m +

2N′∑
j=1

µjAj,2N′+m
+/
-
. (23)

By (18), we have for 1 ≤ j < k ≤N ′ + 1,

a2j−1,2k−1 = ā2j,2k , a2j,2k−1 = ā2j−1,2k , (24)

and

a2k−1,2kB−
P(2iIm(β2k−1,1), · · · , 2iIm(β2k−1,M ))
P(2Re(β2k−1,1), · · · , 2Re(β2k−1,M ))

∈R. (25)

We introduce a map ∗ :N→N

(2j − 1)∗ = 2j, (2j)∗ = 2j − 1, ∀j ∈N.

This map has the property
( j∗)∗ = j, ∀j ∈N

and
2N∑
j=1

µj =

2N∑
j∗=1

µj∗ , ∀N ∈N.

Case I. If (µ1∗ , µ2∗ , . . . , µ(2N′−1)∗ , µ(2N′)∗ )= (µ1, µ2, . . . , µ2N′−1, µ2N′), then µ2j�1 = µ2j for
1 ≤ j ≤N ′,

µ2j−1η2j−1 + µ2jη2j = µ2j−1(η2j−1 + η̄2j−1) ∈R. (26)

When µ2j�1 = µ2k�1 = 1, we get

a2j−1,2k−1 + a2j−1,2k + a2j,2k−1 + a2j,2k = 2Re(a2j−1,2k−1 + a2j−1,2k). (27)

Therefore

exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-
∈R. (28)

On the other hand,

η2N′+m +
2N′∑
j=1

µjAj,2N′+m = η2N′+m +
N′∑
j=1

µ2j−1(A2j−1,2N′+m + A2j,2N′+m) (29)

implies

exp *.
,
η2N′+1 +

2N′∑
j=1

µjAj,2N′+1
+/
-
= exp *.

,
η2N′+2 +

2N′∑
j=1

µjAj,2N′+2
+/
-

(30)

and this concludes
2∑

m=1

exp *.
,
η2N′+m +

2N′∑
j=1

µjAj,2N′+m
+/
-
∈R
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and hence (23) is real.
Case II. If (µ1∗ , µ2∗ , · · · , µ(2N′−1)∗ , µ(2N′)∗ ), (µ1, µ2, · · · , µ2N′−1, µ2N′), then µ2j−1 , µ2j for some

1 ≤ j ≤N ′. Because we have µj∗ηj∗ = µj η̄j. Suppose µm = µj = 1 and m < j, j ,m∗, then by (24) and
(25) we have

aj,j∗ = aj∗,j ∈R, am,j = ām∗,j∗ , am,j∗ = ām∗,j. (31)

Therefore

exp *.
,

2N′∑
j∗=1

µj∗ηj∗ +
∑

m∗<j∗
Am∗,j∗ µm∗ µj∗

+/
-
= exp *.

,

2N′∑
j=1

µj η̄j +
∑
m<j

Āmjµmµj
+/
-

. (32)

In the same way, it is easy to see

2∑
m=1

exp *.
,
η(2N′+m)∗ +

2N′∑
j∗=1

µj∗Aj∗,(2N′+m)∗
+/
-
=

2∑
m=1

exp *.
,
η̄2N′+m +

2N′∑
j=1

µjĀj,2N′+m
+/
-
,

which means

exp *.
,

2N′∑
j∗=1

µj∗ηj∗ +
∑

m∗<j∗
Am∗j∗ µm∗ µj∗

+/
-

2∑
m=1

exp *.
,
η2N′+m +

2N′∑
j∗=1

µj∗Aj∗,2N′+m
+/
-

= exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-

2∑
m=1

exp *.
,
η2N′+m +

2N′∑
j=1

µjAj,2N′+m
+/
-
. (33)

So we know that (23) is real.
In the third case µ2N′+1 = µ2N′+2 = 1. Let

C0B exp (η2N′+1 + η2N′+2 + A2N′+1,2N′+2)= a2N′+1,2N′+2 exp(2Re(η2N′+1)) ∈R.

And we also have

exp
2N′∑

m∗=1

µm∗ (Am∗,2N′+1 + Am∗,2N′)= exp
2N′∑
m=1

µm(Am,2N′+1 + Am,2N′).

Therefore

exp *.
,

2N′∑
j∗=1

µj∗ηj∗ +
∑

m∗<j∗
Am∗,j∗ µm∗ µj∗

+/
-

exp *.
,

2N′∑
j∗=1

µj∗ (Aj∗,2N′+1 + Aj∗,2N′+2)+/
-

= exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Am,jµmµj
+/
-

exp *.
,

2N′∑
j=1

µj(Aj,2N′+1 + Aj,2N′+2)+/
-
. (34)

This tells us that∑
∑2N′

j=1 µj=n−2

exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-

exp *.
,

2∑
m=1

η2N′+m

+ A2N′+1,2N′+2 +
2∑

m=1

2N′∑
j=1

µjAj,2N′+m
+/
-

=C0

∑
∑2N′

j=1 µj=n−2

exp *.
,

2N′∑
j=1

µjηj +
∑
m<j

Amjµmµj
+/
-

exp *.
,

2∑
m=1

2N′∑
j=1

µjAj,2N′+m
+/
-

is real.
Combining with the above proofs, we get (22) that is real for any n ≥ 1, which concludes the

function f is real for N = N ′ + 1. This completes the proof by the induction. �
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IV. THE BILINEAR KdV EQUATION

In this section, we will apply Theorem 1 to multi-complexiton solutions to the bilinear KdV
equation. By Refs. 1 and 3, we know that the bilinear KdV equation satisfies the Hirota condition.

We use the notation iB
√
−1. Suppose the function

η(x, y, t)= kx + wt + η0 = η1 + iη2, (35)

where k, w, η0 are constants and η1 = Re(η), η2 = Im(η). Then f B 1+eη is a complex valued solution
to (5) if and only if the following dispersion relation holds:

P1(k, w)=P1(k̄, w̄)= 0. (36)

Let k1BRe(k), k2B Im(k), w1BRe(w), w2B Im(w). Equation (36) is equivalent to




w1 = −k3
1 + 3k1k2

2 ,

w2 = k3
2 − 3k2

1k2.
(37)

Now suppose η satisfies (36) or (37). By the two-soliton formulation and the above discussion,
we get a one complexiton solution to (5),

f = 1 + eη + eη̄ + a12eη+η̄ = 1 + 2eη1 cos(η2) + a12e2η1 , (38)

where a12 =−
P1(2ik2, 2iw2)
P1(2k1, 2w1)

=−
k2

2

k2
1

∈R. The solution for the KdV equation reads

u = 2(ln f )xx

=−
2[k2

2 cos(η2) + k2
1 sinh(η1) − (k2

1 − k2
2 ) exp(η1)]

cos(η2) − sinh(η1) + (1 − k2
2/k

2
1 ) exp(η1)

−
2[k2 sin(η2) − k1 cosh(η1) + (1 − k2

2/k
2
1 )k1 exp(η1)]2

[cos(η2) − sinh(η1) + (1 − k2
2/k

2
1 ) exp(η1)]2

,

(39)

where η1B k1x + (3k1k2
2 − k3

1)t + η0
1, η2B k2x + (k3

2 − 3k2
1k2)t + η0

2, k1 , 0, k2, η0
1, η0

2, are all real
constants. Due to the part exp(η1) in the denominator of solution u, our solutions differ from the
result in Ref. 11. Figure 1 shows the 3d plot of complexitons.

FIG. 1. Plots of complexitons with (a) k1 = 0.4, k2 = 0.5, (b) k1 = 0.5, k2 = �0.8.
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Now we consider N = 4. Suppose that the dispersion relation (36) is true for η̃1 = η1 + iη2,
η̃2 = η1 − iη2 and η̃3 = η3 + iη4, η̃4 = η3 − iη4, where ηj = η

0
j + kjx + wjt, j = 1, . . . , 4 are all real.

Let

aj′j =−
P1(k̃j′ − k̃j, w̃j′ − w̃j)

P1(k̃j′ + k̃j, w̃j′ + w̃j)
, 1 ≤ j′ < j ≤N . (40)

Then we have

a12 = −k2
2/k

2
1 ∈R,

a13 = −
P1(k1 − k3 + i(k2 − k4), w1 − w3 + i(w2 − w4))
P1(k1 + k3 + i(k2 + k4), w1 + w3 + i(w2 + w4))

,

a14 = −
P1(k1 − k3 + i(k2 + k4), w1 − w3 + i(w2 + w4))
P1(k1 + k3 + i(k2 − k4), w1 + w3 + i(w2 − w4))

,

a23 = −
P1(k1 − k3 − i(k2 + k4), w1 − w3 − i(w2 + w4))
P1(k1 + k3 − i(k2 − k4), w1 + w3 − i(w2 − w4))

= a14,

a24 = −
P1(k1 − k3 − i(k2 − k4), w1 − w3 − i(w2 − w4))
P1(k1 + k3 − i(k2 + k4), w1 + w3 − (w2 + w4))

= a13,

a34 = −k2
4/k

2
3 ∈R.

(41)

Let the function f be defined by

f = 1 + eη̃1 + eη̃2 + eη̃3 + eη̃4 + a12eη̃1+η̃2 + a13eη̃1+η̃3 + a14eη̃1+η̃4

+ a23eη̃2+η̃3 + a24eη̃2+η̃4 + a34eη̃3+η̃4 + a123eη̃1+η̃2+η̃3 + a124eη̃1+η̃2+η̃4

+ a134eη̃1+η̃3+η̃4 + a234eη̃2+η̃3+η̃4 + a1234eη̃1+η̃2+η̃3+η̃4

(42)

with
a1234 = a12a13a14a23a24a34 = a12a24a23a23a24a34 ∈R,

a123 = a12a13a23 = a12a24a14 = ā124,

a134 = a13a14a34 = a24a23a34 = ā234.

(43)

Then it is a two-complexiton solution to (5).
The function f can be simplified as

f = 1 + 2eη1 cos(η2) + 2eη3 cos(η4) + a12e2η1 + a34e2η3

+ 2Re{a13eη1+η3+i(η2+η4) + a14eη1+η3+i(η2−η4)}

+ 2Re{a123e2η1+η3+iη4 + a134eη1+2η3+iη2 }

+ a1234e2η1+2η3 .

(44)

In particular, if η4 = 0, then η̃3 = η̃4 = η3. By (40), we get a34 = 0. It is clear that a14 = a13, a134

= a1234 = 0. Therefore we have

f = 1 + 2eη1 cos(η2) + 2eη3 + a12e2η1 + 2Re{2a13eη1+η3+iη2 }

+ 2Re{a123e2η1+η3 }.
(45)

Then u= 2(ln f )xx is an interaction of one-soliton and one-complexiton solutions.

V. CONCLUSION

In this paper, we presented a general scheme for constructing multi-complexitons to Hirota bilin-
ear equations satisfying the Hirota condition. The scheme can be used to compute multi-complexions
and interaction of complexitons and solitons.
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