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A B S T R A C T

Lump-soliton interaction solutions to continuous integrable systems have been pretty well studied, but there are
relatively few results in the differential-difference (D𝛥) case. In this paper, some (2+1)-dimensional D𝛥-mKdV
systems are investigated by using Hirota’s bilinear operator method. By setting appropriate variable trans-
formations and assuming auxiliary functions as quadratic and exponential functions, lump-soliton interaction
solutions are derived. Certain fission⧵fusion phenomena of the physical quantity, the velocity of the potential,
are explored by analyzing dynamical behaviors of the resultant solutions with different values of the involved
parameters.
Introduction

With the rapid development of soliton theory, exact solutions of
nonlinear evolution equations (NLEEs), especially integrable systems,
have aroused great interest among many scientists and engineers [1–
20]. By means of exact solutions, one can better understand natural
phenomena described by mathematical models and further explore
other new potential applications. Many effective methods have been
proposed to construct exact solutions of NLEEs such as the inverse
scattering theory (IST), the Lie group analysis method, the Painlevé test,
the Darboux transformation, the Riemann–Hilbert method, the multi-
linear variable separation (MLVS) approach and the Hirota bilinear
operator method [1–27].

Lump solutions, soliton solutions and lump-soliton interaction so-
lutions are three important classes of exact solutions, which have
been applied to almost all branches of physics such as condense mat-
ter physics, quantum field theory, plasma physics, fluid mechanics
and nonlinear optics. Lump solutions are rationally localized in all
directions in space and the study of lump solutions has a long his-
tory. The previous idea to construct lump solutions is to take long
wave limit of multi-soliton solutions. Recently, a new direct ansatz
method to seek for lump solutions and lump-soliton interaction solu-
tions has been given [15–20]. The crucial step is to take combinations
of positive quadratic functions and exponential functions, which solve
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Hirota’s bilinear equations. Then the logarithmic transformations yield
lump-soliton interaction solutions to given continuous NLEEs.

Differential-difference (D𝛥) equations play a crucial role in model-
ing of much physical phenomena such as particle vibrations in lattices,
currents in electrical networks, pulses in biological chains. Generally
speaking, D𝛥 equations are semi-discrete equations, in which some of
the spatial variables are discrete and the time variables are continuous.
Therefore, the difficulty of solving D𝛥 equations is often huge. Lump-
soliton interaction solutions of continuous integrable systems have
been well studied, but relatively few results are known in the D𝛥
case. Taking some D𝛥-mKdV systems as examples, we will extend
the direct ansatz method [15–20] to the D𝛥 case in this paper. In
Section ‘‘Lump-soliton interaction solutions and fission⧵fusion phenom-
ena’’, lump-soliton solutions of D𝛥-mKdV systems are obtained and
fission⧵fusion phenomena are analyzed. Section ‘‘Conclusions’’ contains
conclusions.

Lump-soliton interaction solutions and fission⧵fusion phenomena

We will construct lump-soliton interaction solutions for the follow-
ing D𝛥-mKdV system firstly

𝑢𝑡(𝑛) + 𝑢𝑦𝑦𝑦(𝑛) + 𝑢3𝑦(𝑛) + 3𝑢𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 𝛿𝑢𝑦(𝑛) = 0,

𝑣(𝑛 + 1) − 𝑣(𝑛) = 𝑢(𝑛 + 1) + 𝑢(𝑛) (1)
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by using Hirota’s bilinear operator method. Here 𝑢(𝑛) ≡ 𝑢(𝑛, 𝑦, 𝑡) and
𝑣(𝑛) ≡ 𝑣(𝑛, 𝑦, 𝑡) are functions of the discrete variable 𝑛 and the con-
tinuous variables {𝑦, 𝑡}. In the study of nonlinear problems, to find
the integrable discretizations of continuous integrable systems is a
very important topic, because of the rapid development of symbolic
computing software. The D𝛥-mKdV system (1) is interesting, because its
continuous version is the famous asymmetric Nizhnik–Novikov–Veselov
(NNV) equation and possesses possible physical applications [24–26].
So, just as mentioned in Ref. [24], here we can also call Eq. (1) the
D𝛥-asymmetric NNV system. Setting 𝑢(𝑛) ≡ 𝑢(𝑛, 𝑦, 𝑡) = 𝑢𝑦(𝑛), 𝑣(𝑛) ≡
𝑣(𝑛, 𝑦, 𝑡) = 𝑣𝑦𝑦(𝑛), we can rewrite Eqs. (1) as follows,

𝑢𝑡(𝑛) + 𝑢𝑦𝑦𝑦(𝑛) + 3𝑢2(𝑛)𝑢𝑦(𝑛) + 3𝑢𝑦(𝑛)𝑣(𝑛) + 3𝑢(𝑛)𝑣𝑦(𝑛) + 𝛿𝑢𝑦(𝑛) = 0,

𝑣(𝑛 + 1) − 𝑣(𝑛) = 𝑢𝑦(𝑛 + 1) + 𝑢𝑦(𝑛), (2)

which is studied in Ref. [24] by using the MLVS approach. By means
of

𝑢(𝑛, 𝑦, 𝑡) = 1
2
𝜖𝑈 (𝜖𝑛, 𝑦, 𝑡) = 1

2
𝜖𝑈 (𝑥, 𝑦, 𝑡),

𝑣(𝑛, 𝑦, 𝑡) = 𝑉 (𝜖𝑛, 𝑦, 𝑡) = 𝑉 (𝑥, 𝑦, 𝑡),

we have

𝑢(𝑛 + 1, 𝑦, 𝑡) = 1
2
𝜖𝑈 (𝜖𝑛 + 𝜖, 𝑦, 𝑡) = 1

2
𝜖𝑈 (𝑥 + 𝜖, 𝑦, 𝑡)

= 1
2
𝜖𝑈 (𝑥, 𝑦, 𝑡) + 𝑜(𝜖2),

𝑣(𝑛 + 1, 𝑦, 𝑡) = 𝑉 (𝜖𝑛 + 𝜖, 𝑦, 𝑡) = 𝑉 (𝑥 + 𝜖, 𝑦, 𝑡)

= 𝑉 (𝑥, 𝑦, 𝑡) + 𝜖𝑉𝑥(𝑥, 𝑦, 𝑡) + 𝑜(𝜖2).

Substituting these expressions into Eqs. (2) and neglecting the higher
order terms of 𝜖, we have

𝑈𝑡 + 𝑈𝑦𝑦𝑦 + 3𝑈𝑦𝑉 + 3𝑈𝑉𝑦 + 𝛿𝑈𝑦 = 0,

𝑉𝑥 = 𝑈𝑦,

being just the well-known asymmetric NNV equation with 𝛿 = 0 in
Ref. [24]. The MLVS approach has applied to the D𝛥-mKdV system (1)
by using the following bi-logarithmic transformation

𝑢(𝑛) = ln
[

𝑓 (𝑛 + 1)
𝑓 (𝑛)

]

,

(𝑛) = ln [𝑓 (𝑛)𝑓 (𝑛 + 1)] + 𝑣0(𝑦, 𝑡),

with a suitable MLVS ansatz

𝑓 (𝑛) ≡ 𝑓 (𝑛, 𝑦, 𝑡) = 𝑎0 + 𝑎1𝑝(𝑛, 𝑡) + 𝑎2𝑞(𝑦, 𝑡) + 𝑎3𝑝(𝑛, 𝑡)𝑞(𝑦, 𝑡). (3)

and abundant semi-discrete localized coherent structures are con-
structed by appropriately selecting the arbitrary functions [24–26].

Next, we use a combination of positive quadratic functions and
exponential functions to construct lump-soliton interaction solutions.
The key step here is to replace Eq. (3) with a new form. Firstly, we
adopt the following bi-logarithmic transformation

𝑢(𝑛) = ln
[

𝑓 (𝑛 + 1)
𝑓 (𝑛)

]

,

(𝑛) = ln [𝑓 (𝑛 + 1)𝑓 (𝑛)] (4)

o bilinearize Eq. (1). Actually, in this transformation (4) we take
he seed solution to zero. Substituting the above transformation into
q. (1), we have

𝐷𝑡 +𝐷3
𝑦 + 𝛿𝐷𝑦)𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 0. (5)

ere Hirota’s bilinear differential operator 𝐷𝑚
𝑦 𝐷

𝑘
𝑡 and difference oper-

tor exp(𝐷𝑛) are defined by

𝑚
𝑦 𝐷

𝑘
𝑡 𝑎 ⋅ 𝑏 =

(

𝜕
𝜕𝑦

− 𝜕
𝜕𝑦′

)𝑚
( 𝜕
𝜕𝑡

− 𝜕
𝜕𝑡′

)𝑘
𝑎(𝑦, 𝑡)𝑏(𝑦′, 𝑡′)

|

|

|

|

|𝑦=𝑦′ ,𝑡=𝑡′
,

exp(𝛼𝐷𝑛)𝑎(𝑛) ⋅ 𝑏(𝑛) = exp
[

𝛼
( 𝜕
𝜕𝑛

− 𝜕
𝜕𝑛′

)]

𝑎(𝑛)𝑏(𝑛)
|

|

|

|𝑛=𝑛′
2

= 𝑎(𝑛 + 𝛼)𝑏(𝑛 − 𝛼). (6)
To search for lump solutions, we begin with a quadratic function
solution as

𝑓 (𝑛) = 𝑔2(𝑛) + ℎ2(𝑛) + 𝑎9
= (𝑎1𝑛 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4)2 + (𝑎5𝑛 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8)2 + 𝑎9 (7)

with constraint
|

|

|

|

|

𝑎1 𝑎2
𝑎5 𝑎6

|

|

|

|

|

≠ 0, (8)

where 𝑎𝑖 (𝑖 = 1, 2,… , 9) are all real parameters to be determined.
Substituting Eq. (7) into Eq. (5) yields the algebraic system of

determining equations

(𝑎2𝛿 + 𝑎3)𝑎1 + (𝑎6𝛿 + 𝑎7)𝑎5 = 0,

𝑎2𝑎3𝛿 + 𝑎6𝑎7𝛿 + 𝑎23 + 𝑎27 = 0,

(𝑎22 + 𝑎26)𝛿 + 𝑎2𝑎3 + 𝑎6𝑎7 = 0,

𝑎1𝑎
2
3 + [𝑎5𝑎7 + 𝛿(𝑎1𝑎2 − 𝑎5𝑎6)]𝑎23 + [𝑎1𝑎27 + 2𝛿(𝑎1𝑎6 + 𝑎2𝑎5)𝑎7]𝑎3

− [𝛿(𝑎1𝑎2 − 𝑎5𝑎6) − 𝑎5𝑎7]𝑎27 = 0,

[𝑎21 + 2𝑎1𝑎4 + 𝑎5(𝑎5 + 2𝑎8)](𝑎23 + 𝑎27) + {(𝑎2𝑎3 + 𝑎6𝑎7)𝑎21
+ [(2𝑎2𝑎4 + 2𝑎6𝑎8)𝑎3 − 2𝑎7(𝑎2𝑎8 − 𝑎4𝑎6)]𝑎1

+ [(𝑎2𝑎5 + 2𝑎2𝑎8 − 2𝑎4𝑎6)𝑎3 + 2𝑎7(𝑎2𝑎4 +
1
2
𝑎5𝑎6 + 𝑎6𝑎8)]𝑎5}𝛿 = 0,

𝑎1𝑎
3
2𝛿 + (𝑎5𝑎6𝛿 + 𝑎1𝑎3 − 𝑎5𝑎7)𝑎22 + (𝑎1𝑎6𝛿 + 2𝑎1𝑎7 + 2𝑎3𝑎5)𝑎2𝑎6

− (𝑎1𝑎3 − 𝑎5𝑎7 − 𝑎5𝑎6𝛿)𝑎26 = 0,

(𝑎22𝛿 + 𝑎2𝑎3 + 𝑎26𝛿 + 𝑎6𝑎7)𝑎21 + [2𝑎22𝑎4𝛿 + (2𝑎3𝑎4 + 2𝑎7𝑎8)𝑎2
−2𝑎6(𝑎3𝑎8 − 𝑎4𝑎7 − 𝑎4𝑎6𝛿)]𝑎1
+ [(𝑎5 + 2𝑎8)𝑎22𝛿 + (𝑎3𝑎5 + 2𝑎3𝑎8 − 2𝑎4𝑎7)𝑎2 + (𝑎5𝑎6𝛿 + 𝑎5𝑎7 + 2𝑎6𝑎8𝛿

+2𝑎3𝑎4 + 2𝑎7𝑎8)𝑎6]𝑎5 = 0,

[(𝑎2𝑎4 + 𝑎6𝑎8)𝛿 + 𝑎3𝑎4 + 𝑎7𝑎8]𝑎21 + [(𝑎2𝑎24 + 2𝑎4𝑎6𝑎8 − 𝑎2𝑎
2
8 − 𝑎2𝑎9)𝛿

−6𝑎32 − 6𝑎2𝑎26 + 𝑎3𝑎
2
4 − 𝑎3𝑎

2
8 + 2𝑎4𝑎7𝑎8 − 𝑎3𝑎9]𝑎1

+ [(𝑎2𝑎4𝛿 + 𝑎6𝑎8𝛿 + 𝑎3𝑎4 + 𝑎7𝑎8)𝑎5 + (2𝑎2𝑎4𝑎8 − 𝑎6𝑎
2
4 + 𝑎6𝑎

2
8 − 𝑎6𝑎9)𝛿

−6𝑎6𝑎22 + 2𝑎3𝑎4𝑎8 − 𝑎7𝑎
2
4 − 6𝑎36 + 𝑎7𝑎

2
8 − 𝑎7𝑎9]𝑎5 = 0.

By solving this system with symbolic computation software, we have

𝑎1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 = −𝑎2𝛿, 𝑎7 = −𝑎6𝛿. (9)

rom the above calculation result, the linear term 𝛿𝑢𝑦(𝑛) in Eq. (1) is
ecessary, otherwise there will be no suitable solution to Eq. (1). Thus,
e have obtained a new lump solution for the D𝛥-mKdV system (1),

(𝑛) = ln
[

𝑓 (𝑛 + 1)
𝑓 (𝑛)

]

= ln

⎡

⎢

⎢

⎢

⎣

(

− 𝑎5𝑎6
𝑎2

(𝑛 + 1) + 𝑎2𝑦 − 𝑎2𝛿𝑡 + 𝑎4
)2

+
(

𝑎5(𝑛 + 1) + 𝑎6𝑦 − 𝑎6𝛿𝑡 + 𝑎8
)2 + 𝑎9

(

− 𝑎5𝑎6
𝑎2

𝑛 + 𝑎2𝑦 − 𝑎2𝛿𝑡 + 𝑎4
)2

+
(

𝑎5𝑛 + 𝑎6𝑦 − 𝑎6𝛿𝑡 + 𝑎8
)2 + 𝑎9

⎤

⎥

⎥

⎥

⎦

,

𝑣(𝑛) = ln [𝑓 (𝑛 + 1)𝑓 (𝑛)]

= ln

[(

(

−
𝑎5𝑎6
𝑎2

(𝑛 + 1) + 𝑎2𝑦 − 𝑎2𝛿𝑡 + 𝑎4

)2

+
(

𝑎5(𝑛 + 1) + 𝑎6𝑦 − 𝑎6𝛿𝑡 + 𝑎8
)2 + 𝑎9

)

×

(

(

−
𝑎5𝑎6
𝑎2

𝑛 + 𝑎2𝑦 − 𝑎2𝛿𝑡 + 𝑎4

)2

+
(

𝑎5𝑛 + 𝑎6𝑦 − 𝑎6𝛿𝑡 + 𝑎8
)2 + 𝑎9

)]

.

(10)

To construct a lump-one soliton interaction solution consisting of a
lump and a line soliton wave, we use the following assumption for the
function 𝑓 (𝑛),

𝑓 (𝑛) = 𝑔2(𝑛) + ℎ2(𝑛) + 𝑎9 + 𝑘5𝑒
𝜂

= (𝑎1𝑛 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4)2 + (𝑎5𝑛 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8)2 + 𝑎9
𝑘1𝑛+𝑘2𝑦+𝑘3𝑡+𝑘4
+𝑘5𝑒 , (11)
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where 𝑎𝑗 (𝑗 = 1, 2,… , 9) and 𝑘𝑗 (𝑗 = 1, 2,… , 5) are real parameters
need to be determined. Substituting Eqs. (4) and (11) into Eq. (5), and
balancing the different powers of 𝑛, 𝑦 and 𝑡, we have

𝑎1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 = −𝑎2𝛿, 𝑎7 = −𝑎6𝛿,

𝑘1 = 0, 𝑘3 = −𝑘32 − 𝛿𝑘2. (12)

Thus we have obtained a lump-one soliton interaction solution (4) with
(11)–(12) of the D𝛥-mKdV system (1).

To construct a lump-two soliton interaction solution, we use the
following assumption for the function 𝑓 (𝑛),

𝑓 (𝑛) = 𝑔2(𝑛) + ℎ2(𝑛) + 𝑎9 + 𝑘5𝑒
𝜂1 + 𝑘10𝑒

𝜂2

= (𝑎1𝑛 + 𝑎2𝑦 + 𝑎3𝑡 + 𝑎4)2 + (𝑎5𝑛 + 𝑎6𝑦 + 𝑎7𝑡 + 𝑎8)2 + 𝑎9
+𝑘5𝑒𝑘1𝑛+𝑘2𝑦+𝑘3𝑡+𝑘4 + 𝑘10𝑒

𝑘6𝑛+𝑘7𝑦+𝑘8𝑡+𝑘9 , (13)

where 𝑎𝑗 (𝑗 = 1, 2,… , 9) and 𝑘𝑗 (𝑗 = 1, 2,… , 10) are real parameters
need to be determined. Substituting Eqs. (4) and (13) into Eq. (5), and
balancing the different powers of 𝑛, 𝑦 and 𝑡, we have

𝑎1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 = −𝑎2𝛿, 𝑎7 = −𝑎6𝛿,

𝑘1 = 0, 𝑘3 = −𝑘32 − 𝛿𝑘2,

𝑘6 = 0, 𝑘8 = −𝑘37 − 𝛿𝑘7. (14)

Thus we have obtained a lump-two soliton interaction solution (4) with
(13)–(14) of the D𝛥-mKdV system (1).

Remark 1. For different choices of dependent variable transforma-
tions, Hirota’s bilinear equation can be transformed into completely
different types of NLEEs. From the Taylor expansion of the following
fundamental formula
exp(𝛼𝐷𝑦)𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛)

= exp
{

sinh(𝛼𝜕𝑦) ln
[

𝑓 (𝑛 + 1)
𝑓 (𝑛)

]

+ cosh(𝛼𝜕𝑦) ln[𝑓 (𝑛 + 1)𝑓 (𝑛)]
}

,

we have
1

𝑓 (𝑛 + 1)𝑓 (𝑛)
𝐷𝑦𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 𝑢𝑦(𝑛),

1
𝑓 (𝑛 + 1)𝑓 (𝑛)

𝐷2
𝑦𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 𝑣𝑦𝑦(𝑛) + 𝑢2𝑦(𝑛),

1
𝑓 (𝑛 + 1)𝑓 (𝑛)

𝐷3
𝑦𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 𝑢𝑦𝑦𝑦(𝑛) + 3𝑢𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 𝑢3𝑦(𝑛),

1
𝑓 (𝑛 + 1)𝑓 (𝑛)

𝐷4
𝑦𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 𝑣𝑦𝑦𝑦𝑦(𝑛) + 4𝑢𝑦(𝑛)𝑣𝑦𝑦𝑦(𝑛) + 3𝑣2𝑦𝑦(𝑛)

+ 6𝑢2𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 𝑢4𝑦(𝑛),
1

𝑓 (𝑛 + 1)𝑓 (𝑛)
𝐷5

𝑦𝑓 (𝑛 + 1) ⋅ 𝑓 (𝑛) = 𝑢𝑦𝑦𝑦𝑦𝑦(𝑛) + 10𝑢𝑦𝑦𝑦(𝑛)𝑣𝑦𝑦(𝑛)

+ 5𝑢𝑦(𝑛)𝑣𝑦𝑦𝑦(𝑛) + 15𝑢𝑡(𝑛)𝑣2𝑦𝑦(𝑛)

+ 10𝑢3𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 10𝑢2𝑦(𝑛)𝑢𝑦𝑦𝑦(𝑛) + 𝑢5𝑦(𝑛),

⋮

by defining the bi-logarithmic transformation (4). In this way, we can
construct higher-order D𝛥-mKdV systems such as Eq. (1) and

𝑢𝑡(𝑛) + 𝑢𝑦𝑦𝑦𝑦𝑦(𝑛) + 10𝑢𝑦𝑦𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 5𝑢𝑦(𝑛)𝑣𝑦𝑦𝑦(𝑛) + 15𝑢𝑡(𝑛)𝑣2𝑦𝑦(𝑛)

+ 10𝑢3𝑦(𝑛)𝑣𝑦𝑦(𝑛) + 10𝑢2𝑦(𝑛)𝑢𝑦𝑦𝑦(𝑛) + 𝑢5𝑦(𝑛) = 0,

𝑣(𝑛 + 1) − 𝑣(𝑛) = 𝑢(𝑛 + 1) + 𝑢(𝑛). (15)

For the above D𝛥-mKdV hierarchy, how to give a unified decision rule
to judge whether it has a lump-soliton interaction solution is an open
problem.

Remark 2. We just studied lump-two soliton solution for the D𝛥-
mKdV system (1) by means of symbolic computation. the construction
3

of multi-lump-multi-soliton solution still needs further study. However, l
for some complex D𝛥 equations [28], during the calculation process,
due to the large amount of computation, it is easy to cause the symbol
calculation software to crash. So we may need to discover more Hirota’s
bilinear identities to simplify the calculation process.

Next, we study the following special Toda lattice,

𝑢𝑦𝑡(𝑛) = 𝑒𝑢(𝑛+1)−𝑢(𝑛)[𝑢(𝑛+1)+ 𝑢(𝑛)]𝑦 − 𝑒𝑢(𝑛)−𝑢(𝑛−1)[𝑢(𝑛) + 𝑢(𝑛−1)]𝑦 + 𝛿𝑢𝑦𝑦(𝑛),

(16)

which is first derived in Ref. [29], and its continuous analogue is
also equivalent to the asymmetric NNV equation. Therefore, we can
also call this equation another form of the D𝛥-mKdV equation. In
Ref. [30], by means of the following logarithmic transformation 𝑢(𝑛) =
ln
[

𝑓 (𝑛 + 1)∕𝑓 (𝑛)
]

+ 𝑢0(𝑛, 𝑡) with corresponding MLVS ansatz (3), abun-
dant semi-discrete localized coherent structures of the physical quantity
𝑊 ≡ 𝑢𝑦(𝑛) have been obtained.

To construct lump-soliton interaction solutions, we first substitute
the following variable transformation

𝑢(𝑛) = ln
[

𝑓 (𝑛 + 1)
𝑓 (𝑛)

]

(17)

nto Eq. (16) to get Hirota’s bilinear equation

𝑦𝐷𝑡𝑓 (𝑛) ⋅ 𝑓 (𝑛) − 𝛿𝐷2
𝑦𝑓 (𝑛) ⋅ 𝑓 (𝑛) = 0. (18)

onsidering that the following process of solving the above equation is
imilar to that of solving Eq. (1), here we just list the corresponding
esults. Namely, we have a lump solution (17) with Eqs. (7) and

1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 =
𝛿𝑎22 − 2𝑎5𝑎6

𝑎2
, 𝑎7 = 𝛿𝑎6 + 2𝑎5. (19)

We have a lump-one soliton interaction solution (17) with Eqs. (11)
and

𝑎1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 =
𝛿𝑎22 − 2𝑎5𝑎6

𝑎2
, 𝑎7 = 𝑎6𝛿 + 2𝑎5,

𝑘2 = 0, 𝑘3 = 𝑒𝑘1 − 𝑒−𝑘1 . (20)

e have a lump-two soliton interaction solution (17) with Eqs. (13)
nd

1 = −
𝑎5𝑎6
𝑎2

, 𝑎3 =
𝑎22𝛿 + 𝑎26𝛿 − 𝑎6𝑎7

𝑎2
, 𝑎7 = 𝑎6𝛿 + 2𝑎5,

𝑘2 = 0, 𝑘3 = 𝑒𝑘1 − 𝑒−𝑘1 ,

7 = 0, 𝑘8 = 𝑒𝑘6 − 𝑒−𝑘6 . (21)

Usually, interactions between soliton solutions are regarded to be
ompletely elastic because the velocity, shape and amplitude of soli-
ons keep unchanged after the interactions. However, for some cases,
ompletely inelastic interactions may occur when the wave vectors and
elocities of the solitons satisfy some special conditions. For example,
t a certain time, one soliton may fission to two or more solitons.
ontrarily, at some time, two or more solitons may fusion to one [31,
2]. Next, for the physical quantity 𝑊 (𝑛, 𝑦, 𝑡) ≡ 𝑢𝑦(𝑛, 𝑦, 𝑡), we use
ymbolic computing software to plot the lump by taking values for the
arameters as

2 =
1
2
, 𝑎4 = 2, 𝑎5 =

1
2
, 𝑎6 =

1
2
, 𝑎8 = 2, 𝑎9 = 3,

𝛿 = 1.

When 𝑡 = 0, Fig. 1 shows the shape and orientation of 𝑊 (𝑛, 𝑦, 𝑡).
The corresponding lump-one soliton interaction solution of 𝑊 (𝑛, 𝑦, 𝑡)

is described in Figs. 2–4 by selecting parameters as

𝑎2 =
1
3
, 𝑎4 = 1, 𝑎5 =

1
4
, 𝑎6 =

1
2
, 𝑎8 = 2, 𝑎9 = 3,

𝑘1 =
1
2
, 𝑘4 = −35, 𝑘5 = 1, 𝛿 = 1.

igs. 2–4 vividly show that a fusion occurs, when a lump interacts a
ine soliton, getting into a locally coherent structure over time.
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Fig. 1. Lump of 𝑊 at 𝑡 = 0.

Fig. 2. Lump-one soliton interaction of 𝑊 at 𝑡 = 0.

Fig. 3. Lump-one soliton interaction of 𝑊 at 𝑡 = 350.

Fig. 4. Lump-one soliton interaction of 𝑊 at 𝑡 = 1500.

The corresponding lump-two soliton interaction solution of
𝑊 (𝑛, 𝑦, 𝑡) is described in Figs. 5–9 by selecting parameters as

𝑎2 =
1
5
, 𝑎4 = 15, 𝑎5 = −1

3
, 𝑎6 = −1

5
, 𝑎8 = 2, 𝑎9 = 3,

𝑘1 =
1
2
, 𝑘4 = −35, 𝑘5 = 1, 𝑘6 = −1

2
, 𝑘9 = −10, 𝑘10 = 10,

𝛿 = 1.

(22)
4

Fig. 5. Lump-two soliton interaction of 𝑊 at 𝑡 = −1200.

Fig. 6. Lump-two soliton interaction of 𝑊 at 𝑡 = −210.

Fig. 7. Lump-two soliton interaction of 𝑊 at 𝑡 = 0.

Fig. 8. Lump-two soliton interaction of 𝑊 at 𝑡 = 210.

Figs. 5–9 show that a lump fission occurs firstly from a one-soliton and
then with another one-soliton to a locally coherent structure over time.

Remark 3. In Ref. [33], exact solutions expressed in terms of Pfaf-
fian solutions of the bilinear form of the following symmetric Lotka–
Volterra lattice [33]

2𝑢𝑡(𝑚, 𝑛) + 𝑒𝑢(𝑚,𝑛)+𝛥
2
𝑚𝜙(𝑚,𝑛+1) − 𝑒−𝑢(𝑚,𝑛)+𝛥

2
𝑛𝜙(𝑚,𝑛) + 𝑒𝑢(𝑚,𝑛)+𝛥

2
𝑛𝜙(𝑚+1,𝑛)

−𝑒−𝑢(𝑚,𝑛)+𝛥
2
𝑚𝜙(𝑚,𝑛) + 𝑒−𝑢(𝑚,𝑛)+𝛥

2
𝑛𝜙(𝑚+1,𝑛−1) − 𝑒𝑢(𝑚,𝑛)+𝛥

2
𝑚𝜙(𝑚−1,𝑛)

+𝑒−𝑢(𝑚,𝑛)+𝛥
2
𝑚𝜙(𝑚−1,𝑛+1) − 𝑒𝑢(𝑚,𝑛)+𝛥

2
𝑛𝜙(𝑚,𝑛−1) = 0,
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Fig. 9. Lump-two soliton interaction of 𝑊 at 𝑡 = 1200.

𝑢(𝑚, 𝑛) = 𝛥𝑚𝛥𝑛𝜙(𝑚, 𝑛), (23)

are given, where 𝛥𝑚 and 𝛥𝑛 are difference operators defined by

𝛥𝑚𝑢(𝑚, 𝑛) = 𝑢(𝑚 + 1, 𝑛) − 𝑢(𝑚, 𝑛), 𝛥𝑛𝑢(𝑚, 𝑛) = 𝑢(𝑚, 𝑛 + 1) − 𝑢(𝑚, 𝑛).

As a special case of the Pfaffian solutions, the authors have obtained
soliton solutions and dromions. An analogous argument can yield a
lump solution. However, we cannot construct lump-soliton interaction
solutions because of the complexity of this lattice (23). It has also
become an open problem.

Conclusions

In this paper, some (2 + 1)-dimensional D𝛥-mKdV systems have
been studied. Based on Hirota’s bilinear operator method, we have gen-
erated semi-discrete lump-soliton interaction solutions through com-
puting possible values for the parameters in the combinations of pos-
itive quadratic functions and exponential functions. At the same time,
by symbolic computing software, we have presented a few three-
dimensional plots of the lump-soliton interaction solutions, to show
dynamical behaviors of the obtained interaction solutions. We would
like to remark that only a few D𝛥 lump-soliton interaction solutions
have been presented, and there should be more complicated interaction
solutions [34], which are worth further investigation.

The direct ansatz method adopted in this paper is a computer-
izable method, and it allows us to work out complicated solutions
without making tedious algebraic calculations. In the consideration
that the presented general procedure for computing semi-discrete lump-
soliton interaction solutions is quite like the one in the continuous
case, other types of locally coherent structures in the discrete and
semi-discrete cases could be also explored by applying our solution
procedure. Another interesting problem is to compute rogue wave
and their interaction solutions with solitons to nonlocal integrable
equations (see, e.g., [35,36]), and such studies will greatly amend the
classical theory of partial differential equations.
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