Results in Physics 59 (2024) 107579

journal homepage: www.elsevier.com/locate/rinp

Contents lists available at ScienceDirect

Results in Physics

Check for

Lump-soliton interaction solutions to differential-difference mKdV systems | e

in (2+1)-dimensions

Kai Zhou?, Ya-Nan Hu?, Jun-Da Peng?, Kai-Zhong Shi ?, Shou-Feng Shen ?, Wen-Xiu Ma >%%¢*

2 Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

¢ Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia

d Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
¢ Material Science Innovation and Modelling, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

ARTICLE INFO ABSTRACT

Keywords:

Lump-soliton interaction solution
Differential-difference mKdV equation
Hirota’s bilinear operator method
Fission\fusion phenomena

Lump-soliton interaction solutions to continuous integrable systems have been pretty well studied, but there are
relatively few results in the differential-difference (D4) case. In this paper, some (2+1)-dimensional DA-mKdV
systems are investigated by using Hirota’s bilinear operator method. By setting appropriate variable trans-
formations and assuming auxiliary functions as quadratic and exponential functions, lump-soliton interaction
solutions are derived. Certain fission\fusion phenomena of the physical quantity, the velocity of the potential,

are explored by analyzing dynamical behaviors of the resultant solutions with different values of the involved

parameters.

Introduction

With the rapid development of soliton theory, exact solutions of
nonlinear evolution equations (NLEEs), especially integrable systems,
have aroused great interest among many scientists and engineers [1-
20]. By means of exact solutions, one can better understand natural
phenomena described by mathematical models and further explore
other new potential applications. Many effective methods have been
proposed to construct exact solutions of NLEEs such as the inverse
scattering theory (IST), the Lie group analysis method, the Painlevé test,
the Darboux transformation, the Riemann-Hilbert method, the multi-
linear variable separation (MLVS) approach and the Hirota bilinear
operator method [1-27].

Lump solutions, soliton solutions and lump-soliton interaction so-
lutions are three important classes of exact solutions, which have
been applied to almost all branches of physics such as condense mat-
ter physics, quantum field theory, plasma physics, fluid mechanics
and nonlinear optics. Lump solutions are rationally localized in all
directions in space and the study of lump solutions has a long his-
tory. The previous idea to construct lump solutions is to take long
wave limit of multi-soliton solutions. Recently, a new direct ansatz
method to seek for lump solutions and lump-soliton interaction solu-
tions has been given [15-20]. The crucial step is to take combinations
of positive quadratic functions and exponential functions, which solve
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Hirota’s bilinear equations. Then the logarithmic transformations yield
lump-soliton interaction solutions to given continuous NLEEs.

Differential-difference (DA) equations play a crucial role in model-
ing of much physical phenomena such as particle vibrations in lattices,
currents in electrical networks, pulses in biological chains. Generally
speaking, DA equations are semi-discrete equations, in which some of
the spatial variables are discrete and the time variables are continuous.
Therefore, the difficulty of solving DA equations is often huge. Lump-
soliton interaction solutions of continuous integrable systems have
been well studied, but relatively few results are known in the DA
case. Taking some DA-mKdV systems as examples, we will extend
the direct ansatz method [15-20] to the DA case in this paper. In
Section “Lump-soliton interaction solutions and fission\fusion phenom-
ena”, lump-soliton solutions of DA-mKdV systems are obtained and
fission\fusion phenomena are analyzed. Section “Conclusions” contains
conclusions.

Lump-soliton interaction solutions and fission\fusion phenomena

We will construct lump-soliton interaction solutions for the follow-
ing DA-mKdV system firstly

w,(n) +u,,,(n)+ ui(n) + 3uy, (v, (n) + u,(n) =0,

yyy

v(n+ 1) —ov(n) =un+ 1)+ u(n) (€8]
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by using Hirota’s bilinear operator method. Here u(n) = u(n, y,t) and
v(n) = v(n,y,t) are functions of the discrete variable » and the con-
tinuous variables {y,r}. In the study of nonlinear problems, to find
the integrable discretizations of continuous integrable systems is a
very important topic, because of the rapid development of symbolic
computing software. The DA-mKdV system (1) is interesting, because its
continuous version is the famous asymmetric Nizhnik—-Novikov-Veselov
(NNV) equation and possesses possible physical applications [24-26].
So, just as mentioned in Ref. [24], here we can also call Eq. (1) the
DA-asymmetric NNV system. Setting u(n) = u(n,y,t) = u,(n), v(n) =
o(n,y,t) = vy,(n), we can rewrite Egs. (1) as follows,

Ly (1) + 3T () (1) + 3T, (0)D(n) + 3(n)D,(n) + 511, () = 0,

v(n+1)—0v(n) = Ey(n + 1)+ Ey(n), 2

u,(n) +u

which is studied in Ref. [24] by using the MLVS approach. By means
of

u(n, y,t) = %eU(en, 1) = %eU(x, »1),
o(n, y,t) =V(en,y,1) = V(x,y,1),
we have

un+1,y,1) = %eU(en +ept)= %eU(x +e,p,1)

= 2eU(x, .0+ o),
vn+1,y,)=V(en+e,y,t)=V(x+e,p1)
=V (x,p.1) + eV (x, 3. 1) + 0(e?).

Substituting these expressions into Egs. (2) and neglecting the higher
order terms of ¢, we have

U, + Uy, +3U,V +3UV, +6U, =0,
v, =U,
being just the well-known asymmetric NNV equation with § = 0 in

Ref. [24]. The MLVS approach has applied to the DA-mKdV system (1)
by using the following bi-logarithmic transformation

u(n) = In [M
f(n)
o(n) = In [f () f (n + D] + vo(2.1),

with a suitable MLVS ansatz

)

S(n) = f(n,y.1) = ag+ a p(n, 1) + arq(y, 1) + a3 p(n, Ng(y, ). 3)

and abundant semi-discrete localized coherent structures are con-
structed by appropriately selecting the arbitrary functions [24-26].

Next, we use a combination of positive quadratic functions and
exponential functions to construct lump-soliton interaction solutions.
The key step here is to replace Eq. (3) with a new form. Firstly, we
adopt the following bi-logarithmic transformation

u(n) =In [M] ,
fn)
o(n) =In[f(n+1)f ()] C)]

to bilinearize Eq. (1). Actually, in this transformation (4) we take
the seed solution to zero. Substituting the above transformation into
Eq. (1), we have

(D,+Di+5Dy)f(n+l)vf(n):O. 5)

Here Hirota’s bilinear differential operator D'y"D:‘ and difference oper-
ator exp(D,) are defined by

90 \"(9 _ 0\
D"Dka-b= <———> (———) a(y. Dby, 1") .
y ot dy 9y ot ot -
9 _ 9
D - bl = [ — - = ] b
exp(@D,a(n) - b(n) = exp |a (== = =) | atnibn) -

=a(n+ a)b(n — a). 6)
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To search for lump solutions, we begin with a quadratic function
solution as

f(n) = g*(n) + h*(n) + ag
=(a1n+a2y+a3t+a4)2+(a5n+a6y+a7t+a3)2+a9 7
with constraint

a;

#0, (8

a
ds e
where ¢; (i = 1,2,...,9) are all real parameters to be determined.
Substituting Eq. (7) into Eq. (5) yields the algebraic system of
determining equations
(ay6 + az)a; + (agbd + ap)as =0,
aya;6 + aga;6 + a§ + a% =0,
(a% + aé)& +aya; +aga; =0,
alag +[asa; +6(ajap — a5a6)]a§ + [alag +26(ayag + ayas)aylay
—[6(ayay — asag) — a5a7]a$ =0,
[a% +2a,a4 + as(as + 208)](a§ + a%) + {(aya; + aﬁa7)a%
+[(Qayay + 2agag)ay — 2a;(arag — azag)la;
1
+[(ayas + 2a,ag — 2a4a6)az + 2a;(aya, + 5959 +agag)las}é =0,
alagﬁ + (asagd + ajaz — a5a7)a§ + (ayagd + 2a a7 + 2azas5)ayaq
—(aya3 — asay — a5a65)a2 =0,
(a%ﬁ +ayas; + aé& + aﬁa7)a% + [20%046 + (2aza4 + 2a;ag)a,
—2ag(azag — aga; — agagd)la
+[(as + 2a8)a§5 + (azas + 2azag — 2a4a7)a, + (asagd + asa; + 2agagd
+2aza, + 2a;ag)aglas = 0,
[(ayay + agag)d + azay + a7a3]a% + [(azai + 2a4aqag — azag —aya9)d
- Ga; - 6a2a2 + a3a?1 - a3a§ + 2a4a7ag — azagla;
+[(ayay 6 + agagd + azay, + a;ag)as + 2ayazag — aﬁai + a6a§ — aga9)d
- 6a6a§ + 2aza,ag — a7ai - 6a2 + a7a§ —a;aglas = 0.
By solving this system with symbolic computation software, we have

a5dq
a =—-——,

= —a.é. 9
a0 az dg 9

a3 = —a,0,

From the above calculation result, the linear term uy(n) in Eq. (1) is
necessary, otherwise there will be no suitable solution to Eq. (1). Thus,
we have obtained a new lump solution for the DA-mKdV system (1),

fn+1)
()

2
asag - - :
(— S+ D+ayy a26t+a4) + (as(n+ 1)+ agy — agbt + ag)” +ay

u(n) =1In [

=1In

2
2 2
<—a‘;ﬂn+azy—a25t+a4> + (a5n+a6y—a66t+ag) +ay
2

o(n) =In[f(n+1)f(n)]

dsde :
=1In ———m+1)+ay—aydt+a,
a

2
+ (a5(n+ l)+a6y—065t+a8) +ag>

2
9546 2
X ———n+ay—a6t+a, +(a5n+a6y—aééz+ax) +aqg .
L)

(10

To construct a lump-one soliton interaction solution consisting of a
lump and a line soliton wave, we use the following assumption for the
function f(n),

f(n) = g2(n) + h2(n) + ag + kse"
=(an+ayy+ast+ a4)2 + (asn+ agy + a;t + ag)2 + ag

+k5€kln+k2y+k3t+k4, (11)
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where a( = 1,2,...,9) and k;(G = 1,2,...,5) are real parameters
need to be determined. Substituting Eqgs. (4) and (11) into Eq. (5), and
balancing the different powers of n,y and ¢, we have
a5dq
a =——,
a

k, =0,

a3 = —a,0, a; = —ago,

ky = —k3 — 6k, (12)

Thus we have obtained a lump-one soliton interaction solution (4) with
(11)—(12) of the DA-mKdV system (1).

To construct a lump-two soliton interaction solution, we use the
following assumption for the function f(n),

F(n) = g*(m) + h>(n) + ag + kse™ + kyge™
=(ayn+ayy+ast + a4)2 + (asn + agy + a;t + ag)2 +ag
+ksekln+k2y+k3t+k4 + kloek6n+k7y+kgt+k9 , (13)
where a;(j = 1,2,...,9) and k;(j = 1,2,...,10) are real parameters

need to be determined. Substituting Eqgs. (4) and (13) into Eq. (5), and
balancing the different powers of n,y and ¢, we have

a = ——a5a6 . az = —[125, a; = _aﬁéa
a
ki =0,  ky=—k -5k,
kg=0,  kg=—k3— 5k, 14

Thus we have obtained a lump-two soliton interaction solution (4) with
(13)—(14) of the DA-mKdV system (1).

Remark 1. For different choices of dependent variable transforma-
tions, Hirota’s bilinear equation can be transformed into completely
different types of NLEEs. From the Taylor expansion of the following
fundamental formula

exp(aDy)f(n+1)- f(n)

= exp {sinh(aay) In [%] + cosh(ad,) In[f (n + l)f(n)]} s

we have
mbyﬂn 1) £ = uy(n),
mbiﬂn 1)+ £ = vy () + (),

1 3 . -
mDyf(n+ D f(n) =uyy,

mu‘y‘ 4+ 1) f(1) = vy, (m) + duy (W), () + 307 ()

(1) + 3u, (M, (n) + 13 (),

+ 6ui(n)vyy(n) + ui(n),
1
—f(n Y Df}f(n + 1 f(n) = uyy,,, (1) + 10u,,, (n)v,,(n)

+ 5uy, (), (n) + 15u, (M)} (1)

+ 100 (m)v,, (n) + 106 (nu

yyy

Sy () + 105 (),

by defining the bi-logarithmic transformation (4). In this way, we can
construct higher-order DA-mKdV systems such as Eq. (1) and

u () + . (n) + 10uy,,, (Mo, (n) + Su (M, (1) + 15u,(n)viy(n)

n) + ui(n) =0,

+ 10 ()0, (1) + 106 (mu

v(n+1)—ov(n) = u(n+ 1) + u(n). (15)

For the above DA-mKdV hierarchy, how to give a unified decision rule
to judge whether it has a lump-soliton interaction solution is an open
problem.

Remark 2. We just studied lump-two soliton solution for the DA4-
mKdV system (1) by means of symbolic computation. the construction
of multi-lump-multi-soliton solution still needs further study. However,
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for some complex DA equations [28], during the calculation process,
due to the large amount of computation, it is easy to cause the symbol
calculation software to crash. So we may need to discover more Hirota’s
bilinear identities to simplify the calculation process.

Next, we study the following special Toda lattice,

Uy (n) = DO y(n 4 1)+ u(m)], — D7D u(n) + un = D], + 61, (n),
16)

which is first derived in Ref. [29], and its continuous analogue is
also equivalent to the asymmetric NNV equation. Therefore, we can
also call this equation another form of the DA-mKdV equation. In
Ref. [30], by means of the following logarithmic transformation u(n) =
In [f(n+ 1)/ f(m)] + uy(n,1) with corresponding MLVS ansatz (3), abun-
dant semi-discrete localized coherent structures of the physical quantity
W = u,(n) have been obtained.

To construct lump-soliton interaction solutions, we first substitute
the following variable transformation

f(n+1)
=ln|[——= 17
um = [ fo ] an
into Eq. (16) to get Hirota’s bilinear equation
DD, f(n)- f(n) = 5D} f(n)- f(n) =0. (18)

Considering that the following process of solving the above equation is
similar to that of solving Eq. (1), here we just list the corresponding
results. Namely, we have a lump solution (17) with Egs. (7) and

asag B 5a§ —2asaq

a =———>, 3= ——, a; = dag + 2a;. 19)
@ )
We have a lump-one soliton interaction solution (17) with Egs. (11)
and
asag 6a§ —2asaq
a=—-——, ag=———,
@ @

ky = ek —e7h, (20)

a; = agb + 2as,

ky =0,

We have a lump-two soliton interaction solution (17) with Egs. (13)
and

a%& + agé —aga;

4546
a =-——=, a3 = ——, a7 = ag + 2as,
) a
ky=0, ky=ef—eh,
k; =0, kg = k6 — ¢7ke, @n

Usually, interactions between soliton solutions are regarded to be
completely elastic because the velocity, shape and amplitude of soli-
tons keep unchanged after the interactions. However, for some cases,
completely inelastic interactions may occur when the wave vectors and
velocities of the solitons satisfy some special conditions. For example,
at a certain time, one soliton may fission to two or more solitons.
Contrarily, at some time, two or more solitons may fusion to one [31,
32]. Next, for the physical quantity W(n,y.t) = uy,(n,y,1), we use
symbolic computing software to plot the lump by taking values for the
parameters as

ool
2_2’
6=1.

ag =2, ag =3,

1
[l6=§,

1
=2, ==,
a, as 3
When ¢ = 0, Fig. 1 shows the shape and orientation of W (n, y, 1).
The corresponding lump-one soliton interaction solution of W (n, y, 1)
is described in Figs. 2—-4 by selecting parameters as

1
a2=§, a, =1, aS—Z, ag 3 ag =2, ag =3,
kl—%, ky = —35, ks =1, =1

Figs. 2-4 vividly show that a fusion occurs, when a lump interacts a
line soliton, getting into a locally coherent structure over time.
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Fig. 1. Lump of W at t=0.
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Fig. 2. Lump-one soliton interaction of W at t = 0.
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Fig. 3. Lump-one soliton interaction of W at r = 350.
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Fig. 4. Lump-one soliton interaction of W at r = 1500.

The corresponding lump-two soliton interaction solution of
W (n, y,1) is described in Figs. 5-9 by selecting parameters as

1
az—g, a, =15, a5——§, 06——5, ag =2, ay=3,
kl—%, ky=-35 ks=1, k6=—%, ko =—10, ko =10,
6=1.

(22)

Results in Physics 59 (2024) 107579

900
/1100
1300 ¥

T
2600 2500 2400

n

Fig. 5. Lump-two soliton interaction of W at ¢t = —1200.
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Fig. 6. Lump-two soliton interaction of W at r = —210.
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Fig. 8. Lump-two soliton interaction of W at ¢ =210.

Figs. 5-9 show that a lump fission occurs firstly from a one-soliton and
then with another one-soliton to a locally coherent structure over time.

Remark 3. In Ref. [33], exact solutions expressed in terms of Pfaf-
fian solutions of the bilinear form of the following symmetric Lotka—
Volterra lattice [33]

2u,(m, n) + MM+ AL Gmntl) _ p—u(mny+Arp(mn) o pu(mn)+Arp(m+1.n)
_ e—u(m,n>+4§,¢(m,n) + e-u(m,n)+4§¢(m+1,n—1) _ eu(m,n)+A3n¢(m—l,n)

+ e-u(m,n)+4§”¢(m—1,n+1) _ eu(m,n)+4§¢(m,n—1) =0,
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Fig. 9. Lump-two soliton interaction of W at ¢ = 1200.
u(m, n) = AmAn¢(m’ n), (23)

are given, where 4,, and 4, are difference operators defined by

A, u(m,n) = u(m+ 1, n) — u(m, n), Au(m,n) = u(m,n+ 1) — u(m, n).

As a special case of the Pfaffian solutions, the authors have obtained
soliton solutions and dromions. An analogous argument can yield a
lump solution. However, we cannot construct lump-soliton interaction
solutions because of the complexity of this lattice (23). It has also
become an open problem.

Conclusions

In this paper, some (2 + 1)-dimensional DA-mKdV systems have
been studied. Based on Hirota’s bilinear operator method, we have gen-
erated semi-discrete lump-soliton interaction solutions through com-
puting possible values for the parameters in the combinations of pos-
itive quadratic functions and exponential functions. At the same time,
by symbolic computing software, we have presented a few three-
dimensional plots of the lump-soliton interaction solutions, to show
dynamical behaviors of the obtained interaction solutions. We would
like to remark that only a few DA lump-soliton interaction solutions
have been presented, and there should be more complicated interaction
solutions [34], which are worth further investigation.

The direct ansatz method adopted in this paper is a computer-
izable method, and it allows us to work out complicated solutions
without making tedious algebraic calculations. In the consideration
that the presented general procedure for computing semi-discrete lump-
soliton interaction solutions is quite like the one in the continuous
case, other types of locally coherent structures in the discrete and
semi-discrete cases could be also explored by applying our solution
procedure. Another interesting problem is to compute rogue wave
and their interaction solutions with solitons to nonlocal integrable
equations (see, e.g., [35,36]), and such studies will greatly amend the
classical theory of partial differential equations.
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