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a b s t r a c t

By using the Hirota bilinear form of the KP equation, twelve classes of lump–kink solutions
are presented under the help of symbolic computationswithMaple. Analyticity is naturally
achieved by taking special choices of the involved parameters to guarantee a positive con-
stant term. A key step in generating lump–kink solutions is to combine quadratic functions
and the exponential function in the second-order logarithmic derivative transformation.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since the Korteweg–de Vries (KdV) equation is solved by the inverse scattering transform [1], there are many studies on
other integrable equations [2,3]. Integrable equations possess Hirota bilinear forms [4], which generate solitons describing
a kind of nonlinear physical phenomena [5]. Besides the KdV equation, such equations contain the Boussinesq equation, the
Kadomtsev–Petviashvili (KP) equation, the B-Kadomtsev–Petviashvili (BKP) equation, the Volterra lattice equation, and Toda
lattice equation. From the mathematical point of view, solitons are determined by exponentially localized functions [3], and
Plücker relations and Pfaffian identities play a crucial role in formulating solitons in terms of determinants [6], though some
intelligent guesswork is often needed [7].

The KP equation

PKP (u) := (ut + 6uux + uxxx)x − uyy = 0 (1.1)

possesses the following class of lump solutions [8]:

u = 2(ln f )xx, f =

(
a1x + a2y +

a1a22 − a1a62 + 2 a2a5a6
a12 + a52

t + a4
)2

+

(
a5x + a6y +

2a1a2a6 − a22a5 + a5a62

a12 + a52
t + a8

)2
+

3(a12 + a52)3

(a1a6 − a2a5)2
, (1.2)
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where the six parameters ai’s are arbitrary but a1a6 − a2a5 ̸= 0, which guarantees that u will present lump solutions. This
class contains a subclass of lump solutions presented earlier [9]:

u = 4
−[x + ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2

{[x + ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2}2
, (1.3)

involving two free parameters a and b. The BKP equation

(ut + 15uxuxxx + 15ux
3
− 15uxuy + u5x)x − 5uxxxy − 5uyy = 0 (1.4)

has the following lump solutions [10]:

u = 2(ln f )x, f =

(
a1x + a2y +

5(a1a22 − a1a62 + 2 a2a5a6)
a12 + a52

t + a4
)2

+

(
a5x + a6y +

5(2 a1a2a6 − a22a5 + a5a62)
a12 + a52

t + a8
)2

−
3 (a1a2 + a5a6)

(
a12 + a52

)2
(a1a6 − a2a5)2

, (1.5)

where we impose the positivity condition a1a2 + a5a6 < 0. This class contains a subclass of lump solutions

u = 2(ln f )x =
4g
f

, (1.6)

with

f = g2
+

[
6αβy + 180αβ(α2

− β2)t + a8
]2

+
β2

− α2

4α2β2 , (1.7)

g = x + 3(α2
− β2)y + 45(α4

− 6α2β2
+ β4)t + a4, (1.8)

where |α| < |β|. This is a particular subclass of lump solutions generated from taking long-wave limits of a 2-soliton solution
in [11]. The class (1.5) contains another subclass of lump solutions [10]:

u = 2(ln f )x =
12(α2

− β2)g + 24αβh
f

, (1.9)

with

f = g2
+ h2

−
81(α2

− β2)(α2
+ β2)4

4α2β2 , (1.10)

g = 3(α2
− β2)x + y +

5(α2
− β2)

3(α2 + β2)2
t + a4, (1.11)

h = 6αβx −
10αβ

3(α2 + β2)2
t + a8, (1.12)

where |α| < |β|. Many other integrable equations also possess lump solutions. Such physically significant examples contain
the three-dimensional three-wave resonant interaction [12], the BKP equation [10,11], the Davey–Stewartson equation
II [13], and the Ishimori-I equation [14]. Moreover, symbolic computations show that various nonintegrable equations
possess lump solutions as well, and such examples include (2 + 1)-dimensional generalized KP, BKP and Sawada–Kotera
equations [15–17].

TheWronskian formulation, the Casoratian formulation and the Grammian or Pfaffian formulation [6] have been applied
to the study of general rational solutions to integrable equations, including the KdV equation, the Boussinesq equation and
the nonlinear Schrödinger equation in (1+1)-dimensions, the KP and BKP equations in (2+1)-dimensions, and the Toda and
Ablowitz–Ladik type lattice equations in (0 + 1)-dimensions (see, e.g., [18–22]). Direct searches have been also conducted
for general rational solutions to nonlinear partial differential equations, including generalized bilinear differential equations
by Maple (see, e.g., [23–29]).

In this paper, we would like to consider a kind of interaction solutions between lumps and kinks of nonlinear partial
differential equations. Kinks are traveling wave solutions, expressed by the exponential wave functions which satisfy Hirota
bilinear equations. We will take the KP equation as an example, and by Maple symbolic computations, generate twelve
classes of its lump–kink solutions, based on the previous studies on lumps in (2+1)-dimensions (see, e.g., [8]). The resulting
lump–kink solutions supplement existing lumps and kinks in the literature. A key step is to search for positive combined
solutions to the corresponding bilinear KP equation within the Hirota bilinear formulation. A few concluding remarks will
be given in the final section.
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2. Abundant lump–kink solutions

The KP equation (1.1) is a mathematical model describing water waves of long wavelength with weakly nonlinear
restoring forces and frequency dispersion. It is among the entire KP hierarchy [30] and linked to a bilinear equation [4]:

BKP (f ) := (DxDt + D4
x − D2

y)f · f

= 2(fxt f − ft fx + fxxxf − 4fxxxfx + 3fxx2 − fyyf + fy2) = 0, (2.1)

under the second-order logarithmic derivative transformation:

u = 2(ln f )xx. (2.2)

This is one of the two characteristic transformations used in Bell polynomial theories on integrable equations (see,
e.g., [31,32]), and it is direct to find

PKP (u) =

(BKP (f )
f 2

)
xx
. (2.3)

Therefore, when f solves the bilinear KP equation (2.1), u = 2(ln f )xx will present a solution to the KP equation (1.1).
In what follows, we focus on computing lump–kink solutions to the KP equation (1.1) through a careful search for

combined solutions of quadratic functions and the exponential function to the bilinear KP equation (2.1) with symbolic
computations. This provides innovative ideas to generate new exact solutions to integrable equations, besides soliton
solutions and dromion-type solutions, and supplements other solution methods such as the Hirota perturbation technique,
the inverse scattering transform, Darboux transformation, and symmetry reductions and constraints (see, e.g., [33–42]).

We adopt an ansatz of combining quadratic functions and the exponential function

f = ξ1
2
+ ξ2

2
+ eξ3 + a13, (2.4)

with three wave variables{
ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = a9x + a10y + a11t + a12,

(2.5)

where the parameters ai’s are to be determined. Plug this function f into the bilinear KP equation (2.1), to obtain a system
of nonlinear algebraic equations on the parameters, and try to solve the resulting system for the parameters. The function
f will generate positive combined solutions to the bilinear KP equation (2.1) and further analytical lump–kink solutions to
the KP equation (1.1) under (2.2). With some classification, careful symbolic computations yield the following twelve sets of
solutions for the parameters ai, 1 ≤ i ≤ 13.

Class 1. Solution 1 by solving for all the parameters:{
a1 = 0, a2 = b a5a9, a3 = 2 b a6a9, a7 = −

3 a92a52 − a62

a5
, a10 =

a6a9
a5

, a11 = −
a9

(
a92a52 − a62

)
a52

, a13 =
a52

a92

}
,

where b solves b2 − 3 = 0.
Class 2. Solution 2 by solving for all the parameters:{

a1 =
b (a5a10 − a6a9)

a92
, a2 =

1
3

3 a5a94 + a5a102 − a6a9a10
b a93

,

a3 =
1
3

3 a5a94a10 + 3 a6a95 + a5a103 − a6a9a102

b a94
, a7 = −

3 a5a94 + a5a102 − 2 a6a9a10
a92

,

a11 = −
a94 − a102

a9
, a13 =

1
3

3 a52a94 + a52a102 − 2 a5a6a9a10 + a62a92

a96

}
,

where b solves 3 b2 − 1 = 0.
Class 3. In terms of a1 and a5:{

a2 =
b
a9

, a3 =
−3 a1a94 + 2 b a10 − a1a102

a92
, a6 = −

b a1 − a12a10 − a52a10
a5a9

,

a7 = −
3 a52a94 + 2 b a1a10 − 2 a12a102 − a52a102

a5a92
, a11 = −

a94 − a102

a9
, a13 =

a12 + a52

a92

}
,

where b solves b2 − 2 a1a10b − 3 a52a94 + a12a102 = 0.
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Class 4. In terms of a3 and a7:{
a1 =

a22a3 + 2 a2a6a7 − a3a62

a32 + a72
, a5 = −

a22a7 − 2 a2a3a6 − a7a62

a32 + a72
,

a9 =
b (a2a7 − a3a6)

a22 + a62
, a10 =

b (a2a7 − a3a6)(a2a3 + a6a7)(
a22 + a62

)2 ,

a11 =
1
3

b (a2a7 − a3a6)(3 a22a32 − a22a72 + 8 a7a3a6a2 − a32a62 + 3 a62a72)(
a22 + a62

)3 ,

a13 =
3 (a28 + 4 a26a62 + 6 a24a64 + 4 a22a66 + a68)

(a2a7 − a3a6)2(a32 + a72)

}
,

where b solves 3 b2 − 1 = 0.
Class 5. Solution 1 in terms of a1, a2 and a5:{

a3 = −
3 a12a92 + 3 a52a92 − a22

a1
, a6 =

a5(b a2 − a22 + 3 a12a92 + 3 a52a92)
a1(b − a2)

,

a7 =
2 b a12a2 + 2 b a2a52 − 2 a12a22 − a22a52 + 3 a12a52a92 + 3 a54a92

a12a5
,

a8 =
a4a5(b a2 − a22 + 3 a12a92 + 3 a52a92)

a1a2(b − a2)
, a10 =

b a9
a1

,

a11 =
a9(2 b a2 − a22 − a12a92 + 3 a52a92)

a12
, a13 =

a12 + a52

a92

}
,

where b solves b2 − 2 a2b + a22 − 3 a52a92 = 0.
Class 6. Solution 2 in terms of a1, a2 and a5:{

a3 = −
3 a12a92 + 3 a52a92 − a22

a1
, a6 =

b a12 + b a52 − a12a2
a1a5

,

a7 =
2 b a12a2 + 2 b a2a52 − 2 a12a22 − a22a52 + 3 a12a52a92 + 3 a54a92

a12a5
,

a10 =
b a9
a1

, a11 =
a9(2 b a2 − a22 − a12a92 + 3 a52a92)

a12
, a13 =

a12 + a52

a92

}
,

where b solves b2 − 2 a2b + a22 − 3 a52a92 = 0.
Class 7. In terms of a2, a3 and a7:{

a1 =
a22a3 + 2 a2a6a7 − a3a62

a32 + a72
, a5 = −

a22a7 − 2 a2a3a6 − a7a62

a32 + a72
,

a9 =
b (a2a7 − a3a6)

a22 + a62
, a10 =

b (a2a7 − a3a6)(a2a3 + a6a7)(
a22 + a62

)2 ,

a11 =
1
3

b (a2a7 − a3a6)(3 a22a32 − a22a72 + 8 a7a3a6a2 − a32a62 + 3 a62a72)
(a22 + a62)3

,

a13 =
3 (a28 + 4 a26a62 + 6 a24a64 + 4 a22a66 + a68)

(a2a7 − a3a6)(a2a32a7 + a2a73 − a33a6 − a3a6a72)

}
,

where b solves 3 b2 − 1 = 0.
Class 8. In terms of a2, a3, a9 and a10:{

a1 =
a9 (2 a2a10 − a3a9)

3 a94 + a102
, a5 = −

1
3

3 a2a94 − a2a102 + a3a9a10
b a9(3 a94 + a102)

,

a6 =
b (a2a10 − a3a9)

a92
, a7 =

1
3

3 a2a94 + a2a102 − a3a9a10
b a93

,

a11 = −
a94 − a102

a9
, a13 =

1
3

3 a22a94 + a22a102 − 2 a2a3a9a10 + a32a92(
3 a94 + a102

)
a94

}
,

where b solves 3 b2 − 1 = 0.
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Class 9. Solution 1 in terms of a2, a7, a9 and a10:{
a1 = −

a2a9(3 b a94 + 3 a7a94 − b a102 + a7a102)
a10(3 b a94 − 3 a7a94 + b a102 − a7a102)

, a3 =
a2(3 b a94 + 3 a7a94 + b a102 − a7a102)

a9(b − a7)a10
,

a5 =
b a92

3 a94 + a102
, a6 =

(b + a7)a9
2 a10

, a11 = −
a94 − a102

a9
,

a13 =
c

(3 a22a94 + b a7a92 + a22a102)a102(3 a94 + a102)

}
,

where b solves b2 − 2 a7b + a72 − 12 a22a92 = 0 and

c = 9 a24a98 + 6 b a22a7a96 + 6 a24a94a102 + 12 a22a72a96 + 2 b a22a7a92a102 + 2 b a73a94 + a104a24 − a74a94.

Class 10. Solution 2 in terms of a2, a7, a9 and a10:{
a1 = −

(6 a22a94 + b a7a92 − 2 a22a102 − a72a92)a9
2 a2(3 a94 + a102)a10

, a3 =
6 a22a94 + b a7a92 + 2 a22a102 − a72a92

2 a2a9a10
,

a5 =
b a92

3 a94 + a102
, a6 =

(b + a7)a9
2 a10

, a11 = −
a94 − a102

a9
,

a13 =
c

a102(9 a22a98 + 3 b a7a96 + 6 a22a94a102 + b a7a92a102 + a22a104)

}
,

where b solves b2 − 2 a7b + a72 − 12 a22a92 = 0 and

c = 9 a24a98 + 6 b a22a7a96 + 6 a24a94a102 + 12 a22a72a96 + 2 b a22a7a92a102 + 2 b a73a94 + a104a24 − a74a94.

Class 11. Solution 1 in terms of a1, a2, a9 and a10:{
a2 =

3 a12a94 + a12a102 − a62a92 + b a6a92

a1a9a10
, a3 =

3 a12a94 + 2 b a6a92 + a12a102 − 2 a62a92

a1a92
,

a5 =
b a9
a10

, a7 = −
3 b a94 + b a102 − 2 a6a102

a9a10
, a11 = −

a94 − a102

a9
,

a13 =
c

a92a102(3 a12a94 + a12a102 − a62a92 + 2 b a6a92)

}
,

where b solves b2 − 2 a6b + a62 − 3 a12a92 = 0 and

c = 9 a14a98 + 6 a14a94a102 + 6 a12a62a96 + 12 b a12a6a96 + a14a104

− 2 a12a62a92a102 + 4 b a12a6a92a102 − 3 a64a94 + 4 b a63a94.

Class 12. Solution 2 in terms of a1, a2, a9 and a10:{
a2 =

a1(9 a12a96 + 6 b a6a94 + 3 a12a92a102 − 3 a62a94 + b a6a102 − a62a102)
a9a10(3 a12a92 + b a6 − a62)

,

a3 =
a1(9 a12a96 + 9 b a6a94 + 3 a12a92a102 − 3 a62a94 + b a6a102 − a62a102)

a92(3 a12a92 + b a6 − a62)
,

a5 =
b a9
a10

, a7 = −
3 b a94 + b a102 − 2 a6a102

a9a10
, a11 = −

a94 − a102

a9
, a13 =

c1
c2

}
,

where b solves b2 − 2 a6b + a62 − 3 a12a92 = 0 and

c1 = 27 a16a910 + 54 b a14a6a98 + 18 a16a96a102 + 81 a14a62a98 + 24 b a14a6a94a102

+ 60 b a12a63a96 + 3 a16a92a104 + 12 a14a62a94a102 − 15 a12a64a96 + 2 b a14a6a104

+ 8 b a12a63a92a102 + 6 b a65a94 − a14a62a104 − 6 a64a92a102a12 − 5 a66a94,
c2 = a92a102

(
9 a14a96 + 12 b a12a6a94 + 3 a14a92a102 + 6 a12a62a94

+ 2 b a12a6a102 + 4 b a63a92 − a62a12a102 − 3 a64a92
)
.

In each class of solutions for the parameters presented above, the parameters not expressed in the set are arbitrary,
provided that all expressions are well defined. It is also evident that all determining equations for b have real solutions
whatever we choose for the involved parameters, and so all solutions are sufficiently well defined. To generate more explicit
solutions for the parameters, we tried to solve the resulting systems of nonlinear algebraic equations in terms of other
selections of the parameters, but did not succeed in getting any other non-trivial solutions.

The above twelve sets of solutions for the parameters generate twelve classes of combined function solutions defined
by (2.4), to the bilinear KP equation (2.1); and further the resulting combined solutions present twelve classes of mixed
lump–kink solutions, under the transformation (2.2), to the KP equation (1.1).
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The analyticity of those interaction solutions can be naturally achieved, ifwe choose the parameters guaranteeing a13 > 0.
These lump–kink solutions are reduced to the kinks when the quadratic function disappears, and the lumps when the
exponential function disappears. It is also recognized that the resulting lump–kink solutions do not tend to zero in all
directions in space due to the existence of a kink wave, and they form a peak at finite times generated by the involved
lump wave.

3. Concluding remarks

Through the Hirota formulation and symbolic computations with Maple, we constructed twelve classes of mixed lump–
kink solutions to the KP equation explicitly, and the resulting classes of interaction solutions supplement the existing lump
and kink solutions in the literature, and inspire us to compute more exact interaction solutions to integrable equations in
higher-dimensions.

We point out that if we change the Hirota derivatives in (2.1) into generalized bilinear derivatives [43], the quadratic
function part in the solutions presented in the previous section remains true to the generalized bilinear KP equations.
It is also interesting to find positive polynomial solutions to other generalized bilinear or even tri-linear differential
equations [44,45], formulated in terms of general bilinear derivatives [43], as did for resonant solutions in terms of
exponential and trigonometric functions by the linear superposition principle [46–48]. This kind of polynomial solutions
will present lump or lump-type solutions, including roguewave solutions [49–51], to the corresponding nonlinear equations
under the transformations u = 2(ln f )x and u = 2(ln f )xx.

Note that the KP andBKP equations can be solved by theWronskian technique [52,53]. Our search for lump–kink solutions
stimulates creativity and leads to new ideas to formulate Wronskian solutions with different kinds of entries in form of
combined functions. Moreover, if we use generalized bilinear derivatives [43] in (2.1), all solutions computed above will be
different. For example, the KP-like equations defined by the generalized bilinear derivatives Dp,z with p = 3, 5:

(D3,xD3,t + D4
3,x − D2

3,y)f · f = 0,
(D5,xD5,t + D4

5,x − D2
5,y)f · f = 0,

will have different lump–kink solutions, though lump solutions generated from quadratic functions remain unchanged [27].
Symbolic computations can be also helpful in searching for traveling wave solutions by rational function expansions around
solutions to integrable ordinary differential equations [54], particularly various polynomial expansions (see, e.g., [55–57]),
and multiple wave solutions to nonlinear wave equations (see, e.g., [58]).
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