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We present the inverse scattering transformation for a nonisospectral AKNS hier-
archy in which the spectral parameter is determined by an ordinary differen-
tial equation with polynomial nonlinearity, and thus, we give a unified treat-
ment for the local and nonlocal nonautonomous Gross-Pitaevskii equations which
possess the parity-time (7 ) symmetric invariance. We find that unlike the local
case, the P7 -symmetry of the nonlocal Gross-Pitaevskii equation allows two
different choices of the symmetry relations of the eigenfunctions which guarantee
two different kinds of inverse scattering solutions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974772]

. INTRODUCTION

The inverse scattering transformation (IST) is a powerful method to solve integrable nonlinear
evolution equations.'™ It is heavily based on matrix spectral problems and can be applied to a
whole hierarchy of soliton equations. The so-called AKNS-ZS formalism of the IST method was
developed in two early seminal articles,” which aim to deal with isospectral problems. Later, the
AKNS-ZS formalism was extended so that it can be used to deal with nonisospectral problems.®!!
Generally speaking, one needs to solve the Gel’fand-Levitan-Marchenko integral equation in per-
forming the inverse scattering procedure, and the inverse scattering problem can also be written as a
Riemann-Hilbert factorization problem.?

Recently, Ablowitz and Musslimani'?> presented a nonlocal nonlinear Schrodinger (NLS)
equation,

10(x,1) = Qxx(x,1) £20(x,1)°Q"(=x,1), (1

where Q* denotes the complex conjugate of Q. Like the local NLS, Equation (1) shares the
PT -symmetry,'>!* i.e., it is invariant under the transformation x — —x, t — —t as well as the
conjugate transformation. In the case of classical optics, Equation (1) amounts to the invariance of
the so-called self-induced potential'® V(x,7) = Q(x,#)Q*(—x,t) under the combined action of parity
and time reversal symmetry, and the nonlocality is referred to that the value of the potential V(x,t)
at x requires the information on Q(x,¢) at x as well as at —x.'® The P7 -symmetry breaking within
the realm of optics has been observed in experiments.'”!® In Refs. 12 and 19, the inverse scattering
transformation was developed for the nonlocal NLS Equation (1), a novel scheme called left-right
Riemann-Hilbert problem was proposed, and some new features were revealed due to the nonlocal-
ity and the P7 -symmetry. In contrast with the standard NLS equation, the 7 -symmetric nonlocal
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NLS model (1) has many different properties. For example, the focusing nonlocal NLS Equation (1)
(with sign “+” ) has both static bright and dark soliton solutions,'® which is different from the
standard NLS equation. For recent progress concerning with (1), one can refer to Refs. 20-24 and
the references therein.

Under the situation of nonautonomous soliton and soliton managemen
we consider the following nonautonomous Gross-Pitaevskii (GP) equation:

10,(x,1) + f(2,0)Qux(x,1) + 8(x,0Q(x, Q" (€x,1) + V(x,)Q(x, 1) + iy (x,)Q(x,1) = 0, (2)

where € = +£1. When € = +1, the equation is local, and we denote it by (GP,); when € = —1,
the equation is nonlocal, and we denote it by (GP-). In (2), f(x,t) and g(x,?) are the dispersion
and nonlinearity management parameters, respectively; V(x,f) denotes the external potential, and
v(x,t), the dissipation (loss) (y > 0) or gain (y < 0). (GP,) appears in the realm of Bose-Einstein
condensates,’*3! nonlinear optics,>3* and inhomogeneous Heisenberg spin chain,?-*3 and (GP-)
is its nonlocal version with P7 -symmetric self-induced potential.

It is known from Painlevé test’’ that the integrability condition for GP, is f(x,t) = f(t),
g(x,1) = g(t), y(x,t) = ¥(1), V(x,t) = Vo(t) + Vi(t)x + Va(t)x%, where Vy(t) and Vi(t) are arbitrary
real functions, f(¢), g(t), y(t), Va(¢) are real functions satisfying the constrained relation

(41288 =21 £y — 4 F26*Y* =2 28y — &°f fuu + f288u — 2 [2g7 + f28% + figf &
+4V, 3% =0, (3)

25-27 t 9,28,29
9

in this paper,

and thus the integrable G P, model is

1Q,(x,1) + f(D)Qux(x,1) + 8 (1) Q(x,1)°Q" (x,1) + (Vo (1) + V1 (1) x + V2 (1) V)@ (x,1)
+iy () Q (x,t) = 0. 4

Similarly, by Painlevé test, we confirm that the integrability condition for the GP_ equation is the
same as that of the GP, equation (4), in addition to that the parameter Vi(¢) should be a pure
imaginary function and thus we replace V;(¢) with iV;(¢), where V;(¢) is also a real function. Then the
integrable G P_ model reads

10,(x,0) + f(1)Qxx(x,1) + g (1) Q(x,1°Q" (—x,1) + (Vo () + V2 () x)Q (x,1)
+i(Vit)x +y (1)) Q (x,1) = 0, ®)

where f(t), g(¢), y(t), V5(t) satisfy the constrained relation (3).

We remark that in a special case f(f) = —1,g(t) = =2, Vo(t) = 0,Vi(¢) = 0,Vi(t) = 0, (4) is
reduced to the classical focusing cubic nonlinear Schrodinger equation while (5) is reduced to the
focusing nonlocal nonlinear Schrodinger equation (1).

The main purpose of this paper is to establish the inverse scattering transformation for both
(4) and (5) in a uniform way. Different from the procedure in Refs. 12 and 19, here we use the
Gel’fand-Levitan-Marchenko equation to carry out the method. We start from a novel nonisospec-
tral AKNS hierarchy in which the spectral parameter is determined by an ordinary differential
equation with polynomial nonlinearity, and then we investigate its inverse scattering transformation
reductions for both local and nonlocal equations. The new condition of our nonisospectral AKNS
hierarchy induces many novel integrable equations, and our result is valid for all the induced equa-
tions. Especially, we compute exact solutions for the reduced equations (4) and (5). We find that
for the G P, equation, there is only one choice of the symmetry relations of the eigenfunctions, but
for the GP_ equation, there are two different choices: one is similar to that in Ref. 19, and another
seems to be a new try. Thus for the GP_ equation, we obtain two different solutions.

The paper is organized as follows: In Section II, we construct a nonisospectral AKNS hierarchy
in which the spectral parameter determined by an ordinary differential equation with polynomial
nonlinearity and present some reduced integrable equations. In Section III, we develop the inverse
scattering transformation for the above hierarchy. In Section IV, in order to construct solutions for
the local and nonlocal GP equation, we analyze the symmetry reductions of the inverse scattering
data. In Section V, we give some explicit solutions for (4) and (5). Finally in Section VI, we give a
brief summary.

i,
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Il. THE NONISOSPECTRAL AKNS HIERARCHY

We start from the 2 X 2 linear eigenvalue problem

_"k
by = U, U=(: i) ©)

where g = g(x,7) and r = r(x,t) are potentials, and ¢ = ¢(x,?,k(z)) is a two component column vec-
tor representing the eigenfunction (we have suppressed the variables for convenience). We consider
the time-dependent case of the spectral parameter k = k(¢),

k= k", )
j=0

where f; = f;(¢) are smooth complex functions of ¢. The time evolution of the eigenfunction reads

A B
¢t = Vq)’ V = (C —A)’ (8)

where A, B, C are polynomials of the spectral parameter k, which will be determined later. The zero
curvature equation of the systems (6) and (8), i.e., U; — V, + [U,V] = 0, yields

A =07 (gC - rB) — ikx + Ao,
qr = By +2ikB + 2qA, )
ry = Cx — 2ikC - 2rA,

where Ay = Ay(?) is the integration constant of A with respect to x, and we assume

n

Ag= ) gk", (10)

j=0
where g; = g;(t) are smooth complex functions of ¢. Moreover, set

n

B:Z;bjk"—f, C=>ck",  n=12..., (11)
p=

j=1
where b; = bj(x,t),c; = cj(x,t),j = 1,...,n, will be determined later. Substituting (7), (10), and
(11) into (9), comparing the coeflicients of k, and denoting

. q .
7‘}=77(fj,gj):(xfj+1gj)(r), j=0,...n, (12)
we derive the recursion relations
b
= Fos (13)
1
bj bj1 S .
=L + 7’},1 = L 7‘;‘,1,[, ] = 2,...,1, (14)
€i Cj-1 1=0
-q . bn . . < 1
= 2iL +21ﬁ=21ZL Fty n=12,..., (15)
r), Cn —

where the operator L is defined by
Loiga'r  igolq
L = 2 1 .
—iro~lr —50 +ird7lg

Ay



RIGHTS

013505-4 Zhang, Zhao, and Ma J. Math. Phys. 58, 013505 (2017)

Substituting (14) into (11), we obtain

B\ & :
(C) = Z Z Ll?:j_l_lkn_‘], n= 1,2,. e (16)

j=1 1=

(15) gives a nonisospectral AKNS hierarchy, from which we obtain some novel integrable equa-
tions. The first few sets are as follows:

n=1:
qr = fo(gx)x +1gogx — 21f19x + 2819, (17
ry = fo(rx)x+igorx+21f1rx—2g1r,
n=2:
qr = 1fol1 — goé1 + f1(qx)x +1g1qx — 2if2gx + 2829, (18)
re = —ifol1 + go&1 + f1(rx)y +igirx + 2iforx — 2gor,
where
1 2 1 2
§1=EQxxx_qrx_q qrdx + qx, §1=§qxx—qr,
~ l 2 = 1 2
4= Erxxx—r gx—r | grdx +ry, & = Er”_r q,
n=3:
qr = folr +igoér +if1d1 — g1€1 + f2(qx)x +ig2gx — 2if3gx + 283q, (19)
re = fola +igoér —if1{1 + g1€1 + forx)x +igorx + 2if3rx — 2gar,
where

1 1 3 1
OH= 74 / (Gxxt — qryx)xdx +2q / gxrdx + 3x / grdx — 70t (§q2rx +qrgx

1

_quxx)x’

1 1, 1
&= Eq (Gxxr — qrxx)xdx + qrqyx + Eq Fx — Z%cxx’

| 1 3 1
OH= 5" /(qrxx — gxxV)xdx — 2r / gxrdx + 37 / qrdx — 7 + (Erqu + qrry

1
——Fyxx)X + 2r2q,

4
&=1r [ Yxdx + grry + g, -+

= —r Txx — Jxx?)Xdx Iry + —Vr"gx — = Vxxx.
2= 57 [(are—q q ST g

We consider the reduction r(x,t) = —g*(ex,t), and in order to make the two equations of (15)
compatible under this reduction, one has to impose extra symmetry conditions on the parameters f;
and g;, j = 0,...,n. Precisely, substituting r(x,t) = —g*(ex,) into (15), we have the following two
cases.

(i) When € = +1, f; and g; should satisfy

f;:fj, g;:—gj, Jj =0,...,n, (20)

which implies that f; are real functions of # and g; are imaginary functions of ¢. In this case, the
system (15) induces local integrable equations.
(ii) When € = -1, f; and g; should satisfy

f:_zk(t) = _fn—zk(t)’ f;_(2k+1)(t) = fn—(2k+1)(t), @1
n
g;_zk(t) = —gn-2k(1), gj,_(zk+1)(t) = gn—(2k+l)(t)’ k=0,...,[z]

Ay
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where [.] denotes the greatest integer function. (21) implies that fj and g, are imaginary functions
when n and k have the same parity, and real functions when n and k have a different parity. In this
case, the system (15) induces nonlocal integrable equations.

Especially, for the case n = 2, set

1

fo=0.  fi=(In %)t -2y, g=-2f. @=0, g=si% 22)

_EVI’ when € = 1,
=3 1. (23)
_Eivl’ when € = —1,

where we have omitted the variable ¢ for convenience. When € = +1, (18) is reduced to

iq, + faex — 2 — ix((In J‘%» — 2y)gy + Vog +i(Vix — (In §>t +2y)q =0,

g s (24)
iry — frex + 2fr2q —ix((In ?), = 2y)ry = Vor —i(Vix + (In ?)t —2y)r =0.
When € = —1, (18) is reduced to
g+ fqxx — 2f ¢ — ix((n §>, ~ 29)g, + (Vo - Tix)g - i((In §>, ~2y)q =0,
N (25)
i = free +2fr%q — ix((In %)t — 29)rs — (Vo — Vix)r —i((In %)t —2y)r = 0.
With the transformation
q(x,t) = 1 §Q (x,t)e%g(’)xz, r(x,t) = —q*(ex,1), (26)
V2V f
where
1 g Y
0t) = 5+(n %), - 2,
208 f
(24) is transformed to (4) and (25) is transformed to (5).
For the case n = 3, upon setting
fo=0, fi=0, f2=0, f3=0,
8o =4, g1=0, g =0, g =0,
(19) is reduced to
—gxxx T 6 x = 0,
{% q qrq o
Fr — Fxxx + 6qrry, = 0.

When we taking r(x,t) = —1, (27) is the standard KdV equation, and when we taking r(x,t) =
q(—x,1), (27) is reduced to a nonlocal KdV-like equation,

qr(x,1) = Grxx(x,1) + 6g(x,1)q(—x,1)q.(x,1) = 0.

lll. THE INVERSE SCATTERING TRANSFORMATION

In this section, we establish the IST for the nonisospectral AKNS hierarchy (15) with the
spectral parameter satisfying (7), which gives a generalization to that in Ref. 11, where the spectral
parameter is given by 1, = %(27})". In addition, by using the Gel fand-Levitan-Marchenko equation,
we obtain the potentials ¢(x,t) and r(x,) for the local and nonlocal equations in a unified way, and
we find that the 7 -symmetry of the nonlinear evolution equations can be directly used to obtain
the potentials g(x,?) and r(x,1).

Ay
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A. Direct scattering problem

First, let us define the scattering data of the spectral problems (6) and (8). We assume that
q(x,t) and r(x,t) decay rapidly at infinity, and then the scattering problem (6) is a homogeneous
equation and has four eigenfunctions which satisfy the following boundary conditions:

. I\ _ L 0\ .
lim ¢(x,k) = (O)e ik lim ¢(x,k) = (l)e””, (28)
) 0\ . o 1\ .
lim y(x, k) = <]>el"x, lim gr(x, k) = (O)e ik, (29)

where ¢(x, k), ¢(x, k), (x, k), (x, k) are all two component column vectors, and denoted by

$(x,k) = (¢1(x,k),2(x, k), B(x,k) = ($1(x, k), falx, k),
l;b(-x’k) = ((//l(x,k),z,bg(x, k))T’ ';E(-x’k) = (lpl(x9k)";52(x’k))7"

In addition, ¢(x,k) and y(x,k) are analytic for k on Ik > 0 (J denoting the imaginary part of a
complex number or function), and ¢(x, k) and ¢ (x, k) are analytic for k on 3k < 0.>!! Moreover, by
using (6), a simple computation shows that

0 _
x W(o(x,k),d(x,k)) =0, (30)
X

where the Wronskian is W(¢,$) = ¢1¢> — ¢2¢1. Thus ¢ and ¢ are linearly independent for all k
satisfying a(k) # 0. Similarly, the solutions ¢ and ¢ are linearly independent for all k satisfying
b(k) # 0. Additionally, since (6) is a second order ordinary differential equation, the two bases
{¢,¢} and {yr,'} are linearly dependent and one can express one set in terms of the other,

¢(x, k) = a(k)p(x, k) + bk (x, k),
¢(x,k) = a(ky(x, k) + b(k) (x, k),

where a(k),b(k),a(k),b(k) are scattering coefficients. If we denote ®(x,k) = (¢(x,k),d(x,k))T,
W(x, k) = (J(x,k),y(x, k)T, (31) can be rewritten as

€1y

O k) = SKO¥G k). Sk = [1E) PR 32)
| n b(k) a(k))
From (32), we obtain the scattering matrix S(k) = ¥(x,k)™'®(x, k), i.e.,
a(k) = W(g(x,k),y(x,k)),  a(k) = Wi (x,k), $(x,k)), (33)
b(k) = W (x, k), ¢(x, k), blk) = W((x, k), (x, k).

Now from the analyticity properties of the eigenfunctions, we know that a(k) is analytic in the
upper half-complex k plane while a(k) is analytic in the lower half-complex k plane.? b(k) and b(k)
cannot be extended off the real k axis. Furthermore, a(k) and a(k) have a finite number of single
roots in their own half-k-plane, denoted by k;(j = 1,2,...,/) and Ej(j =1,2,...,0), respectively. In
addition, det S(k) = 1, i.e.,

a(k)a(k) — b(k)b(k) = 1.

Furthermore, denoting b; = b(k;), b; = b(k;), by the standard procedure,”!! we can prove that there
exist constants c; and ¢; satisfying

2 / ¢ (x, k) Woa(x, kj)dx = 1, 2 / G (x, k) )Wa(x, kj)dx = 1,

where
¢ =ib;la(k;), ¢ = —ib;/a(k;). (34)
¢; and ¢; are named the normalization constants for the eigenfunctions ¥(x,k;) and ¥ (x,k;), and

cj(x,k;), i (x, k;) are the corresponding normalization eigenfunctions, respectively.

Ay
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Similar to Ref. 11, hereafter we call the set
S(k) = [k(Imk = 0),  R(k) = b(k)/a(k), R(k) = b(k)/a(k);
ki(Imk; > 0), «¢;, j=12,...,l,
ki(Imk; <0), ¢, j=12,...] (35)

the scattering data of the spectral problem (6), where R(k) and R(k) are the reflection coefficients
corresponding to the continuous spectral k, while k; and k; are discrete spectral parameters, with ¢;
and ¢; being norming constants.

B. The inverse scattering problem: Recovery of the potentials g(x) and r(x)

The potentials and the scattering data have a one-to-one correspondence, that is to say,
{q(x,0),r(x,0)} — S(1,0), {q(x,7),r(x,t)} = S(4,1).

The direct scattering problem is to map the potentials into the scattering data. The scattering data
are determined by the eigenvalues and the behavior of eigenfunctions, and it is associated with
the spectral problem (6). Precisely, at time ¢ = 0, for a given initial potential g(x,0), solving the
scattering problem (6) and deriving the corresponding eigenfunctions, then from (33) and (35),
we obtain the initial scattering data. The inverse scattering problem is to reconstruct the potentials
{q(x,1),r(x,t)} from the scattering data S(4,t), which is the required solutions of the nonlinear
evolution equations. Let us recall how to construct exact solutions of the integrable equations by
virtue of the Gel fand-Levitan-Marchenko integral equations. The following result can be proved by
an analogous argument to the one in Ref. 11.

Lemma 1. Given the scattering data (35) of the spectral problem (6), by using the Gel’fand-
Levitan-Marchenko integral equations, the nonisospectral AKNS hierarchy has the exact solutions,

q(x.1) = 2er (W™ (2, )A(x, )AT (x, 1)),
0 0
q(x,t)r(x,1) = =2—tr(W ' (x,0) E(x,t) —— E" (x,1)), (36)
ox ox
where tr(A) denotes the trace of the matrix A, and

i -
E(x,t) = (—Le®i k),

W(x,t) =1+ E(x,1)ET(x,1),
JT R
where I is an [ X [ unit matrix, kj, Ej,cj,Ej are functions of 7, and
A(x,1) = (€%, ce® e R = (Ge7 Y g Y L getiRi)T

(i) When [ =7 =1, we have A(x,?) = c;e¥1* and A(x,7) = e %1%, and thus, we obtain the
one-soliton solution of the spectral problem (6),

267 ik 2¢i> i
1 x’ ,t - 11x’ 37
W< rel) = e’ 37)

q(x,t) =
where

e’ ik
W(x,t) =1+ _lik—k)x,
(ky = ky)?

(ii) When [ =1 =2, we have A(x,?) = (c;eX1%, c,eik2¥) and A(x,r) = (¢e7F1*, &e7%2%), and
thus, we obtain the two-soliton solution of the spectral problem (6),

2A1 209
)= ———, )= ———, 38
1= Gy 0 @) (38)
where
s -2
A= C—IZG—ZiIQIX + 5226—2“5?6 + M] e2iki—k—ko)x
(k1 = ki)(ki = k2)

Ay
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[ ¢1¢28y(ky — ky) ]zezi(kz—kl—kz)x
(ky = k1)(kz = k) ’
ko Clczf_l(kz - kl_) 2ezi(k1+k2—E1)x
(ki = ki)(kz — k1)
c1¢26x(ky — ki) ]2 2k +hy—k)x
(ki = ka)(k = k) ,

_ 2 N2
det(W(x,1)) =1+ (—Clcl_ ) liki=knx | (—Clcz_ ) glitki—k2)x
ki —ky ki —ka

— 2 — 2
+(ﬂ) QRilka=knx | (ﬂ) Q2ilka=k2)x
k2 - k] k2 - k2

Ay = CIZeZIklx +C226

R - - 2
+_[ Clczchz(kg - kl)(k% - kl) _ ] eZKk1+kz*E1*Eﬁx‘
(k1 = ki)(ky = ko) (k2 = k1)(ka — k2)

C. Time evolution of the scattering data

From the above discussion, in order to obtain the solutions {g(x,t),r(x,?)} of the nonlinear
evolution equations of the nonisospectral AKNS hierarchy, we need to solve the inverse scattering
problem. We are just in hand of a final step that is to determine the scattering data k;(¢), k;(¢) and
¢j(t),¢;(t), and then we can obtain the potentials g(x,t) and r(x,) from (36). In what follows, we
compute the time evolution of the scattering data (35), which is determined by the linear evolution
equation (8).

Recall that we have assumed that k; = k;(t)(j = 1,2,...,[) are the single roots of a(k), and
k; = k;j(t)(j = 1,2,...,]) are the single roots of a(k). In addition, the spectral parameter k(r) sat-
isfies (7), and thus from (7), we directly obtain the time evolution of the scattering data k;(¢) and
kj(t),

kio= D Ak, K= kT (39)
Jj=0 j=0
The computation of the norming constants is a little complicated, but the procedure is standard. We

need the following lemma, which can be found in Ref. 2.

Lemma 2. Assume that ¢(x, k) is a solution of (6), and the matrices U and V satisfy the zero
curvature condition U, — V + [U,V] = 0. Then

P(.X, k) = ¢l(x9 k) - V¢(X, k)
is a solution of (6) as well.

Moreover, recall that the integration constant Ay satisfies (10), such that

n n
Aglk;) = Z gik", Ao(k;) = Z gk (40)
7=0 7=0
Then following the idea in Ref. 11, we have the following theorem.
Theorem 1. The time dependence of the discrete scattering data c;(¢),c, (), j = 1,2,...,I,m =
1,2,...,1, for the spectral problem (6) is given by
cjr = (a(k;) = Ao(k;))c;, Emi = (@(km) + Ao(km))em, (41)
where Ag(k;) and Ay(k,,) are defined in (40), and e(k;), @(k,,) are defined by
1 &S 1 &85 N
N — n-p+l ~ 7 _ - n-p
alk) = 3 ; % ' o akn) = 5 pzl ; [ A 42)

Ay
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Proof. First, let us prove the first equation of (41). Taking k = k;, consider (x,k;) as the
normalization eigenfunction c;y(x,k;). From Lemma 2, we know that P(x,k;) = ¥, (x,k;) —
Vi (x,k;) is a solution of (6), too, where V is defined in (8). Such that P(x, k;) can be represented
linearly by y(x, k;) and x(x,k;), i.e., there exist two constants & and S such that

wt(x’kj) - Vw(x’kj) = a’w(x’kj) + ﬁ/\/(x’kj)’ (43)

where y(x,k;) also satisfies (6) and is independent of (x,k;). Due to the asymptotic condition
(29), when x — +o00, we obtain S = 0, and thus (43) is reduced to

wt(x’kj) - V'p(x’kj) = a'ﬁ(x’kj)- (44)
On the other hand, since g(x,#) and r(x,t) decay rapidly at infinity, from (16), we obtain limjy|—,c
B(x,t) =0, limjy|— C(x,t) = 0, and then from the first equation of (9), we get limy|o A(x,1) =
A(k) = —ik,x + Ay. Summarizing these results, we have

lim V(x,t) = Ak) 0 (45)
Tl WO (759 &
Moreover, from (29), we obtain
: ik i x 0
lim y(x,k;) = cje™ 1k (46)
X—+00

Taking x — +oo and substituting (45) and (46) into (44), we have

) 0 _ . 0 . 0
(cjr + ikj,,cjx)elk-/'x (1) + ch(kj)e'k-fx (1) = acje‘k-/'x (1> ,
and noting that A(k;) = —ik; ;x + Ag(k;), we thus have

cj,t = (Cl - Ao(kj))Cj.
In what follows, we compute the constant a. Left-multiplying (44) by (¥2(x, k;),¥1(x, k;)) yields

d
&(Wl(x,kj)lﬂz(x,kj)) — (Cyr1(x, k))* + Bya(x, k;)?) = 201 (x, kj)a(x, k). 47)

Integrating (47) with respect to x from —co to +oco, and using (34), we obtain

=T / " (Coro kg + Buntx, k. (48)

oo

In the following, we suppress the variables x and k; in (x, k;) for convenience, and define an inner
product

(0,6) = / +w0§dx= / +mBm%cwcbc, 0=l yd), &=(B.0),

00 o

and then (48) is rewritten as

a = —(0,€).
By using (16), we obtain
n p-1 n p-1
@== 3 SUOLFp K == 3 S (LY O Fpa )k (49)
p=11=0 p=11=0

where L* is the adjoint operator of L, which satisfies
(0,LFp) = (L'6"), Fp). (50)
The left hand side of (50) is computed as follows:
i D X X +i X
(0.7, = (0. 5( o4+ i8nd
2 _fp(rx)x —18prx

Ay
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. - | .
— 50 [ @0 -eawda- e [ @ud-rada
= ifp[ X(rynyrix — qraox)dx — gp[ (ryix — qapax)dx
= fpkj/ x(quo® + ry)dx + igpkj/ (Y1ox + Yohi)dx

= fpk; / x(qur® + rlplz)dx, 51
where we have used the fact,

rY — QU = —ik; (qua® + ryn?) = —ik; (Yo + Yoy (52)

which is computed from (6). On the other hand, a simple computation shows that

@50 =1y [ st e ot vig, [ i vt g, [ xtqeodan 63
Comparing (51) and (53), we obtain
(0,LFp) = (k;0,Fp),
and then from (50), we have
Lo" = k;0". (54)
By using (34) and (53), we get

© 1
XY ax + Yabix)dx = _Efp- (55)

00

0.5 =1 [ slqu vz = g, [

Then from (49), (54), and (55), we obtain
n p-1 1 n p-1
o = — Z Z(k}@,ﬂ_l_ﬁk;FP = E Z k;7p+lfp_1_l.

p=11=0 p=11=0

Similarly, to prove the second equation of (41), taking k = k., we consider zﬁ(x,Em) as the
normalization eigenfunction ¢,,i(x,k,,) of (6). From Lemma 2, P(x, k) = ¥,(x, k) = Vi (x, ky)
is a solution of (6), and it can be represented linearly by ¥ (x,k,,) and ¥(x,k,,), i.e., there exist two
constants & and 8 such that

G, ko) = VI (k) = @ (x, k) + Bie(x, ki), (56)

where ¥(x,k,,) also satisfies (6) and is independent of /(x, k,,). When x — +co, from the asymp-
totic condition (29), we obtain 8 = 0 such that (56) is reduced to

lpt(xa ]Em) - Vl[’(xJEm) = C_l’l/;(x, ]Em) (57)
On the other hand, from (29), we obtain

X—+00

o . 1
lim §(x, k) = Epekm~ (0)’ (58)
Taking x — +oo and substituting (45) and (58) into (57), we derive
_ - 1 - - 1 - 1
(Cm.t — ikm,,me)e_‘kmx (O) — CnA(ky e kmx (0) = @éye kmx (O)

where A(k,,) = =ik, x + Ag(k,,). Finally, we obtain
C_m,t = (d' + AO(];m))Em-

The constant @ is computed analogously to a. O

Ay
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Furthermore, by using Lemma 2, after a standard argument, we can prove the time evolution of
the continuous scattering data.

Theorem 2. The time dependence of the continuous scattering data R(k) = b(k)/a(k), R(k) =
b(k)/a(k) for the spectral problem (6) is given by

a; =0, b, = —2A0(k)b, a, =0, b; = 2A(k)b, (59)
where Ay(k) is defined in (10). Moreover, the time dependence of the reflection coefficients reads
R(k,7) = R(k,0)e~2J Aok0r - Rp 1) = R(k,0)eJo Aok)dr (60)
where R(k,0) = b(k,0)/a(k,0), R(k,0) = b(k,0)/a(k,0).

IV. LOCAL AND NONLOCAL REDUCTIONS

In this section, we consider the reductions of the inverse scattering transformation of the AKNS
hierarchy (15) under the conditions (20) and (21), which induce local and nonlocal integrable
equations, respectively. The symmetry reduction r(x,t) = —g*(ex,t),e = £1 results in important
symmetry relations of the eigenfunctions and thus imposes different symmetries in the scattering
data, which leads to different solutions. We discuss it in detail as follows.

A. Symmetry of the eigenfunctions

Let y(x,k) = (x1(x, k), x2(x, &))" be a solution of system (6) with symmetry reduction r(x,z) =
—q*(ex,t),e = 1. Then (Xz(ex,ek*),—ex’f(ex,ek*)) also satisfies the scattering problem (6) such
that we obtain important symmetry relations of the eigenfunctions,

o[ e k) o [eoex.ek)
(l) W(X,k) - (—EwT(EX,Ek*))’ ¢(-x7k) - ( ¢T(EX,Ek*) ) (61)
or
.. _ [ #i(ex,ek?) - _ [—edi(ex, k)
(i) w<x,k)—<_e ¢7(ex,ek*>)’ w<x,k)—( Fren o) ) (62)

where the eigenfunctions ¢(x,k) and @(x, k) satisfy the boundary conditions (28), and ¥ (x, k) and
¥ (x, k) satisfy the boundary conditions (29). We mention that here we have two kinds of choices of
the symmetry relations of the eigenfunctions. In the case of € = —1, the first choice is a new try and
the second choice is similar to that in Ref. 19. In the case of € = 1, the first choice is the classical
one but the second choice does not work.

B. Symmetry of the scattering data

From (30), we know that the Wronskian representations (33) of the scattering data do not
depend on x. Now from (33) and the symmetry relations of the eigenfunctions (61) and (62), we
derive symmetry relations of the scattering data. We discuss the two cases (61) and (62) separately.

1. Symmetry of the scattering data under the first symmetry relations
of the eigenfunctions

First, let us consider the symmetry relation (61). From the representation (33) and the condition
(61), we obtain a symmetry of the scattering coefficients,

a(k) = ea*(ek”), (k) = —b"(ek?). (63)

i,
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In this case, if k; is a zero of a(k), €k’ is a zero of a(k) such that the roots of a(k) and a(k) appear in
pairs, [ = [, and

k; = ek’ (64)

Thus the spectral parameters k; and k; are both in the whole axis and satisfy (64). In order to
obtain the symmetry reductions of the normalization constants c; and ¢}, recalling (34), we need to
compute a(k;) and d@(k;). In fact, for a general N eigenvalues k;,k;,j = 1,2,...,N, where we have
set/ = [ = N, from the trace formula’

O=[]28, aw- ﬁ b
a(k) = —, ack) =
j=1 k —k; j=1 ki’
we get
N N -
k—k; ki —k
alky) = Jim [ [ —2 > ——~ (65)
ki) k—k; — (k= k)(k - k)’
N 7 N -
_ ) k—k; ki — ky
a(k,) = lim ! 66
=l | 1= 2 i -y (©0
By using (64), we obtain
On the other hand, the relations (63) and (64) lead to
b; = b(k;) = —b*(el?j) = -b'(k;) = -bj. (68)

Now substituting (67) and (68) into (34), we obtain the symmetry reductions of the normalization
constants ¢; and ¢;,

i.e.,

(69)

2. Symmetry of the scattering data under the second symmetry relations
of the eigenfunctions

The symmetry relations of the eigenfunctions (62) lead to a symmetry of the scattering coeffi-
cients,

a(k) = a*(ek”),  a(k) =a'(ek*),  b(k) = eb*(ek").
In this case, if k; is a zero of a(k), €k; is a zero of a(k), too. Similarly, if k; is a zero of a(k), so is
.l of a(k) and the zeros k;, j = 1,...,I of a(k) should satisfy

(70)

eIE;T. Therefore the zeros k;,j = 1,...

kj = Gk;, ];j = E];;, (71)

which implies that in the case € = 1, k; and k ; are all real functions, and in the case € = —1, they
are all imaginary functions. Ablowitz considered such a kind of IST transform for the nonlocal
nonlinear Schrodinger equation (¢ = —1) through the left-right Riemann-Hilbert boundary value
problem.'> We are now in the step to compute the symmetry reductions of the normalization
constants ¢; and ¢;. The following analysis is similar to that in Ref. 12.

From the trace formula (65) and the first equation of (71), we obtain

Similarly, from the trace formula (66) and the second equation of (71), we obtain

Ay
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In order to compute the symmetry reductions of b; and b;, recall that k; is the roots of a(k) whereas
k; is the roots of a(k), in other words, a(k;) = 0, a(k;) = 0. Therefore, substituting k = k; into the
first equation of (31), and substituting k = k; into the second equation of (31), respectively, we
obtain

P(x,kj) = by (x,kj), $(x, kj) = bjh(x, k). (74)
On the other hand, we know from the symmetry relations of the eigenfunctions (62) that
Yi(x, kj) = ¢s(ex, €ky), Yo(x, kj) = —epi(ex, €k?). (75)
Thus
¢a(x,kj) = bjpa(x, kj) = —€b;d)(ex, k). (76)

From the first equation of (74), we know that

#1(x, k;) = bjgp(x, kj),
which implies

¢1(ex,ek;) = biyi(ex, ek;). a7
Then from the first equation of (75), we obtain
Yi(ex,ek;) = ¢o(x,kj). (78)
Substituting (78) into (77), and then substituting (77) into (76), we obtain
$a(x, kj) = bpa(x, k;) = —€b;bia(x, kj), (79)
and thus b; satisfies
—elb;* = 1, (80)
i.e.,
|bj|* = —e. (81)
(81) implies that € = —1, and the phase of b; is arbitrary. Thus this kind of symmetry reduction (62)
is only valid for the nonlocal case € = —1. A similar result holds for b;,
—elbil* =1,  |b; = -e.
In what follows, we only consider the case € = —1 and set
kp=inj.  kj=-ii;, (82)

where 7;,7; are all real functions of 7, and we have suppressed the variable. Now from the expres-
sion (34), we obtain

lejl? = Vlatkpl, — 1e;? = 1/lack))l, (83)

where d(k;) is expressed in (65), and a(ky) is expressed in (66).
Especially, for the case N = 1, from (65) and (66), we derive

a(ky) = 1/(ky = k), a(ky) = 1/(ky = ky), (84)
and substituting (82) into (84), we obtain
la(kn)| = la(kp)| = 1/(Iny + 7)) (85)

Moreover, substituting (85) into (83), we obtain

leil* = |e1)* = |m1 + 71l (86)

V. APPLICATIONS TO THE GP. AND THE GP-

In this section, we apply our results to the local GP, equation and the nonlocal GP_ equation
and present some explicit solutions for Equations (4) and (5).

Ay
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A. The scattering data of the n = 2 case

First, let us refine our discussion in the n = 2 case and compute the scattering data concretely.
From the expansion conditions (7) and (10), we obtain

- _2 -
kji: = fok;* + fikj + fa ki = fok;” + fik; + fa,
- - _2 -
Ao(k)) = gok;* + gik; + g2 Ao(k;) = gok; + g1k; + .
In addition, it is easy to get from (42) that

1 _ 1 _
a(k;) = > f1+kjfo. ak;) = 51+ kifo
Thus from Theorem 1, we obtain
1 2
¢ = (5 fr+ fokj = ok = g1k; = &2)e, (87)
1 - _ _
it = (5 Fi+ fokj + gok)” + @1k, + )¢;. (88)

Equations (87), (88), and (89) determine the scattering data k;,k; and c;,¢;. Especially, for the GP
equation, since fj = 0, we obtain

t
kj = (/ fre It + ) )eli N,
0

t
- _rt t
4= (/o o BNt dr + el N, (89)
¢j= wzjefo“% fi=gok;*~g1kj=g2)d1

t/1 o -2 -
= 5 f1+8ok; +g1kj+go)dt
Cj w4jef()(2 f1+8o j T81KjT82 ,

where w;;, i = 1,2,3,4,j = 1,..., N, are arbitrary complex numbers.

B. Solutions of the local GP, equation

Setting € = +1, substituting (22) and (23) into (89), and denoting

r= / tydt, b= (ln §) 2y, M= (90)
0 fl, S
Vi

L= | —dt, 91

/ u¥ ©On
we obtain
1 _ 1

kj([)ZM(—EL-FOJ]j), kj(t):M(—§L+w3j), (92)
ci(t) = wy; /%e% lo?50de g (1) = if MAL = 2wy,)* — iVo — 2, (93)
i(t) = wy; /%% [ P50d G (1) = —i f ML — 2 w3))* +iVp— 2. (94)

Hereafter, we suppress the variable ¢ for convenience. Since € = +1, i.e., r(x,t) = —g*(x,t), the
second symmetry constraint (62) of the eigenfunctions is not valid, and we use the first symmetry
constraint of eigenfunctions (61) such that the eigenvalues satisfy (64), and the norming constants
satisfy (69).

RIGHTS LI L)
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1. 1-soliton solution

Setl =1 =1, wi; = k) + iky, Where &, k» are arbitrary real constants. Substituting it into k,(¢)
in (92), we then see that k;(¢) is obtained from the reduction relation (64), i.e., k(¢) = kj(t). Sim-
ilarly, set wy = ¢ + icp, where ¢y, ¢, are arbitrary real constants, too. Substituting it into c¢;(¢) in
(93), we see that ¢(t) is obtained from the relation (69). Here the two choices of ¢(¢) generate the
same solution. Then substituting the scattering data k(z), c1(z), ki(¢), and &,(¢) into (37), we obtain
the solutions ¢(x,?) and r(x,?). Moreover, by using the transformation (26), we obtain the 1-soliton
solution of the G P, equation (4),

) EPRY ftp1+iv1dt—2(K2+iK1)Mx
_b 2 1 €Jo
0i(x,t) = -2V2 ]—CCI(MLX arX )(CI <) , (95)
\J 8

2

ci2rer? | [fFpudi-2xMx

1 + T eJo M1 2
2

where I', b, M, L are defined in (90) and (91), and

w=b+4f My (L - 2k1), vi = fM4xs* = (L - 260)%] + V. (96)

2. 2-soliton solution

Similarly, set [ = [ = 2, w1 = k| + ika,wy = ¢| + icy, and substitute them into k(z) and c;(z).
Let wiy = k3 +ik4, wyy = 3 + ic4 be another two arbitrary complex numbers and substitute them
into k»(7) and c,(¢). Then from (38) and the transformation (26), we obtain the 2-soliton solution of
the G P, equation (4),

G(x,t)’
where I', b, M, L are defined in (90) and (91), uy, v, are defined in (96), and

F()C,l) — (Cl _ iCz)zef py+ividt—=2M (ko+ik|)x + ((,’3 _ i(,‘4)26f Ho+ivadt—2M (k4+ik3)x
X; 2
4 2 2 :
o {[(cr? + e2)(es —ica)/(kax )]

Ox(x,1) = _2\/5\/§ei(MLx—4l}x2) F(x,1t) -

ef 21+ pp+ivodt —2 M (k4+ik3+2k2)x
. 2 i _ i
+ [(C32 + 6'42)(6‘1 _ 16‘2)/(K4/\/2)] ef 2up+p+ivide 2M(K2+1K]+2K4)x} .

1
G(x,t) =1+ o {[(c12+ 622)/K2]2€f 2pidi—4kaMx | [(632 n C42)//<4]2ef 2undt—4Kk4M x

—[2(er +ico)(c3 —ica)/ x 1]zef partvat =i M
—[2(c3 +ics)(cr = ic2)/ )(2]2ef”1+ivl+#2_iv2dr+2iX2Mx

2 _
+[(er + e22)(e3® + ca®) x3 xal (kaka 1 y2 M) e 2Hr+2madt 4<K2+K4)MX} ,

with
X1 =K1 +iky — K3 +1iKy, X2 = K3 +1kg4 — K| + 1Ky, (98)
X3 = K| +1ky — K3 —1Kg4, X4 = K3 —1Kkg — K1 + 1K2, 99)

and
o =b+4f Mk, (L - 2x3), va = fM*drs* = (L - 263)"] + V. (100)

C. Solutions of the nonlocal GP_ equation

In this case, since € = —1, i.e., r(x,1) = —¢*(—x,t), the two symmetry constraints of eigenfunc-
tions (61) and (62) are both valid. The first symmetry constraint yields eigenvalues on the whole
axis, and the second symmetry constraint yields eigenvalues on the imaginary axis. Thus they result
in different kinds of solutions, and we discuss them separately.

Ay
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First, let us compute the scattering data k;(¢) and c;(z). Setting € = —1, substituting (22) and
(23) into (89), and denoting

L= %d;, (101)
we obtain
b= MaL+wy). k()= MC2L+ o), (102)
ci(t) = ng\/ge% Ioeid o) = if MPGL - 2w1;)? — iV — 2y, (103)
i(t) = w4j\/§e% Iy @jar 0,(t) = —if M*(iL - 2ws,)* +iVp — 2y, (104)

where I', b, M are defined in (90).

1. Solutions with eigenvalues on the whole axes

Under the first symmetry constraint (61), the eigenvalues satisfy (71), and the norming con-
stants satisfy (69).

a. The case of n = 1 solution. Setting [ = [ = 1, wy; = k| + ik, and substituting it into k(¢) in
(102), then we see that k;(¢) is obtained from the reduction relation (64), i.e., ki(¢) = —ki(t). Simi-
larly, setting w,; = ¢ + icy, and substituting it into ¢(¢) in (103), we see that ¢,(¢) is obtained from
the relation (69). Here the two choices of ¢i(¢) generate the same solution, too. Then substituting
the scattering data ky(¢),ci(t),k,(¢), and &,(¢) into (37), we obtain the solutions g(x,t) and r(x,?).
Finally, from the transformation (26), we obtain the solution of the G P_ equation (5),

B . b2 e V2ef A+ di+2(kp+ik )M x
Q](X,t) _ _2\/5 _efMfovx (Cl icy)e —. (105)
V 8

1 - <6‘212+IC\/Izzefp1dr+2iK1Mx)
K1

where I', b, M are defined in (90), L is defined in (101), and

f1=b+4fMu (L -262), 71 = fM?((L - 262)% = 4i%) + Vo (106)

b. The case of n =2 solution. Set | =1 =2, wy| = k1 + iks,wz1 = ¢ + icy, and substitute them
into k1(z) and ¢(t), and let wiz = k3 + ik4, w2y = 3 + icy, and substitute them into k»(¢) and c,(¢).
Then from (38), we obtain the solution of the G P_ equation (5),

Or(rot) = —2V3, | LeMEx-t EORD). (107)
8 G(x,1)
where T, b, M are defined in (90), L is defined in (101), fi1, v are defined in (106), and
F(x,t) — (Cl _ icz)zef [ +iv dt+2M (ky+ik ) x + (C3 _ ic4)zef [fo+ivodt+2M (kg+ik3)x
2
_ % {[(612 + 622)(6‘3 _ iC4)/(K1/€1)]zef 2y +fip+ivod t+2 M (k4+ik3+2ik ) x

+ [(032 + C42)(C1 _ iC2)/(K3/€2)]zef 2ﬂ2+ﬁ1+i171dt+2M(K2+iK1+2iK3)x} ,
~ 1 _ . _ )
G()C,l) =1= YTYE {[(C12 + C22)/K1]26f 2 dt+4ik | M x + [(632 + C42)/K3]2€f 2firdt+4ik3M x

+[2(c1 +ie) (e — icy)/ o) AT M

+ [2(C3 + iC4)(C1 _ icz)/)zz]zef/]1+i\71+;22—i172dt+21/\72Mx

—[(er* + e)(es” + 642)X3X4/(K1K3/\?1/\?2M)]2ef 2ﬁ1+2ﬁ2d’+4i(K'+"3)Mx}

[l
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with
)?1=K1+iK2+K3—iK4, )22=K3+iK4+K1—iK2, (108)
X3, X4 are defined in (99), and
fio=b+4f M3 (L - 2x4), 7o = fM?((L - 2k4)* — 4K3%) + V. (109)
c. A special case: The solution of the focusing nonlocal nonlinear Schrodinger equation. To
compare our results with the one discussed in Ref. 12, here we specially give the expression of the
solution for the focusing nonlocal nonlinear Schrodinger equation (1) (with sign “+” ), which is a
special case of the nonlocal G P_ equation (5) under the condition,
fO)=-1, gt)=-2, Wn=0, Vi()=0, y(r)=0. (110)
Then the scattering data are reduced to

ki(?) = k1 +ika, ki(r) = —k1 + ik,

. _n; N2 _ . A . IEPRY
ci(t) = (c1 + icy) e AlrHie T &(t) = —i(cy — icy) Ak

where «1, k2, ¢, ¢ are arbitrary real constants. The solution (105) is reduced to

—8K12(C1 _ iC1)2 e21(/(1—il<2)(2/(]t—2i/<2t+)c)
2 . .

(C12 + 6‘22) e—4ik | (dikpr—x) _ 4K12

In Subsection V C 2, we compare the solution (111) with the one obtained from the second
symmetry constraint.

Q1(x,1) = (111)

2. Solutions with eigenvalues on the imaginary axes

For the second symmetry constraint (62), the eigenvalues satisfy (82), which is only on the
imaginary axes. While the norming constants satisfy (83). Setting [ = [ = 1, wy; = iky,w3; = —iky,
and substituting them into (102), we obtain

1. - 1.
ki(t) =iM (—EL + Kl) , ki(t) = —-iM (EL + K2) . (112)
On the other hand, noticing the denotation k() and k () in (82), we have

1. 1.
U]([)ZM(—§L+K1), ﬁ](t)ZM(§L+K2). (113)
Substituting (113) into (86), then
el = &1 = M(x) + «2). (114)

Thus we assume wy| = V&1 + k2271, w4 = VK1 + k22, and substituting them into (103) and (104),
we obtain

(1) = VETF Ry | Fe B B0 o) = M~ 2007 = Vo
, (115)
(1) = VRTF oy | T e B0, 50y = p(L 4 200 +

such that the condition (114) is satisfied. Now substituting (112), (115) into (37), together with the
transformation (26), we obtain the solution of the G P_ equation (5).

Ablowitz and Musslimani'® has considered the second symmetry constraint for the nonlocal
nonlinear Schrédinger equation (1), which is a special case of (5). To compare with Ref. 19, here
we just present a solution of the focusing nonlocal nonlinear Schrédinger equation (1). In this case,
under the condition (110), the scattering data read

ki(t) = ik, ki(t) = —ika,
. 2 : 2
c1(r) = Vi1 + kel K00, Ei(r) = V1 + kae (k21702
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The solution is given by

e—2K2X—4iK22l+2i92 (K1 + K2) (116)

Qi(x.1) =2 K 2K D420 +0,) 20 +k)x _ ]
Similar to the discussion in Ref. 19, if we set k; = k and 6, = —60; + 7, then ki) = kj(®),é(t) =
icj(¢), and the solution (116) is reduced to the solution of the classical local nonlinear Schrédinger
equation. But for the nonlocal G P_ equation (5), from (112), we failed to obtain such a result.

Furthermore, since the solution (116) involves eigenvalues defined only on the imaginary axis,
and the solution (111), eigenvalues defined on the whole axis, they are different. Moreover, they
both have singularities and are not the standard soliton solutions.

VL. SUMMARY

In this paper, a general hierarchy of nonisospectral AKNS integrable equations was constructed
in which the spectral parameter is determined by an ordinary differential equation with polynomial
nonlinearity. Such an AKNS hierarchy contains some new nonlocal integrable equations such as the
nonlocal KdV-like equation and nonlinear Schrédinger equation. Based on the spectral problem of
the general AKNS hierarchy, we presented a unified inverse scattering transformation for the local
and nonlocal nonautonomous Gross-Pitaevskii equations arising from soliton management in opti-
cal fibers and computed the inverse scattering solutions to the local GP, equation and the nonlocal
GP_ equation. Unlike the local GP, equation, we found that the nonlocal GP_ equation possesses
two different kinds of symmetry relations of the eigenfunctions and thus has two different kinds
of inverse scattering solutions. Our study added a supplement to the known results on nonlocal
equations, and we hope it will help understand the wave propagation governed by the nonlocal
nonautonomous Gross-Pitaevskii equation with P7 -symmetry self-induced potential.
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