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We present the inverse scattering transformation for a nonisospectral AKNS hier-
archy in which the spectral parameter is determined by an ordinary differen-
tial equation with polynomial nonlinearity, and thus, we give a unified treat-
ment for the local and nonlocal nonautonomous Gross-Pitaevskii equations which
possess the parity-time (PT ) symmetric invariance. We find that unlike the local
case, the PT -symmetry of the nonlocal Gross-Pitaevskii equation allows two
different choices of the symmetry relations of the eigenfunctions which guarantee
two different kinds of inverse scattering solutions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974772]

I. INTRODUCTION

The inverse scattering transformation (IST) is a powerful method to solve integrable nonlinear
evolution equations.1–5 It is heavily based on matrix spectral problems and can be applied to a
whole hierarchy of soliton equations. The so-called AKNS-ZS formalism of the IST method was
developed in two early seminal articles,6,7 which aim to deal with isospectral problems. Later, the
AKNS-ZS formalism was extended so that it can be used to deal with nonisospectral problems.8–11

Generally speaking, one needs to solve the Gel’fand-Levitan-Marchenko integral equation in per-
forming the inverse scattering procedure, and the inverse scattering problem can also be written as a
Riemann-Hilbert factorization problem.2

Recently, Ablowitz and Musslimani12 presented a nonlocal nonlinear Schrödinger (NLS)
equation,

iQt(x, t) = Qxx(x, t) ± 2Q(x, t)2Q∗(−x, t), (1)

where Q∗ denotes the complex conjugate of Q. Like the local NLS, Equation (1) shares the
PT -symmetry,13,14 i.e., it is invariant under the transformation x → −x, t → −t as well as the
conjugate transformation. In the case of classical optics, Equation (1) amounts to the invariance of
the so-called self-induced potential15 V (x, t) = Q(x, t)Q∗(−x, t) under the combined action of parity
and time reversal symmetry, and the nonlocality is referred to that the value of the potential V (x, t)
at x requires the information on Q(x, t) at x as well as at −x.16 The PT -symmetry breaking within
the realm of optics has been observed in experiments.17,18 In Refs. 12 and 19, the inverse scattering
transformation was developed for the nonlocal NLS Equation (1), a novel scheme called left-right
Riemann-Hilbert problem was proposed, and some new features were revealed due to the nonlocal-
ity and the PT -symmetry. In contrast with the standard NLS equation, the PT -symmetric nonlocal
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NLS model (1) has many different properties. For example, the focusing nonlocal NLS Equation (1)
(with sign “+” ) has both static bright and dark soliton solutions,16 which is different from the
standard NLS equation. For recent progress concerning with (1), one can refer to Refs. 20–24 and
the references therein.

Under the situation of nonautonomous soliton25–27 and soliton management,9,28,29 in this paper,
we consider the following nonautonomous Gross-Pitaevskii (GP) equation:

iQt(x, t) + f (x, t)Qxx(x, t) + g(x, t)Q(x, t)2Q∗(ϵ x, t) + V (x, t)Q(x, t) + iγ(x, t)Q(x, t) = 0, (2)

where ϵ = ±1. When ϵ = +1, the equation is local, and we denote it by (GP+); when ϵ = −1,
the equation is nonlocal, and we denote it by (GP−). In (2), f (x, t) and g(x, t) are the dispersion
and nonlinearity management parameters, respectively; V (x, t) denotes the external potential, and
γ(x, t), the dissipation (loss) (γ > 0) or gain (γ < 0). (GP+) appears in the realm of Bose-Einstein
condensates,30,31 nonlinear optics,32,33 and inhomogeneous Heisenberg spin chain,29,34,35 and (GP−)
is its nonlocal version with PT -symmetric self-induced potential.

It is known from Painlevé test27 that the integrability condition for GP+ is f (x, t) = f (t),
g(x, t) = g(t), γ(x, t) = γ(t), V (x, t) = V0(t) + V1(t)x + V2(t)x2, where V0(t) and V1(t) are arbitrary
real functions, f (t), g(t), γ(t), V2(t) are real functions satisfying the constrained relation

(4 f 2ggt − 2 f f tg2)γ − 4 f 2g2γ2 − 2 f 2g2γt − g2 f f t t + f 2ggt t − 2 f 2g2
t + f 2

t g
2 + f tg f gt

+ 4V2 f 3g2 = 0, (3)

and thus the integrable GP+model is

iQt(x, t) + f (t)Qxx(x, t) + g (t)Q(x, t)2Q∗ (x, t) + (V0 (t) + V1 (t) x + V2 (t) x2)Q (x, t)
+ iγ (t)Q (x, t) = 0. (4)

Similarly, by Painlevé test, we confirm that the integrability condition for the GP− equation is the
same as that of the GP+ equation (4), in addition to that the parameter V1(t) should be a pure
imaginary function and thus we replace V1(t) with iṼ1(t), where Ṽ1(t) is also a real function. Then the
integrable GP−model reads

iQt(x, t) + f (t)Qxx(x, t) + g (t)Q(x, t)2Q∗ (−x, t) + (V0 (t) + V2 (t) x2)Q (x, t)
+ i

�
Ṽ1(t)x + γ (t)�Q (x, t) = 0, (5)

where f (t), g(t), γ(t), V2(t) satisfy the constrained relation (3).
We remark that in a special case f (t) = −1, g(t) = −2,V0(t) = 0,V1(t) = 0,Ṽ1(t) = 0, (4) is

reduced to the classical focusing cubic nonlinear Schrödinger equation while (5) is reduced to the
focusing nonlocal nonlinear Schrödinger equation (1).

The main purpose of this paper is to establish the inverse scattering transformation for both
(4) and (5) in a uniform way. Different from the procedure in Refs. 12 and 19, here we use the
Gel’fand-Levitan-Marchenko equation to carry out the method. We start from a novel nonisospec-
tral AKNS hierarchy in which the spectral parameter is determined by an ordinary differential
equation with polynomial nonlinearity, and then we investigate its inverse scattering transformation
reductions for both local and nonlocal equations. The new condition of our nonisospectral AKNS
hierarchy induces many novel integrable equations, and our result is valid for all the induced equa-
tions. Especially, we compute exact solutions for the reduced equations (4) and (5). We find that
for the GP+ equation, there is only one choice of the symmetry relations of the eigenfunctions, but
for the GP− equation, there are two different choices: one is similar to that in Ref. 19, and another
seems to be a new try. Thus for the GP− equation, we obtain two different solutions.

The paper is organized as follows: In Section II, we construct a nonisospectral AKNS hierarchy
in which the spectral parameter determined by an ordinary differential equation with polynomial
nonlinearity and present some reduced integrable equations. In Section III, we develop the inverse
scattering transformation for the above hierarchy. In Section IV, in order to construct solutions for
the local and nonlocal GP equation, we analyze the symmetry reductions of the inverse scattering
data. In Section V, we give some explicit solutions for (4) and (5). Finally in Section VI, we give a
brief summary.



013505-3 Zhang, Zhao, and Ma J. Math. Phys. 58, 013505 (2017)

II. THE NONISOSPECTRAL AKNS HIERARCHY

We start from the 2 × 2 linear eigenvalue problem

φx =Uφ, U = *
,

−ik q
r ik

+
-
, (6)

where q = q(x, t) and r = r(x, t) are potentials, and φ = φ(x, t, k(t)) is a two component column vec-
tor representing the eigenfunction (we have suppressed the variables for convenience). We consider
the time-dependent case of the spectral parameter k = k(t),

kt =
n
j=0

f jkn− j, (7)

where f j = f j(t) are smooth complex functions of t. The time evolution of the eigenfunction reads

φt = VΦ, V = *
,

A B
C −A

+
-
, (8)

where A,B,C are polynomials of the spectral parameter k, which will be determined later. The zero
curvature equation of the systems (6) and (8), i.e., Ut − Vx + [U,V ] = 0, yields




A = ∂−1(qC − rB) − iktx + A0,

qt = Bx + 2ikB + 2qA,
rt = Cx − 2ikC − 2r A,

(9)

where A0 = A0(t) is the integration constant of A with respect to x, and we assume

A0 =

n
j=0

gjkn− j, (10)

where gj = gj(t) are smooth complex functions of t. Moreover, set

B =
n
j=1

bjkn− j, C =
n
j=1

cjkn− j, n = 1,2, . . . , (11)

where bj = bj(x, t),cj = cj(x, t), j = 1, . . . ,n, will be determined later. Substituting (7), (10), and
(11) into (9), comparing the coefficients of k, and denoting

Fj = F ( f j, gj) = �
x f j + igj

� *
,

q
r
+
-
, j = 0, . . . n, (12)

we derive the recursion relations

*
,

b1

c1

+
-
= F0, (13)

*
,

bj

cj

+
-
= L *

,

bj−1

cj−1

+
-
+ Fj−1 =

j−1
l=0

LlFj−1−l, j = 2, . . . ,n, (14)

*
,

−q
r
+
-t
= 2iL *

,

bn

cn
+
-
+ 2iFn = 2i

n
l=0

LlFn−l, n = 1,2, . . . , (15)

where the operator L is defined by

L =
*..
,

i
2
∂ − iq∂−1r iq∂−1q

−ir∂−1r − i
2
∂ + ir∂−1q

+//
-
.
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Substituting (14) into (11), we obtain

*
,

B
C
+
-
=

n
j=1

j−1
l=0

LlFj−1−lkn− j, n = 1,2, . . . . (16)

(15) gives a nonisospectral AKNS hierarchy, from which we obtain some novel integrable equa-
tions. The first few sets are as follows:
n = 1:




qt = f0(qx)x + ig0qx − 2i f1qx + 2g1q,
rt = f0(r x)x + ig0rx + 2i f1r x − 2g1r,

(17)

n = 2:




qt = i f0ζ1 − g0ξ1 + f1(qx)x + ig1qx − 2i f2qx + 2g2q,
rt = −i f0ζ̃1 + g0ξ̃1 + f1(r x)x + ig1rx + 2i f2r x − 2g2r,

(18)

where

ζ1 =
1
2

qxxx − q2r x − q


qrdx + qx, ξ1 =
1
2

qxx − q2r,

ζ̃1 =
1
2

rxxx − r2qx − r


qrdx + rx, ξ̃1 =
1
2

rxx − r2q,

n = 3:




qt = f0ζ2 + ig0ξ2 + i f1ζ1 − g1ξ1 + f2(qx)x + ig2qx − 2i f3qx + 2g3q,
rt = f0ζ̃2 + ig0ξ̃2 − i f1ζ̃1 + g1ξ̃1 + f2(r x)x + ig2rx + 2i f3r x − 2g3r,

(19)

where

ζ2 =
1
2

q


(qxxr − qrxx)xdx + 2q


qxrdx +
1
2

qx


qrdx − 3

4
qxx + (1

2
q2rx + qrqx

−1
4

qxxx)x,

ξ2 =
1
2

q


(qxxr − qrxx)xdx + qrqx +
1
2

q2rx −
1
4

qxxx,

ζ̃2 =
1
2

r


(qrxx − qxxr)xdx − 2r


qxrdx +
1
2

rx


qrdx − 3

4
rxx + (1

2
r2qx + qrrx

−1
4

rxxx)x + 2r2q,

ξ̃2 =
1
2

r


(qrxx − qxxr)xdx + qrrx +
1
2

r2qx −
1
4

rxxx.

We consider the reduction r(x, t) = −q∗(ϵ x, t), and in order to make the two equations of (15)
compatible under this reduction, one has to impose extra symmetry conditions on the parameters f j
and gj, j = 0, . . . ,n. Precisely, substituting r(x, t) = −q∗(ϵ x, t) into (15), we have the following two
cases.

(i) When ϵ = +1, f j and gj should satisfy

f ∗j = f j, g∗j = −gj, j = 0, . . . ,n, (20)

which implies that f j are real functions of t and gj are imaginary functions of t. In this case, the
system (15) induces local integrable equations.

(ii) When ϵ = −1, f j and gj should satisfy




f ∗n−2k(t) = − fn−2k(t), f ∗n−(2k+1)(t) = fn−(2k+1)(t),
g∗n−2k(t) = −gn−2k(t), g∗n−(2k+1)(t) = gn−(2k+1)(t), k = 0, . . . , [n

2
], (21)
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where [.] denotes the greatest integer function. (21) implies that fk and gk are imaginary functions
when n and k have the same parity, and real functions when n and k have a different parity. In this
case, the system (15) induces nonlocal integrable equations.

Especially, for the case n = 2, set

f0 = 0, f1 = (ln g

f
)t − 2γ, g0 = −2i f , g1 = 0, g2 =

1
2

iV0, (22)

f2 =




−1
2

V1, when ϵ = 1,

−1
2

iṼ1, when ϵ = −1,
(23)

where we have omitted the variable t for convenience. When ϵ = +1, (18) is reduced to




iqt + f qxx − 2 f q2r − ix((ln g

f
)t − 2γ)qx + V0q + i(V1x − (ln g

f
)t + 2γ)q = 0,

irt − f rxx + 2 f r2q − ix((ln g

f
)t − 2γ)rx − V0r − i(V1x + (ln g

f
)t − 2γ)r = 0.

(24)

When ϵ = −1, (18) is reduced to




iqt + f qxx − 2 f q2r − ix((ln g

f
)t − 2γ)qx + (V0 − Ṽ1x)q − i((ln g

f
)t − 2γ)q = 0,

irt − f rxx + 2 f r2q − ix((ln g

f
)t − 2γ)rx − (V0 − Ṽ1x)r − i((ln g

f
)t − 2γ)r = 0.

(25)

With the transformation

q(x, t) = 1
√

2


g

f
Q (x, t) e

i
2 θ(t)x2

, r(x, t) = −q∗(ϵ x, t), (26)

where

θ(t) = 1
2 f

(ln g

f
)t − γf ,

(24) is transformed to (4) and (25) is transformed to (5).
For the case n = 3, upon setting




f0 = 0, f1 = 0, f2 = 0, f3 = 0,
g0 = 4i, g1 = 0, g2 = 0, g3 = 0,

(19) is reduced to




qt − qxxx + 6qrqx = 0,
rt − rxxx + 6qrrx = 0.

(27)

When we taking r(x, t) = −1, (27) is the standard KdV equation, and when we taking r(x, t) =
q(−x, t), (27) is reduced to a nonlocal KdV-like equation,

qt(x, t) − qxxx(x, t) + 6q(x, t)q(−x, t)qx(x, t) = 0.

III. THE INVERSE SCATTERING TRANSFORMATION

In this section, we establish the IST for the nonisospectral AKNS hierarchy (15) with the
spectral parameter satisfying (7), which gives a generalization to that in Ref. 11, where the spectral
parameter is given by ηt = 1

2 (2η)n. In addition, by using the Gel’fand-Levitan-Marchenko equation,
we obtain the potentials q(x, t) and r(x, t) for the local and nonlocal equations in a unified way, and
we find that the PT -symmetry of the nonlinear evolution equations can be directly used to obtain
the potentials q(x, t) and r(x, t).
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A. Direct scattering problem

First, let us define the scattering data of the spectral problems (6) and (8). We assume that
q(x, t) and r(x, t) decay rapidly at infinity, and then the scattering problem (6) is a homogeneous
equation and has four eigenfunctions which satisfy the following boundary conditions:

lim
x→−∞

φ(x, k) = *
,

1
0
+
-

e−ik x, lim
x→−∞

φ̄(x, k) = *
,

0
1
+
-

eik x, (28)

lim
x→+∞

ψ(x, k) = *
,

0
1
+
-

eik x, lim
x→+∞

ψ̄(x, k) = *
,

1
0
+
-

e−ik x, (29)

where φ(x, k), φ̄(x, k),ψ(x, k), ψ̄(x, k) are all two component column vectors, and denoted by

φ(x, k) = (φ1(x, k), φ2(x, k))T , φ̄(x, k) = (φ̄1(x, k), φ̄2(x, k))T ,
ψ(x, k) = (ψ1(x, k),ψ2(x, k))T , ψ̄(x, k) = (ψ̄1(x, k), ψ̄2(x, k))T .

In addition, φ(x, k) and ψ(x, k) are analytic for k on ℑk > 0 (ℑ denoting the imaginary part of a
complex number or function), and φ̄(x, k) and ψ̄(x, k) are analytic for k on ℑk < 0.2,11 Moreover, by
using (6), a simple computation shows that

∂

∂x
W (φ(x, k), φ̄(x, k)) = 0, (30)

where the Wronskian is W (φ, φ̄) = φ1φ̄2 − φ2φ̄1. Thus φ and φ̄ are linearly independent for all k
satisfying a(k) , 0. Similarly, the solutions ψ and ψ̄ are linearly independent for all k satisfying
b(k) , 0. Additionally, since (6) is a second order ordinary differential equation, the two bases
{φ, φ̄} and {ψ,ψ̄} are linearly dependent and one can express one set in terms of the other,




φ(x, k) = a(k)ψ̄(x, k) + b(k)ψ(x, k),
φ̄(x, k) = ā(k)ψ(x, k) + b̄(k)ψ̄(x, k), (31)

where a(k),b(k), ā(k), b̄(k) are scattering coefficients. If we denote Φ(x, k) = (φ(x, k), φ̄(x, k))T ,
Ψ(x, k) = (ψ̄(x, k),ψ(x, k))T , (31) can be rewritten as

Φ(x, k) = S(k)Ψ(x, k), S(k) = *
,

a(k) b(k)
b̄(k) ā(k)

+
-
. (32)

From (32), we obtain the scattering matrix S(k) = Ψ(x, k)−1Φ(x, k), i.e.,




a(k) = W (φ(x, k),ψ(x, k)), ā(k) = W (ψ̄(x, k), φ̄(x, k)),
b(k) = W (ψ̄(x, k), φ(x, k)), b̄(k) = W (φ̄(x, k),ψ(x, k)). (33)

Now from the analyticity properties of the eigenfunctions, we know that a(k) is analytic in the
upper half-complex k plane while ā(k) is analytic in the lower half-complex k plane.2 b(k) and b̄(k)
cannot be extended off the real k axis. Furthermore, a(k) and ā(k) have a finite number of single
roots in their own half-k-plane, denoted by k j( j = 1,2, . . . , l) and k̄ j( j = 1,2, . . . , l̄), respectively. In
addition, det S(k) = 1, i.e.,

a(k)ā(k) − b(k)b̄(k) = 1.

Furthermore, denoting bj = b(k j), b̄j = b̄(k̄ j), by the standard procedure,5,11 we can prove that there
exist constants cj and c̄j satisfying

2
 ∞

−∞
cj

2ψ1(x, k j)ψ2(x, k j)dx = 1, 2
 ∞

−∞
c̄j

2ψ̄1(x, k̄ j)ψ̄2(x, k̄ j)dx = 1,

where

cj
2 = ibj/ȧ(k j), c̄j

2 = −ib̄j/ ˙̄a(k̄ j). (34)

cj and c̄j are named the normalization constants for the eigenfunctions ψ(x, k j) and ψ̄(x, k̄ j), and
cjψ(x, k j), c̄jψ̄(x, k̄ j) are the corresponding normalization eigenfunctions, respectively.
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Similar to Ref. 11, hereafter we call the set

S(k) = �
k(Imk = 0), R(k) = b(k)/a(k), R̄(k) = b̄(k)/ā(k);
k j(Imk j > 0), cj, j = 1,2, . . . , l,

k̄ j(Imk̄ j < 0), c̄j, j = 1,2, . . . , l̄
�

(35)

the scattering data of the spectral problem (6), where R(k) and R̄(k) are the reflection coefficients
corresponding to the continuous spectral k, while k j and k̄ j are discrete spectral parameters, with cj

and c̄j being norming constants.

B. The inverse scattering problem: Recovery of the potentials q(x ) and r (x )
The potentials and the scattering data have a one-to-one correspondence, that is to say,

{q(x,0),r(x,0)} → S(λ,0), {q(x, t),r(x, t)} → S(λ, t).
The direct scattering problem is to map the potentials into the scattering data. The scattering data
are determined by the eigenvalues and the behavior of eigenfunctions, and it is associated with
the spectral problem (6). Precisely, at time t = 0, for a given initial potential q(x,0), solving the
scattering problem (6) and deriving the corresponding eigenfunctions, then from (33) and (35),
we obtain the initial scattering data. The inverse scattering problem is to reconstruct the potentials
{q(x, t),r(x, t)} from the scattering data S(λ, t), which is the required solutions of the nonlinear
evolution equations. Let us recall how to construct exact solutions of the integrable equations by
virtue of the Gel’fand-Levitan-Marchenko integral equations. The following result can be proved by
an analogous argument to the one in Ref. 11.

Lemma 1. Given the scattering data (35) of the spectral problem (6), by using the Gel’fand-
Levitan-Marchenko integral equations, the nonisospectral AKNS hierarchy has the exact solutions,

q(x, t) = 2tr(W−1(x, t)Λ̄(x, t)Λ̄T(x, t)),
q(x, t)r(x, t) = −2

∂

∂x
tr
�
W−1(x, t)E(x, t) ∂

∂x
ET(x, t)�, (36)

where tr(A) denotes the trace of the matrix A, and

E(x, t) = � icj c̄j

k j − k̄ j

ei(k j−k̄ j)x�
l̄×l, W (x, t) = I + E(x, t)ET(x, t),

where I is an l̄ × l̄ unit matrix, k j, k̄ j,cj, c̄j are functions of t, and

Λ(x, t) = (c1eik1x,c2eik2x, . . . ,cleiklx)T , Λ̄(x, t) = (c̄1e−ik̄1x, c̄2e−ik̄2x, . . . , c̄l̄e
−ik̄ l̄x)T .

(i) When l = l̄ = 1, we have Λ(x, t) = c1eik1x and Λ̄(x, t) = c̄1e−ik̄1x, and thus, we obtain the
one-soliton solution of the spectral problem (6),

q(x, t) = 2c̄1
2

W (x, t)e−2ik̄1x, r(x, t) = 2c1
2

W (x, t)e2ik1x, (37)

where

W (x, t) = 1 +
c1

2c̄1
2

(k1 − k̄1)2
e2i(k1−k̄1)x.

(ii) When l = l̄ = 2, we have Λ(x, t) = (c1eik1x,c2eik2x) and Λ̄(x, t) = (c̄1e−ik̄1x, c̄2e−ik̄2x), and
thus, we obtain the two-soliton solution of the spectral problem (6),

q(x, t) = 2△1

det(W (x, t)) , r(x, t) = 2△2

det(W (x, t)) , (38)

where

△1 = c̄1
2e−2ik̄1x + c̄2

2e−2ik̄2x +


c1c̄2c̄1(k̄2 − k̄1)

(k1 − k̄1)(k1 − k̄2)
2

e2i(k1−k̄1−k̄2)x
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+


c̄1c2c̄2(k̄2 − k̄1)

(k2 − k̄1)(k2 − k̄2)
2

e2i(k2−k̄1−k̄2)x,

△2 = c1
2e2ik1x + c2

2e2ik2x +


c1c2c̄1(k2 − k1)

(k1 − k̄1)(k2 − k̄1)
2

e2i(k1+k2−k̄1)x

+


c1c2c̄2(k2 − k1)

(k1 − k̄2)(k2 − k̄2)
2

e2i(k1+k2−k̄2)x,

det(W (x, t)) = 1 +
(

c1c̄1

k1 − k̄1

)2

e2i(k1−k̄1)x +
(

c1c̄2

k1 − k̄2

)2

e2i(k1−k̄2)x

+

(
c2c̄1

k2 − k̄1

)2

e2i(k2−k̄1)x +
(

c2c̄2

k2 − k̄2

)2

e2i(k2−k̄2)x

+


c1c2c̄1c̄2(k2 − k1)(k̄2 − k̄1)

(k1 − k̄1)(k1 − k̄2)(k2 − k̄1)(k2 − k̄2)
2

e2i(k1+k2−k̄1−k̄2)x.

C. Time evolution of the scattering data

From the above discussion, in order to obtain the solutions {q(x, t),r(x, t)} of the nonlinear
evolution equations of the nonisospectral AKNS hierarchy, we need to solve the inverse scattering
problem. We are just in hand of a final step that is to determine the scattering data k j(t), k̄ j(t) and
cj(t), c̄j(t), and then we can obtain the potentials q(x, t) and r(x, t) from (36). In what follows, we
compute the time evolution of the scattering data (35), which is determined by the linear evolution
equation (8).

Recall that we have assumed that k j = k j(t)( j = 1,2, . . . , l) are the single roots of a(k), and
k̄ j = k̄ j(t)( j = 1,2, . . . , l̄) are the single roots of ā(k). In addition, the spectral parameter k(t) sat-
isfies (7), and thus from (7), we directly obtain the time evolution of the scattering data k j(t) and
k̄ j(t),

k j, t =

n
j=0

f jk j
n− j, k̄ j, t =

n
j=0

f j k̄ j
n− j

. (39)

The computation of the norming constants is a little complicated, but the procedure is standard. We
need the following lemma, which can be found in Ref. 2.

Lemma 2. Assume that φ(x, k) is a solution of (6), and the matrices U and V satisfy the zero
curvature condition Ut − Vx + [U,V ] = 0. Then

P(x, k) = φt(x, k) − Vφ(x, k)
is a solution of (6) as well.

Moreover, recall that the integration constant A0 satisfies (10), such that

A0(k j) =
n
j=0

gjk j
n− j, A0(k̄ j) =

n
j=0

gj k̄ j
n− j

. (40)

Then following the idea in Ref. 11, we have the following theorem.

Theorem 1. The time dependence of the discrete scattering data cj(t), c̄m(t), j = 1,2, . . . , l,m =
1,2, . . . , l̄, for the spectral problem (6) is given by

cj, t = (α(k j) − A0(k j))cj, c̄m, t = (ᾱ(k̄m) + A0(k̄m))c̄m, (41)

where A0(k j) and A0(k̄m) are defined in (40), and α(k j), ᾱ(k̄m) are defined by

α(k j) = 1
2

n
p=1

p−1
l=0

k j
n−p+l f p−1−l, ᾱ(k̄m) = 1

2

n
p=1

p−1
l=0

k̄m
n−p+l f p−1−l . (42)
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Proof. First, let us prove the first equation of (41). Taking k = k j, consider ψ(x, k j) as the
normalization eigenfunction cjψ(x, k j). From Lemma 2, we know that P(x, k j) = ψt(x, k j) −
Vψ(x, k j) is a solution of (6), too, where V is defined in (8). Such that P(x, k j) can be represented
linearly by ψ(x, k j) and χ(x, k j), i.e., there exist two constants α and β such that

ψt(x, k j) − Vψ(x, k j) = αψ(x, k j) + β χ(x, k j), (43)

where χ(x, k j) also satisfies (6) and is independent of ψ(x, k j). Due to the asymptotic condition
(29), when x → +∞, we obtain β = 0, and thus (43) is reduced to

ψt(x, k j) − Vψ(x, k j) = αψ(x, k j). (44)

On the other hand, since q(x, t) and r(x, t) decay rapidly at infinity, from (16), we obtain lim|x |→∞
B(x, t) = 0, lim|x |→∞C(x, t) = 0, and then from the first equation of (9), we get lim|x |→∞ A(x, t) =
Ā(k) = −iktx + A0. Summarizing these results, we have

lim
|x |→∞

V (x, t) = *
,

Ā(k) 0
0 −Ā(k)

+
-
. (45)

Moreover, from (29), we obtain

lim
x→+∞

ψ(x, k j) = cjeik jx *
,

0
1
+
-
. (46)

Taking x → +∞ and substituting (45) and (46) into (44), we have

(cj, t + ik j, tcjx)eik jx *
,

0
1
+
-
+ cj Ā(k j)eik jx *

,

0
1
+
-
= αcjeik jx *

,

0
1
+
-
,

and noting that Ā(k j) = −ik j, tx + A0(k j), we thus have

cj, t = (α − A0(k j))cj .

In what follows, we compute the constant α. Left-multiplying (44) by (ψ2(x, k j),ψ1(x, k j)) yields

d
dt
(ψ1(x, k j)ψ2(x, k j)) − (Cψ1(x, k j)2 + Bψ2(x, k j)2) = 2αψ1(x, k j)ψ2(x, k j). (47)

Integrating (47) with respect to x from −∞ to +∞, and using (34), we obtain

α = −
 +∞

−∞
(Cψ1(x, k j)2 + Bψ2(x, k j)2)dx. (48)

In the following, we suppress the variables x and k j in ψ(x, k j) for convenience, and define an inner
product

⟨θ, ξ⟩ =
 +∞

−∞
θξdx =

 +∞

−∞
Bψ2

2 + Cψ1
2dx, θ = (ψ2

2,ψ1
2), ξ = (B,C)T ,

and then (48) is rewritten as

α = −⟨θ, ξ⟩.
By using (16), we obtain

α = −
n

p=1

p−1
l=0

⟨θ,LlFp−1−l⟩kn−p
j = −

n
p=1

p−1
l=0

⟨((L∗)lθT)T ,Fp−1−l⟩kn−p
j , (49)

where L∗ is the adjoint operator of L, which satisfies

⟨θ,LFp⟩ = ⟨(L∗θT)T ,Fp⟩. (50)

The left hand side of (50) is computed as follows:

⟨θ,LFp⟩ = ⟨θ, i
2
� f p(qx)x + igpqx

− f p(r x)x − igprx

�⟩
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=
i
2

f p

 ∞

−∞
((qx)xψ2

2 − (r x)xψ1
2)dx − 1

2
gp

 ∞

−∞
(qxψ

2
2 − rxψ2

1)dx

= i f p

 ∞

−∞
x(rψ1ψ1x − qψ2ψ2x)dx − gp

 ∞

−∞
(rψ1ψ1x − qψ2ψ2x)dx

= f pk j

 ∞

−∞
x(qψ2

2 + rψ1
2)dx + igpk j

 ∞

−∞
(ψ1ψ2x + ψ2ψ1x)dx

= f pk j

 ∞

−∞
x(qψ2

2 + rψ1
2)dx, (51)

where we have used the fact,

rψ1ψ1x − qψ2ψ2x = −ik j

�
qψ2

2 + rψ1
2� = −ik j (ψ1ψ2x + ψ2ψ1x) , (52)

which is computed from (6). On the other hand, a simple computation shows that

⟨θ,Fp⟩ = f p

 ∞

−∞
x(qψ2

2 + rψ1
2)dx + igp

 ∞

−∞
(qψ2

2 + rψ1
2)dx = f p

 ∞

−∞
x(qψ2

2 + rψ1
2)dx. (53)

Comparing (51) and (53), we obtain

⟨θ,LFp⟩ = ⟨k jθ,Fp⟩,
and then from (50), we have

L∗θT = k jθ
T . (54)

By using (34) and (53), we get

⟨θ,Fp⟩ = f p

 ∞

−∞
x(qψ2

2 + rψ1
2)dx = f p

 ∞

−∞
x(ψ1ψ2x + ψ2ψ1x)dx = −1

2
f p. (55)

Then from (49), (54), and (55), we obtain

α = −
n

p=1

p−1
l=0

⟨k l
jθ,Fp−1−l⟩kn−p

j =
1
2

n
p=1

p−1
l=0

kn−p+l
j f p−1−l .

Similarly, to prove the second equation of (41), taking k = k̄m, we consider ψ̄(x, k̄m) as the
normalization eigenfunction c̄mψ̄(x, k̄m) of (6). From Lemma 2, P̄(x, k̄m) = ψ̄t(x, k̄m) − V ψ̄(x, k̄m)
is a solution of (6), and it can be represented linearly by ψ̄(x, k̄m) and χ̄(x, k̄m), i.e., there exist two
constants ᾱ and β̄ such that

ψ̄t(x, k̄m) − V ψ̄(x, k̄m) = ᾱψ̄(x, k̄m) + β̄ χ̄(x, k̄m), (56)

where χ̄(x, k̄m) also satisfies (6) and is independent of ψ̄(x, k̄m). When x → +∞, from the asymp-
totic condition (29), we obtain β̄ = 0 such that (56) is reduced to

ψ̄t(x, k̄m) − V ψ̄(x, k̄m) = ᾱψ̄(x, k̄m). (57)

On the other hand, from (29), we obtain

lim
x→+∞

ψ̄(x, k̄m) = c̄me−ik̄mx *
,

1
0
+
-
, (58)

Taking x → +∞ and substituting (45) and (58) into (57), we derive

(c̄m, t − ik̄m, t c̄mx)e−ik̄mx *
,

1
0
+
-
− c̄m Ā(k̄m)e−ik̄mx *

,

1
0
+
-
= ᾱc̄me−ik̄mx *

,

1
0
+
-
,

where Ā(k̄m) = −ik̄m, tx + A0(k̄m). Finally, we obtain

c̄m, t = (ᾱ + A0(k̄m))c̄m.
The constant ᾱ is computed analogously to α. �
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Furthermore, by using Lemma 2, after a standard argument, we can prove the time evolution of
the continuous scattering data.

Theorem 2. The time dependence of the continuous scattering data R(k) = b(k)/a(k), R̄(k) =
b̄(k)/ā(k) for the spectral problem (6) is given by

at = 0, bt = −2A0(k)b, āt = 0, b̄t = 2A0(k)b̄, (59)

where A0(k) is defined in (10). Moreover, the time dependence of the reflection coefficients reads

R(k, t) = R(k,0)e−2
 t

0 A0(k)dt, R̄(k, t) = R̄(k,0)e2
 t

0 A0(k)dt, (60)

where R(k,0) = b(k,0)/a(k,0), R̄(k,0) = b̄(k,0)/ā(k,0).

IV. LOCAL AND NONLOCAL REDUCTIONS

In this section, we consider the reductions of the inverse scattering transformation of the AKNS
hierarchy (15) under the conditions (20) and (21), which induce local and nonlocal integrable
equations, respectively. The symmetry reduction r(x, t) = −q∗(ϵ x, t), ϵ = ±1 results in important
symmetry relations of the eigenfunctions and thus imposes different symmetries in the scattering
data, which leads to different solutions. We discuss it in detail as follows.

A. Symmetry of the eigenfunctions

Let χ(x, k) = (χ1(x, k), χ2(x, k))T be a solution of system (6) with symmetry reduction r(x, t) =
−q∗(ϵ x, t), ϵ = ±1. Then

�
χ∗2(ϵ x, ϵk∗),−ϵ χ∗1(ϵ x, ϵk∗)� also satisfies the scattering problem (6) such

that we obtain important symmetry relations of the eigenfunctions,

(i) ψ̄(x, k) = *
,

ψ∗2(ϵ x, ϵk∗)
−ϵψ∗1(ϵ x, ϵk∗)

+
-
, φ̄(x, k) = *

,

−ϵφ∗2(ϵ x, ϵk∗)
φ∗1(ϵ x, ϵk∗)

+
-

(61)

or

(ii) ψ(x, k) = *
,

φ∗2(ϵ x, ϵk∗)
−ϵφ∗1(ϵ x, ϵk∗)

+
-
, ψ̄(x, k) = *

,

−ϵ φ̄∗2(ϵ x, ϵk∗)
φ̄∗1(ϵ x, ϵk∗)

+
-
, (62)

where the eigenfunctions φ(x, k) and φ̄(x, k) satisfy the boundary conditions (28), and ψ(x, k) and
ψ̄(x, k) satisfy the boundary conditions (29). We mention that here we have two kinds of choices of
the symmetry relations of the eigenfunctions. In the case of ϵ = −1, the first choice is a new try and
the second choice is similar to that in Ref. 19. In the case of ϵ = 1, the first choice is the classical
one but the second choice does not work.

B. Symmetry of the scattering data

From (30), we know that the Wronskian representations (33) of the scattering data do not
depend on x. Now from (33) and the symmetry relations of the eigenfunctions (61) and (62), we
derive symmetry relations of the scattering data. We discuss the two cases (61) and (62) separately.

1. Symmetry of the scattering data under the first symmetry relations
of the eigenfunctions

First, let us consider the symmetry relation (61). From the representation (33) and the condition
(61), we obtain a symmetry of the scattering coefficients,

ā(k) = ϵa∗(ϵk∗), b̄(k) = −b∗(ϵk∗). (63)
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In this case, if k j is a zero of a(k), ϵk∗j is a zero of ā(k) such that the roots of a(k) and ā(k) appear in
pairs, l = l̄, and

k̄ j = ϵk∗j . (64)

Thus the spectral parameters k j and k̄ j are both in the whole axis and satisfy (64). In order to
obtain the symmetry reductions of the normalization constants cj and c̄j, recalling (34), we need to
compute ȧ(k j) and ˙̄a(k̄ j). In fact, for a general N eigenvalues k j, k̄ j, j = 1,2, . . . ,N , where we have
set l = l̄ = N , from the trace formula3

a(k) =
N
j=1

k − k j

k − k̄ j

, ā(k) =
N
j=1

k − k̄ j

k − k j
,

we get

ȧ(kn) = lim
k→ kn

N
j=1

k − k j

k − k̄ j

N
l=1

kl − k̄l
(k − kl)(k − k̄l)

, (65)

˙̄a(k̄n) = lim
k→ k̄n

N
j=1

k − k̄ j

k − k j

N
l=1

k̄l − kl
(k − kl)(k − k̄l)

. (66)

By using (64), we obtain

˙̄a(k̄ j) = ϵ ȧ∗(k j). (67)

On the other hand, the relations (63) and (64) lead to

b̄j = b̄(k̄ j) = −b∗(ϵ k̄∗j) = −b∗(k j) = −b∗j . (68)

Now substituting (67) and (68) into (34), we obtain the symmetry reductions of the normalization
constants cj and c̄j,

c̄j
2 = −c∗2j ,

i.e.,

c̄j = ±ic∗j . (69)

2. Symmetry of the scattering data under the second symmetry relations
of the eigenfunctions

The symmetry relations of the eigenfunctions (62) lead to a symmetry of the scattering coeffi-
cients,

a(k) = a∗(ϵk∗), ā(k) = ā∗(ϵk∗), b̄(k) = ϵb∗(ϵk∗). (70)

In this case, if k j is a zero of a(k), ϵk∗j is a zero of a(k), too. Similarly, if k̄ j is a zero of ā(k), so is
ϵ k̄∗j . Therefore the zeros k j, j = 1, . . . , l of a(k) and the zeros k̄ j, j = 1, . . . , l̄ of ā(k) should satisfy

k j = ϵk∗j , k̄ j = ϵ k̄∗j , (71)

which implies that in the case ϵ = 1, k j and k̄ j are all real functions, and in the case ϵ = −1, they
are all imaginary functions. Ablowitz considered such a kind of IST transform for the nonlocal
nonlinear Schrödinger equation (ϵ = −1) through the left-right Riemann-Hilbert boundary value
problem.12 We are now in the step to compute the symmetry reductions of the normalization
constants cj and c̄j. The following analysis is similar to that in Ref. 12.

From the trace formula (65) and the first equation of (71), we obtain

ȧ(k j) = ϵ ȧ∗(k j). (72)

Similarly, from the trace formula (66) and the second equation of (71), we obtain

˙̄a(k̄ j) = ϵ ˙̄a∗(k̄ j). (73)
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In order to compute the symmetry reductions of bj and b̄j, recall that k j is the roots of a(k) whereas
k̄ j is the roots of ā(k), in other words, a(k j) = 0, ā(k̄ j) = 0. Therefore, substituting k = k j into the
first equation of (31), and substituting k = k̄ j into the second equation of (31), respectively, we
obtain

φ(x, k j) = bjψ(x, k j), φ̄(x, k̄ j) = b̄jψ̄(x, k̄ j). (74)

On the other hand, we know from the symmetry relations of the eigenfunctions (62) that

ψ1(x, k j) = φ∗2(ϵ x, ϵk∗j), ψ2(x, k j) = −ϵφ∗1(ϵ x, ϵk∗j). (75)

Thus

φ2(x, k j) = bjψ2(x, k j) = −ϵbjφ
∗
1(ϵ x, ϵk∗j). (76)

From the first equation of (74), we know that

φ1(x, k j) = bjψ1(x, k j),
which implies

φ∗1(ϵ x, ϵk∗j) = b∗jψ
∗
1(ϵ x, ϵk∗j). (77)

Then from the first equation of (75), we obtain

ψ∗1(ϵ x, ϵk∗j) = φ2(x, k j). (78)

Substituting (78) into (77), and then substituting (77) into (76), we obtain

φ2(x, k j) = bjψ2(x, k j) = −ϵbjb∗jφ2(x, k j), (79)

and thus bj satisfies

−ϵ |bj |2 = 1, (80)

i.e.,

|bj |2 = −ϵ . (81)

(81) implies that ϵ = −1, and the phase of bj is arbitrary. Thus this kind of symmetry reduction (62)
is only valid for the nonlocal case ϵ = −1. A similar result holds for b̄j,

−ϵ |b̄j |2 = 1, |b̄j |2 = −ϵ .
In what follows, we only consider the case ϵ = −1 and set

k j = iη j, k̄ j = −iη̄ j, (82)

where η j, η̄ j are all real functions of t, and we have suppressed the variable. Now from the expres-
sion (34), we obtain

|cj |2 = 1/|ȧ(k j)|, |c̄j |2 = 1/| ˙̄a(k̄ j)|, (83)

where ȧ(k j) is expressed in (65), and ˙̄a(k̄1) is expressed in (66).
Especially, for the case N = 1, from (65) and (66), we derive

ȧ(k1) = 1/(k1 − k̄1), ˙̄a(k̄1) = 1/(k̄1 − k1), (84)

and substituting (82) into (84), we obtain

|ȧ(k1)| = | ˙̄a(k̄1)| = 1/(|η1 + η̄1|). (85)

Moreover, substituting (85) into (83), we obtain

|c1|2 = |c̄1|2 = |η1 + η̄1|. (86)

V. APPLICATIONS TO THE GP+ AND THE GP−
In this section, we apply our results to the local GP+ equation and the nonlocal GP− equation

and present some explicit solutions for Equations (4) and (5).
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A. The scattering data of the n = 2 case

First, let us refine our discussion in the n = 2 case and compute the scattering data concretely.
From the expansion conditions (7) and (10), we obtain

k j, t = f0k j
2 + f1k j + f2, k̄ j, t = f0k̄ j

2
+ f1k̄ j + f2,

A0(k j) = g0k j
2 + g1k j + g2, Ā0(k̄ j) = g0k̄ j

2
+ g1k̄ j + g2.

In addition, it is easy to get from (42) that

α(k j) = 1
2

f1 + k j f0, ᾱ(k̄ j) = 1
2

f1 + k̄ j f0.

Thus from Theorem 1, we obtain

cj, t =
�1
2

f1 + f0k j − g0k j
2 − g1k j − g2

�
cj, (87)

c̄j, t =
�1
2

f1 + f0k̄ j + g0k̄ j
2
+ g1k̄ j + g2

�
c̄j . (88)

Equations (87), (88), and (89) determine the scattering data k j, k̄ j and cj, c̄j. Especially, for the GP
equation, since f0 = 0, we obtain




k j =
�  t

0
f2e−


f1dtdt + ω1 j

�
e
 t

0 f1dt,

k̄ j =
�  t

0
f2e−

 t
0 f1dtdt + ω3 j

�
e
 t

0 f1dt,

cj = ω2 je
 t

0 ( 1
2 f1−g0k j

2−g1k j−g2)dt,

c̄j = ω4 je
 t

0 ( 1
2 f1+g0k̄ j

2
+g1k̄ j+g2)dt,

(89)

where ωi j, i = 1,2,3,4, j = 1, . . . ,N , are arbitrary complex numbers.

B. Solutions of the local GP+ equation

Setting ϵ = +1, substituting (22) and (23) into (89), and denoting

Γ =

 t

0
γdt, b =

(
ln
g

f

)
t

− 2γ, M =
g

f
e−2Γ, (90)

L =


V1

M
dt, (91)

we obtain

k j(t) = M
�
− 1

2
L + ω1 j

�
, k̄ j(t) = M

�
− 1

2
L + ω3 j

�
, (92)

cj(t) = ω2 j


g

f
e

1
2

 t
0 ϑ j(t)dt, ϑ j(t) = i f M2(L − 2ω1 j)2 − iV0 − 2 γ, (93)

c̄j(t) = ω4 j


g

f
e

1
2

 t
0 ϑ̄ j(t)dt, ϑ̄ j(t) = −i f M2(L − 2ω3 j)2 + iV0 − 2 γ. (94)

Hereafter, we suppress the variable t for convenience. Since ϵ = +1, i.e., r(x, t) = −q∗(x, t), the
second symmetry constraint (62) of the eigenfunctions is not valid, and we use the first symmetry
constraint of eigenfunctions (61) such that the eigenvalues satisfy (64), and the norming constants
satisfy (69).
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1. 1-soliton solution

Set l = l̄ = 1, ω11 = κ1 + iκ2, where κ1, κ2 are arbitrary real constants. Substituting it into k1(t)
in (92), we then see that k̄1(t) is obtained from the reduction relation (64), i.e., k̄1(t) = k∗1(t). Sim-
ilarly, set ω21 = c1 + ic2, where c1,c2 are arbitrary real constants, too. Substituting it into c1(t) in
(93), we see that c̄1(t) is obtained from the relation (69). Here the two choices of c̄1(t) generate the
same solution. Then substituting the scattering data k1(t),c1(t), k̄1(t), and c̄1(t) into (37), we obtain
the solutions q(x, t) and r(x, t). Moreover, by using the transformation (26), we obtain the 1-soliton
solution of the GP+ equation (4),

Q1(x, t) = −2
√

2


f
g

ei(MLx− b
4 f x

2) (c1 − ic2)2e
 t

0 µ1+iν1dt−2(κ2+iκ1)Mx

1 +
(
c12+c22

2k2M
e
 t

0 µ1dt−2κ2Mx
)2 , (95)

where Γ,b,M,L are defined in (90) and (91), and

µ1 = b + 4 f M2κ2 (L − 2κ1) , ν1 = f M2�4κ2
2 − (L − 2κ1)2� + V0. (96)

2. 2-soliton solution

Similarly, set l = l̄ = 2, ω11 = κ1 + iκ2,ω21 = c1 + ic2, and substitute them into k1(t) and c1(t).
Let ω12 = κ3 + iκ4, ω22 = c3 + ic4 be another two arbitrary complex numbers and substitute them
into k2(t) and c2(t). Then from (38) and the transformation (26), we obtain the 2-soliton solution of
the GP+ equation (4),

Q2(x, t) = −2
√

2


f
g

ei(MLx− b
4 f x

2) F(x, t)
G(x, t) , (97)

where Γ,b,M,L are defined in (90) and (91), µ1, ν1 are defined in (96), and

F(x, t) = (c1 − ic2)2e

µ1+iν1dt−2M (κ2+iκ1)x + (c3 − ic4)2e


µ2+iν2dt−2M (κ4+iκ3)x

+
χ2

4

4M2

�(c1
2 + c2

2)(c3 − ic4)/(κ2χ1)�2e


2µ1+µ2+iν2dt−2M (κ4+iκ3+2κ2)x

+
�(c3

2 + c4
2)(c1 − ic2)/(κ4χ2)�2e


2µ2+µ1+iν1dt−2M (κ2+iκ1+2κ4)x


,

G(x, t) = 1 +
1

4M2

�(c1
2 + c2

2)/κ2
�2e


2µ1dt−4κ2Mx +

�(c3
2 + c4

2)/κ4
�2e


2µ2dt−4κ4Mx

−
�
2(c1 + ic2)(c3 − ic4)/χ1

�2e

µ2+iν2+µ1−iν1dt+2iχ1Mx

−
�
2(c3 + ic4)(c1 − ic2)/χ2

�2e

µ1+iν1+µ2−iν2dt+2iχ2Mx

+
�(c1

2 + c2
2)(c3

2 + c4
2)χ3χ4/(κ2κ4χ1χ2M)�2e


2µ1+2µ2dt−4(κ2+κ4)Mx


,

with

χ1 = κ1 + iκ2 − κ3 + iκ4, χ2 = κ3 + iκ4 − κ1 + iκ2, (98)
χ3 = κ1 + iκ2 − κ3 − iκ4, χ4 = κ3 − iκ4 − κ1 + iκ2, (99)

and

µ2 = b + 4 f M2κ4 (L − 2κ3) , ν2 = f M2�4κ4
2 − (L − 2κ3)2� + V0. (100)

C. Solutions of the nonlocal GP− equation

In this case, since ϵ = −1, i.e., r(x, t) = −q∗(−x, t), the two symmetry constraints of eigenfunc-
tions (61) and (62) are both valid. The first symmetry constraint yields eigenvalues on the whole
axis, and the second symmetry constraint yields eigenvalues on the imaginary axis. Thus they result
in different kinds of solutions, and we discuss them separately.
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First, let us compute the scattering data k j(t) and cj(t). Setting ϵ = −1, substituting (22) and
(23) into (89), and denoting

L̃ =


Ṽ1

M
dt, (101)

we obtain

k j(t) = M(− i
2

L̃ + ω1 j), k̄ j(t) = M(− i
2

L̃ + ω3 j), (102)

cj(t) = ω2 j


g

f
e

1
2

 t
0 ϱ j(t)dt, ϱ j(t) = i f M2(iL̃ − 2ω1 j)2 − iV0 − 2γ, (103)

c̄j(t) = ω4 j


g

f
e

1
2

 t
0 ϱ̄ j(t)dt, ϱ̄ j(t) = −i f M2(iL̃ − 2ω3 j)2 + iV0 − 2γ, (104)

where Γ,b,M are defined in (90).

1. Solutions with eigenvalues on the whole axes

Under the first symmetry constraint (61), the eigenvalues satisfy (71), and the norming con-
stants satisfy (69).

a. The case of n = 1 solution. Setting l = l̄ = 1, ω11 = κ1 + iκ2, and substituting it into k1(t) in
(102), then we see that k̄1(t) is obtained from the reduction relation (64), i.e., k̄1(t) = −k∗1(t). Simi-
larly, setting ω21 = c1 + ic2, and substituting it into c1(t) in (103), we see that c̄1(t) is obtained from
the relation (69). Here the two choices of c̄1(t) generate the same solution, too. Then substituting
the scattering data k1(t),c1(t), k̄1(t), and c̄1(t) into (37), we obtain the solutions q(x, t) and r(x, t).
Finally, from the transformation (26), we obtain the solution of the GP− equation (5),

Q̃1(x, t) = −2
√

2


f
g

e−ML̃x− ib
4 f x

2 (c1 − ic2)2e

µ̃1+iν̃1dt+2(κ2+iκ1)Mx

1 −
(
c12+c22

2κ1M
e

µ̃1dt+2iκ1Mx

)2 , (105)

where Γ,b,M are defined in (90), L̃ is defined in (101), and

µ̃1 = b + 4 f M2κ1
�
L̃ − 2κ2

�
, ν̃1 = f M2 �(L̃ − 2κ2)2 − 4κ1

2� + V0. (106)

b. The case of n = 2 solution. Set l = l̄ = 2, ω11 = κ1 + iκ2,ω21 = c1 + ic2, and substitute them
into k1(t) and c1(t), and let ω12 = κ3 + iκ4,ω22 = c3 + ic4, and substitute them into k2(t) and c2(t).
Then from (38), we obtain the solution of the GP− equation (5),

Q̃2(x, t) = −2
√

2


f
g

e−ML̃x− ib
4 f x

2 F̃(x, t)
G̃(x, t) , (107)

where Γ,b,M are defined in (90), L̃ is defined in (101), µ̃1, ν̃1 are defined in (106), and

F̃(x, t) = (c1 − ic2)2e

µ̃1+iν̃1dt+2M (κ2+iκ1)x + (c3 − ic4)2e


µ̃2+iν̃2dt+2M (κ4+iκ3)x

−
χ2

4

4M2

�(c1
2 + c2

2)(c3 − ic4)/(κ1 χ̃1)�2e


2µ̃1+µ̃2+iν̃2dt+2M (κ4+iκ3+2iκ1)x

+
�(c3

2 + c4
2)(c1 − ic2)/(κ3 χ̃2)�2e


2µ̃2+µ̃1+iν̃1dt+2M (κ2+iκ1+2iκ3)x


,

G̃(x, t) = 1 − 1
4M2

�(c1
2 + c2

2)/κ1
�2e


2µ̃1dt+4iκ1Mx +

�(c3
2 + c4

2)/κ3
�2e


2µ̃2dt+4iκ3Mx

+
�
2(c1 + ic2)(c3 − ic4)/ χ̃1

�2e

µ̃2+iν̃2+µ̃1−iν̃1dt+2iχ̃1Mx

+
�
2(c3 + ic4)(c1 − ic2)/ χ̃2

�2e

µ̃1+iν̃1+µ̃2−iν̃2dt+2iχ̃2Mx

−
�(c1

2 + c2
2)(c3

2 + c4
2)χ3χ4/(κ1κ3 χ̃1 χ̃2M)�2e


2µ̃1+2µ̃2dt+4i(κ1+κ3)Mx


,
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with

χ̃1 = κ1 + iκ2 + κ3 − iκ4, χ̃2 = κ3 + iκ4 + κ1 − iκ2, (108)

χ3, χ4 are defined in (99), and

µ̃2 = b + 4 f M2κ3
�
L̃ − 2κ4

�
, ν̃2 = f M2 �(L̃ − 2κ4)2 − 4κ3

2� + V0. (109)
c. A special case: The solution of the focusing nonlocal nonlinear Schrödinger equation. To

compare our results with the one discussed in Ref. 12, here we specially give the expression of the
solution for the focusing nonlocal nonlinear Schrödinger equation (1) (with sign “+” ), which is a
special case of the nonlocal GP− equation (5) under the condition,

f (t) = −1, g(t) = −2, V0(t) = 0, Ṽ1(t) = 0, γ(t) = 0. (110)

Then the scattering data are reduced to

k1(t) = κ1 + iκ2, k̄1(t) = −κ1 + iκ2,

c1(t) = (c1 + ic2) e−2i(κ1+iκ2)2t, c̄1(t) = −i (c1 − ic2) e2i(κ1−iκ2)2t,

where κ1, κ2,c1,c2 are arbitrary real constants. The solution (105) is reduced to

Q1(x, t) = −8κ1
2(c1 − ic1)2 e2i(κ1−iκ2)(2κ1t−2iκ2t+x)

(c1
2 + c2

2)2e−4iκ1(4iκ2t−x) − 4κ1
2

. (111)

In Subsection V C 2, we compare the solution (111) with the one obtained from the second
symmetry constraint.

2. Solutions with eigenvalues on the imaginary axes

For the second symmetry constraint (62), the eigenvalues satisfy (82), which is only on the
imaginary axes. While the norming constants satisfy (83). Setting l = l̄ = 1, ω11 = iκ1,ω31 = −iκ2,
and substituting them into (102), we obtain

k1(t) = iM
(
−1

2
L̃ + κ1

)
, k̄1(t) = −iM

(
1
2

L̃ + κ2

)
. (112)

On the other hand, noticing the denotation k j(t) and k̄ j(t) in (82), we have

η1(t) = M
(
−1

2
L̃ + κ1

)
, η̄1(t) = M

(
1
2

L̃ + κ2

)
. (113)

Substituting (113) into (86), then

|c1|2 = |c̄1|2 = M(κ1 + κ2). (114)

Thus we assume ω21 =
√
κ1 + κ2eiθ1, ω41 =

√
κ1 + κ2eiθ2, and substituting them into (103) and (104),

we obtain




c1(t) = √κ1 + κ2


g

f
e−

 t
0 γdtei( 1

2
 t

0 ς(t)dt+θ1), ς(t) = − f M2(L̃ − 2κ1)2 − V0,

c̄1(t) = √κ1 + κ2


g

f
e−

 t
0 γdtei( 1

2
 t

0 ς̄(t)dt+θ2), ς̄(t) = f M2(L̃ + 2κ2)2 + V0,

(115)

such that the condition (114) is satisfied. Now substituting (112), (115) into (37), together with the
transformation (26), we obtain the solution of the GP− equation (5).

Ablowitz and Musslimani19 has considered the second symmetry constraint for the nonlocal
nonlinear Schrödinger equation (1), which is a special case of (5). To compare with Ref. 19, here
we just present a solution of the focusing nonlocal nonlinear Schrödinger equation (1). In this case,
under the condition (110), the scattering data read

k1(t) = iκ1, k̄1(t) = −iκ2,

c1(t) = √κ1 + κ2ei(2κ1
2t+θ1), c̄1(t) = √κ1 + κ2e−i(2κ2

2t−θ2).
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The solution is given by

Q1(x, t) = 2
e−2κ2x−4iκ2

2t+2iθ2 (κ1 + κ2)
e4i(κ12−κ22)t+2i(θ1+θ2)−2(κ1+κ2)x − 1

. (116)

Similar to the discussion in Ref. 19, if we set κ2 = κ1 and θ2 = −θ1 +
π
2 , then k̄1(t) = k∗1(t), c̄1(t) =

ic∗1(t), and the solution (116) is reduced to the solution of the classical local nonlinear Schrödinger
equation. But for the nonlocal GP− equation (5), from (112), we failed to obtain such a result.

Furthermore, since the solution (116) involves eigenvalues defined only on the imaginary axis,
and the solution (111), eigenvalues defined on the whole axis, they are different. Moreover, they
both have singularities and are not the standard soliton solutions.

VI. SUMMARY

In this paper, a general hierarchy of nonisospectral AKNS integrable equations was constructed
in which the spectral parameter is determined by an ordinary differential equation with polynomial
nonlinearity. Such an AKNS hierarchy contains some new nonlocal integrable equations such as the
nonlocal KdV-like equation and nonlinear Schrödinger equation. Based on the spectral problem of
the general AKNS hierarchy, we presented a unified inverse scattering transformation for the local
and nonlocal nonautonomous Gross-Pitaevskii equations arising from soliton management in opti-
cal fibers and computed the inverse scattering solutions to the local GP+ equation and the nonlocal
GP− equation. Unlike the local GP+ equation, we found that the nonlocal GP− equation possesses
two different kinds of symmetry relations of the eigenfunctions and thus has two different kinds
of inverse scattering solutions. Our study added a supplement to the known results on nonlocal
equations, and we hope it will help understand the wave propagation governed by the nonlocal
nonautonomous Gross-Pitaevskii equation with PT -symmetry self-induced potential.
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