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a b s t r a c t

In this Letter,we propose a newcoupled higher-order Ito equation andpresent itsN-soliton
solutions in Pfaffian form. Furthermore, some interesting examples of soliton resonance
related to two solitons near the resonant state are pointed out.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

It is important in mathematical physics to look for exact solutions to soliton equations and to search for new soliton
equations. In order to achieve these two objectives, several approaches have been developed. One of them is the Hirota
bilinear approach [1–3], which provides a direct powerful approach to nonlinear integrable equations, and it is widely used
in constructing N-soliton solutions. It is known that the Korteweg–de Vries (KdV) equation

ut + 6uux + uxxx = 0 (1.1)

can be transformed into the bilinear form

Dx(Dt + D3
x)f · f = 0 (1.2)

by the dependent variable transformation

u = 2(ln f )xx, (1.3)

where the bilinear operators Dm
x D

n
t are defined by

Dm
x D

n
t a · b = (∂x − ∂x′)

m(∂t − ∂t ′)
na(x, t)b(x′, t ′)|x′=x,t ′=t . (1.4)

In [4], Ito investigated the following new type of bilinear equation:

Dt(Dt + D3
x)f · f = 0, (1.5)

and noted that Eq. (1.5) and the KdV equation, Eq. (1.2), have the same 1-soliton solution but that their N-soliton solutions
differ in the phase shift. Besides, using the same dependent variable transformation as Eq. (1.3), Eq. (1.5) is transformed into
the nonlinear form:

utt + uxxxt + 6uxut + 3uuxt + 3uxx∂
−1
x ut = 0. (1.6)
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Moreover, its Bäcklund transformation, conservation laws, and Hamiltonian structures are studied in [5,6]. In [4,7], the
authors also presented a higher-order version of (1.5):

Dy(Dy + D3
x)f · f = 0, (1.7a)

(6DtDy + D5
xDy − 5D2

xD
2
y)f · f = 0, (1.7b)

where y is only an auxiliary variable. By the following transformations,

u = ln f , p = (ln f )y, w = (ln f )yy, (1.8)

we can derive a system with respect to u, w, p as follows:

w + pxxx + 6uxxpx = 0, (1.9a)

and

6pt + pxxxxx + 10pxuxxxx + 60u2
xxpx + 20uxxpxxx − 5wxx − 20p2x − 10uxxw = 0, (1.9b)

wt + wxxxxx +
20
3

(wxuxxxx + pxpxxxx) + 20(2uxxpxxpx + u2
xxwx)

+ 10(pxxpxxx + uxxwxxx) + 10(pxxxpxx + uxxxwxx) −
20
3

pxwx = 0, (1.9c)

where the auxiliary variable y has vanished. The N-soliton solutions in Pfaffian formwere obtained [8]. Meanwhile, bilinear
Bäcklund transformation and nonlinear superposition formulas for Eq. (1.7) have also been presented [9].

Recently, the resonance of solitons has been studied theoretically and experimentally in many real physical models [10,
11], where the interactions between solitonsmay be completely non-elastic. That is to say, the amplitude, velocity, andwave
shape of a solitonmay change after the nonlinear interaction. For instance, at a specific time, one soliton can undergo fission
into two or more solitons; or, contrarily, two or more solitons may fuse into one soliton [12–15]. These types of phenomena
are also called soliton fission and soliton fusion, respectively [16,17]. Furthermore, fission and fusion phenomena of the
dromion, peakon, and compacton solutions have also be observed [18,19]. To describe the intermediate patterns of the
resonant solitons of the shallow wave equation, Kodama considered N-soliton solutions including all possible interactions,
and classified those N-soliton solutions by a chord diagram method [20,21].

In this paper, we propose a new coupled higher-order Ito equation,

(Dy + D3
x)f · g = 0, (1.10a)

Dy(Dy + D3
x)f · g = 0, (1.10b)

(6Dt + D5
x − 5D2

xDy)f · g = 0, (1.10c)

(6DtDy + D5
xDy − 5D2

xD
2
y)f · g = 0, (1.10d)

where y is an auxiliary variable. It is obvious that Eq. (1.10) may lead to a higher-order Ito equation, Eq. (1.7), with g = f .
Using the dependent variable transformation,

φ =
g
f
, u = 2(ln f )xx, (1.11)

the coupled higher-order Ito equation, Eq. (1.10), can be rewritten in the following nonlinear form:

φy + φxxx + 3uφx = 0, (1.12a)

uxxy + ∂−1
x uyy + 3ux∂

−1
x uy + 3uuy = {[3(uy + 6uux + 2uxxx)φx + 6uφxy

− 3(∂−1
x uy − 6u2

− 6uxx)φxx + 18uxφxxx + 2φxxxy + 12uφxxxx + 2φxxxxxx]/φ}x, (1.12b)

6φt + [φxxxxx + 10∂−1
y uxφxxx + 5(∂−1

y uxxx + 3(∂−1
y ux)

2)φx]

− 5(φxxy + φy∂
−1
y ux + 2uφx) = 0, (1.12c)

ut −
10
3

uux −
5
6
uxxy +

5
2
(∂−1

y ux)
2ux −

5
6
[∂−1

y uxx∂
−1
x uy + ∂−1

y uxuy

− ∂−1
y uxxxxu − ∂−1

y uxxxux] +
5
3
[∂−1

y uxxuxx + ∂−1
y uxuxxx] +

1
6
uxxxxx

+ 5∂−1
y ux∂

−1
y uxxu =

5
6
{[uyφx − 6∂−1

y uxuxφx − uxxxφx + uxφy

+ 6∂−1
y uxuφxx + 2uxxφxx + uφxxxx − 2uxφxxx − 2uφxy − ∂−1

x uyφxx]/φ}x. (1.12d)
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The purpose of this paper is to give the N-soliton solutions and to analyze the resonant soliton phenomena for this
coupled higher-order Ito equation. Using the perturbation and Pfaffian technique, we present N-soliton solutions to Eq.
(1.10), and give a strict proof. In addition, we discuss the resonance of solitons, described by a 2-soliton solutions of the
coupled higher-order Ito equation.

2. N-soliton solutions to the coupled higher-order Ito equation

It is known that Eq. (1.9) belongs to the DKP hierarchy (dispersionless KP hierarchy) and the solutions of the DKP
hierarchy can be written in Pfaffian form [22]. In the following, in relation to the D-type Lie algebraic structure of the
solutions, we present theN-soliton solutions to Eq. (1.10) by virtue of Pfaffians and give a strict proof by the Pfaffian identity.

Using the perturbational method, we obtain 2-soliton solutions and 3-soliton solutions to Eq. (1.9), expressed as follows:

f = 1 + a1eη1 + a2eη2 + a12eη1+η2 , (2.1a)

g = 1 + b1eη1 + b2eη2 + b12eη1+η2 , (2.1b)

and

f = 1 + a1eη1 + a2eη2 + a3eη3 + a12eη1+η2 + a13eη1+η3 + a23eη2+η3 + a123eη1+η2+η3 , (2.2a)

g = 1 + b1eη1 + b2eη2 + b3eη3 + b12eη1+η2 + b13eη1+η3 + b23eη2+η3 + b123eη1+η2+η3 , (2.2b)

with

ηj = pjx − p3j y − p5j t, (2.3a)

aij =
(pi − pj)

(pi + pj)(p3i + p3j )
αij, (2.3b)

bij =
(pi − pj)

(pi + pj)(p3i + p3j )
βij, (2.3c)

αij = aip3i bj − ajp3j bi, βij = bip3i aj − bjp3j ai (i, j = 1, 2, 3), (2.3d)

a123 =
(p1 − p2)(p1 − p3)(p2 − p3)

(p1 + p2)(p1 + p3)(p2 + p3)(p31 + p32)(p
3
1 + p33)(p

3
2 + p33)

α123, (2.3e)

b123 =
(p1 − p2)(p1 − p3)(p2 − p3)

(p1 + p2)(p1 + p3)(p2 + p3)(p31 + p32)(p
3
1 + p33)(p

3
2 + p33)

β123, (2.3f)

α123 = −[a1a2(p61 − p62)b3p
3
3 − a1a3(p61 − p63)b2p

3
2 + a2a3(p62 − p63)b1p

3
1], (2.3g)

β123 = −[b1b2(p61 − p62)a3p
3
3 − b1b3(p61 − p63)a2p

3
2 + b2b3(p62 − p63)a1p

3
1], (2.3h)

where pj, aj, bj are free parameters.
These expressions suggest that N-soliton solutions to Eq. (1.10) are expressed by Pfaffians. In fact, we find that

f = pf (d0, a, r1, r2, . . . , rN , cN , . . . , c2, c1) = pf (d0, a, •), (2.4a)
g = pf (a, b, r1, r2, . . . , rN , cN , . . . , c2, c1) = pf (a, b, •), (2.4b)

where the entries of the Pfaffians are defined as

pf (dm, rj) = pmj e
ηj , (m ≥ 0, j = 1, 2, . . . ,N),

pf (d0, a) = 1, pf (a, b) = 1, pf (dm, a) = 0, (m ≥ 1),
pf (a, rj) = −eηj , pf (a, cj) = −aj, pf (b, cj) = bj, (j = 1, 2, . . . ,N),

pf (rj, rk) = aj,keηj+ηk , pf (rj, ck) = δj,k, pf (cj, ck) = −cj,k, (j, k = 1, 2, . . . ,N),

pf (dm, cj) = pf (dm, b) = pf (dm, dn) = pf (b, rj) = 0, (m, n ≥ 0, j = 1, 2, . . . ,N),

(2.4c)

where

δj,k =


1, j = k,
0, j ≠ k,

ηj = pjx − p3j y − p5j t,

aj,k =
pj − pk
pj + pk

, cj,k =
ajp3j bk − akp3kbj

p3j + p3k
.

(2.4d)
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The above Pfaffians have 3N parameters, pj, aj, bj, for j = 1, 2, . . . ,N .
In what follows, we show that f and g given by Eq. (2.4) are N-soliton solutions to Eq. (1.10). By virtue of the above

Pfaffians, we come up with the following differential formulae for f and g:

fx = pf (d1, a, •), fxx = pf (d2, a, •), (2.5a)

fxxx = pf (d3, a, •) + pf (d0, d1, d2, a, •), (2.5b)

fxxxx = pf (d4, a, •) + 2pf (d0, d1, d3, a, •), (2.5c)

fxxxxx = pf (d5, a, •) + 3pf (d0, d1, d4, a, •) + 2pf (d0, d2, d3, a, •), (2.5d)

fy = −pf (d3, a, •) + 2pf (d0, d1, d2, a, •), (2.5e)

fxy = −pf (d4, a, •) + pf (d0, d1, d3, a, •), (2.5f)

fxxy = −pf (d5, a, •) + pf (d0, d2, d3, a, •), (2.5g)

ft = −pf (d5, a, •) + 2pf (d0, d1, d4, a, •) + 3pf (d0, d2, d3, a, •), (2.5h)

gx = pf (d0, d1, a, b, •), gxx = pf (d0, d2, a, b, •), (2.5i)

gxxx = pf (d0, d3, a, b, •) + pf (d1, d2, a, b, •), (2.5j)

gxxxx = pf (d0, d4, a, b, •) + 2pf (d1, d3, a, b, •), (2.5k)

gxxxxx = pf (d0, d5, a, b, •) + 3pf (d1, d4, a, b, •) + 2pf (d2, d3, a, b, •), (2.5l)

gy = −pf (d0, d3, a, b, •) + 2pf (d1, d2, a, b, •), (2.5m)

gxy = −pf (d0, d4, a, b, •) + pf (d1, d3, a, b, •), (2.5n)

gxxy = −pf (d0, d5, a, b, •) + pf (d2, d3, a, b, •), (2.5o)

gt = −pf (d0, d5, a, b, •) + 2pf (d1, d4, a, b, •) + 3pf (d2, d3, a, b, •). (2.5p)

Substituting these relations into Eq. (1.10a), Eq. (1.10c), we find that Eq. (1.10a) is reduced to the Pfaffian identity

pf (d0, d1, d2, a, •)pf (a, b, •) − pf (d0, d1, a, b, •)pf (d2, a, •)

+ pf (d0, d2, a, b, •)pf (d1, a, •) − pf (d1, d2, a, b, •)pf (d0, a, •) ≡ 0, (2.6a)

and Eq. (1.10c) is reduced to Pfaffian identity

15[pf (a, b, •)pf (d0, d1, d4, a, •) − pf (d0, d1, a, b, •)pf (d4, a, •)

− pf (d0, a, •)pf (d1, d4, a, b, •) + pf (d0, d4, a, b, •)pf (d1, a, •)]

× 15[pf (a, b, •)pf (d0, d2, d3, a, •) + pf (d0, d2, a, b, •)pf (d3, a, •)

− pf (d0, a, •)pf (d2, d3, a, b, •) − pf (d0, d3, a, b, •)pf (d2, a, •)] ≡ 0. (2.6b)

Furthermore, in order to prove that (2.4) also satisfies Eq. (1.10b) and Eq. (1.10d), we have to use the second expression
for g , which is equal to (2.4b):

g = pf (e0, a, r1, r2, . . . , rN , cN , . . . , c2, c1) = pf (e0, a, •), (2.7a)

where the new entries are defined by

pf (e0, a) = 1, pf (e1, a) = 0, pf (em, cj) = −bjp3mj , (m = 0, 1),
pf (em, rj) = pf (dm, e1) = 0, (m ≥ 0, j = 1, 2, . . . ,N).

Using the properties of the Pfaffian [1], we obtain the following differential formulas:

gy = pf (e1, a, •), gxy = pf (d0, d1, e1, a, •), gxxy = pf (d0, d2, e1, a, •), (2.7b)

gxxxy = pf (d0, d3, e1, a, •) + pf (d1, d2, e1, a, •), (2.7c)

gxxxxy = pf (d0, d4, e1, a, •) + 2pf (d1, d3, e1, a, •), (2.7d)

gxxxxxy = pf (d0, d5, e1, a, •) + 3pf (d1, d4, e1, a, •) + 2pf (d2, d3, e1, a, •), (2.7e)

gyy = −pf (d0, d3, e1, a, •) + 2pf (d1, d2, e1, a, •), (2.7f)

gxyy = −pf (d0, d4, e1, a, •) + pf (d1, d3, e1, a, •), (2.7g)

gxxyy = −pf (d0, d5, e1, a, •) + pf (d2, d3, e1, a, •), (2.7h)

gty = −pf (d0, d5, e1, a, •) + 2pf (d1, d4, e1, a, •) + 3pf (d2, d3, e1, a, •). (2.7i)
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Fig. 1. The plot of the regular interaction of two solitons to the new coupled higher-order Ito equation. The parameters used are a1 = b1, a2 = b2, p1 =

1.5, p2 = 2, b1 = 3, b2 = 4, y = 0. The left figure shows a three-dimensional plot and the right figure shows a contour map.

Moreover, we have to rewrite Eq. (1.9b) and Eq. (1.9d) in the following form:

(Dy + D3
x)f · gy = 0, (2.8a)

(6Dt + D5
x − 5D2

xDy)f · gy = 0, (2.8b)

where we have used the y-derivative of Eqs. (1.9a) and (1.9c). Substituting (2.4a), (2.5a)–(2.5h), and (2.7) into (2.8), we find
that Eq. (2.8a) is reduced to the Pfaffian identity

pf (d0, d1, d2, a, •)pf (e1, a, •) − pf (d0, d1, e1, a, •)pf (d2, a, •)

+ pf (d0, d2, e1, a, •)pf (d1, a, •) − pf (d1, d2, e1, a, •)pf (d0, a, •) ≡ 0, (2.9a)

and Eq. (2.8b) is reduced to the Pfaffian identity

15[pf (e1, a, •)pf (d0, d1, d4, a, •) − pf (d0, d1, e1, a, •)pf (d4, a, •)

− pf (d0, a, •)pf (d1, d4, e1, a, •) + pf (d0, d4, e1, a, •)pf (d1, a, •)]

× 15[pf (e1, a, •)pf (d0, d2, d3, a, •) + pf (d0, d2, e1, a, •)pf (d3, a, •)

− pf (d0, a, •)pf (d2, d3, e1, a, •) − pf (d0, d3, e1, a, •)pf (d2, a, •)] ≡ 0. (2.9b)

Thus we have proved that the N-soliton solutions given in Eq. (2.4) actually satisfy the bilinear equations Eq. (1.9).

3. Resonance phenomena of solitons

In this section, we discuss the details of interactions between two solitons using the 2-soliton solutions of the coupled
higher-order Ito equation – amongst which are resonant solitons – andwe compare their interaction properties with similar
solutions for the higher-order Ito equation. The interactions are classified into four types, depending on the value of the phase
shift a12. In the accompanying figures, we plot only u = 2(ln f )xx of the coupled higher-order Ito equation, Eq. (1.11).

For the case of the a12 being finite, the resulting solution, Eq. (2.1a), represents regular interaction of two solitons, in
which the larger soliton takes over the smaller soliton (see Fig. 1).

For the case of the solution Eq. (2.1a) under a resonant condition, a12 = 0, we show that two solitons fuse into one soliton
after colliding with each other (see Fig. 2), or that one soliton splits into two solitons in the resonant state (see Fig. 3).

For the case of the solution Eq. (2.1a) under another resonant condition, a12 −→ ∞, we show that two solitons fuse
into one soliton after colliding with each other in the resonant state, and then this splits into two solitons at the end of the
resonant state (see Fig. 4).

For the case of the solution Eq. (2.1a) under a quasi-resonant condition, a12 −→ 0, the resulting solution, Eq. (2.1a),
shows that a higher soliton splits into two solitons as it approaches a lower soliton, then one of the two solitons moves and
collides with the lower soliton, and finally the lower soliton exchanges energy with the higher soliton by fusing one of the
two solitons (see Fig. 5).
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Fig. 2. The plot of two solitons fusing into a large soliton to the new coupled higher-order Ito equation. The parameters used are a1 =
p2
p1

, b2 =
a2p22b1

p21
, p1 =

1.1, p2 = 1.9, a2 = 2, y = 0. The left figure shows a three-dimensional plot and the right figure shows a contour map.

Fig. 3. The plot of one soliton splitting into two solitons to the new coupled higher-order Ito equation. The parameters used are a1 =
p2
p1

, b2 =
a2p22b1

p21
, p1 =

−1.9, p2 = −1, a2 = 2, y = 0. The left figure shows a three-dimensional plot and the right figure shows a contour map.

4. Conclusions

A new type of coupled higher-order Ito equation has been given, and N-soliton solutions have been obtained in the form
of Pfaffians. The result that the coupled higher-order Ito equation possesses N-soliton solutions suggests this systemmight
be a candidate of integrable equations. In this aspect, we will present a Bäcklund transformation for Eq. (1.10) to confirm
the integrability of the coupled higher-order Ito equation; details will be given elsewhere.

For more parameters than the higher-order Ito equation, Eq. (1.7), the 2-soliton solutions of Eq. (1.10) exhibit some
special phenomena, such as one soliton undergoing fission into two solitons or two solitons fusing into one soliton at the
resonant state after colliding with each other. Owing to only needing two solitons to analyze fission, fusion, and mixed
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Fig. 4. The plot of two solitons fusing into one soliton and then splitting into two solitons to the new coupled higher-order Ito equation. The parameters
used are a1 = 2 ∗ 103, a2 = 4 ∗ 103, p1 = 1, p2 = 1.5, b1 = 107, b2 = 109, y = 0. The left figure shows a three-dimensional plot and the right figure
shows a contour map.

Fig. 5. The plot of two solitons splitting into three solitons and then fusing into two solitons to the new coupled higher-order Ito equation. The parameters

used are a1 =
p2
p1

+ 10−10, b2 =
a2p22b1

p21
, p1 = 1.9, p2 = 1.2, a2 = 2, b1 = 1, b2 = 3, y = 0. The left figure shows a three-dimensional plot and the right

figure shows a contour map.

collision phenomena, we believe that three ormore solitonsmust exhibitmore special phenomenawhich have not observed
before.

We also have not considered the positive and negative nature of a1, a1, a12. In fact, for the case of a12 being negative
and finite, the resulting solution, Eq. (2.1a), could represent one particular phenomenon, in which two regular solitons
transmute into two singular solitons after colliding with each other (see Fig. 6). Although we have obtained a novel coupled
higher-order Ito system in bilinear form, it is an interesting problem to derive a coupled higher-order Ito system without
the auxiliary variable y. Detailed studies of these problems are left for the future.
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Fig. 6. The plot of two solitons transmuting into two singular solitons after colliding with each other to the new coupled higher-order Ito equation. The
parameters used are a1 = 2, a2 = 4, p1 = 1, p2 = −1.5, b1 = 10, b2 = 70, y = 0, where (1)t = −5, (2)t = −1.5, (3)t = −0.6, (4)t = −0.2, (5)t =

−0.127, (2)t = −0.1, (3)t = 0, (4)t = 1.
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