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In this paper, two generalized fifth-order nonlinear evolution equations are intro-

duced and investigated: One is (1+1)-dimensional, the other is (2+1)-dimensional. The
Hereman–Nuseir method is used to derive the multiple kink solutions and singular kink

solutions, and the conditions for the cases of complete integrability of these two equa-

tions. Meanwhile, it is found that these equations have completely different dispersion
relations and physical structures. The corresponding graphs with specific parameters are

given to show the effectiveness and validness of the obtained results.
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1. Introduction

With the speedy development of nonlinear science and theoretical physics and com-

puter technology, research object gradually went from linear models to nonlinear

models, which have been applied many areas, for example, fluid, plasma, nonlin-

ear optics, atmospheric science, marine science and so on. Researchers put a lot of

research efforts into finding multiple soliton solutions of nonlinear systems.1–5

For the nonlinear science, the research on soliton solutions with super stability

plays an important role and has attracted many researchers.6–56 Up to now, a great

deal of efficient approaches have been established: the Hirota bilinear method,22,23

the homogeneous balance method,24 the inverse scattering method,25 the Bäcklund

transformation method,26–30 the Darboux transformation method31,32 the exponen-

tial function method,33 the Riemann–Hilbert problem method,38–42 the Lie symme-

try method43–48 and so on. Amongst these approaches, the Hirota bilinear method

possesses powerful features due to its simplicity and directness.49–51 Hereman and

his coworkers developed the so-called simplified Hirotas method (Hereman–Nuseri

method)52,53 which is very heuristic and of significance in handling nonlinear sys-

tems with constant coefficients. These two methods are effective for the determi-

nation of multiple soliton solutions of a great many nonlinear evolution equations.

Furthermore, the Hereman–Nuseri method is independent of the construction of

the bilinear forms; it supposes that the multi-soliton solutions can be expressed

as polynomials of exponential functions. For more details of the Hereman–Nuseri

method, see Refs. 52 and 53.

Using the Hereman–Nuseri method, Wazwaz introduced and investigated a fifth-

order nonlinear integrable equation54

uttt − utxxxx − 4(uxut)xx − 4(uxuxt)x = 0. (1)

Furthermore, Wazwaz extended the above equation

uttt − utxxxx − utyyyy − α(uxuxt)x = 0, (2)

uttt − utxxxx − utyyyy − utzzzz − β(uxuxt)x = 0, (3)

whose soliton solutions of these two equations were studied.55

In this work, based on the research on Eqs. (1)–(3)54,55 we introduce two gen-

eralized fifth-order nonlinear evolution equations which read

uttt − utxxxx − λutxx − α(uxut)xx − β(uxuxt)x = 0, (4)

uttt − utyyyy − utxx − µ1utxxxx − µ2utyy − α(uyut)yy − β(uyuyt)y = 0. (5)

which will be studied, where λ, µ1, µ2, α, β are parameters. The conditions for the

parameters that guarantee these generalized forms integrable will be developed.

Moreover, it will be illustrated that multiple soliton solutions can be found for

suitable parameters.

The structure of this paper is as follows. In Sec. 2, based on the Hereman–Nuseri

method, the kink and singular kink solutions of Eq. (4) are obtained. In Sec. 3,
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we find the kink and singular kink solutions of Eq. (5). Particularly, the multiple

soliton solutions are formally derived for the cases of integrability with specific

values of parameters. Meanwhile, some corresponding graphs are given to illustrate

the obtained results. Section 4 contains a short summary and some discussions.

2. A Generalized (1+1)-Dimensional Fifth-Order Nonlinear

Evolution Equation

In this section, we will consider a generalized (1+1)-dimensional fifth-order nonlin-

ear evolution equations, which reads

uttt − utxxxx − λutxx − α(uxut)xx − β(uxuxt)x = 0, (6)

where λ = 0, 1 and α, β are arbitrary constants. When λ is equal to 0, then Eq. (6)

is changed into (1).54 In this research, we mainly handle the case of λ = 1, i.e.

uttt − utxxxx − utxx − α(uxut)xx − β(uxuxt)x = 0. (7)

Plugging u = eθi , θi = kix − cit into the linear terms of (7) yields the dispersion

relation given by

c = ±k
√

1 + k2. (8)

In turn, this leads to the following phase variable:

θ = kx± k
√

1 + k2t. (9)

To determine the single soliton solutions, according to the Hereman–Nuseri

method52,53 we might assume

u = R(ln(f))x, (10)

with the auxiliary function f(x, t).

In order to get the single soliton solutions, the auxiliary function f is given by

f = 1 + C1e
θ1 , (11)

and C1 = 1,−1 and θ1 is given by (9). For C1 = 1, substituting (10) and (11) into

Eq. (7) and solving for R, we can find

R =
12

2α+ β
. (12)

Furthermore, this in turn yields the following single soliton solution:

u =
12

2α+ β

fx
f

=
12

2α+ β

k1e
k1x±k1

√
1+k12t

1 + ek1x±k1
√

1+k12t
. (13)

In order to find two-soliton solutions, the auxiliary function f can be taken as

follows:

f = 1 + C1e
θ1 + C2e

θ2 + C1C2a12e
θ1+θ2 . (14)
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Similarly, for C1 = C2 = 1, we can obtain the phase shift a12 by substituting (10)

and (14) into Eq. (7). In particular, we herein take special values k1 = 3, k2 = 4

since the expression of a12 is too big. From the computations, it is found that there

are two-soliton solutions for two cases α = 0, β 6= 0 or α = β 6= 0. For other cases,

such as α 6= 0, β = 0 or α 6= β, α, β 6= 0, there is no suitable solution of a12,

therefore, there are not any two-soliton solutions. Now, if we take k3 = 5, then the

solutions of aij , 1 ≤ i < j ≤ 3 are given by

(i) α = 0, β 6= 0:

a12 =
−72
√

17
√

10 + 1135

7399
, a13 =

−45
√

5
√

13 + 619

3184
,

a23 =
−40
√

26
√

17 + 949

6669
,

(15)

(ii) α = β 6= 0:

a12 =
−12
√

17
√

10 + 181

637
, a13 =

−3
√

5
√

13 + 37

112
,

a23 =
−20
√

26
√

17 + 461

1701
.

(16)

The two-soliton solution is presented as

u =
12

2α+ β

3e3x±3
√
10t + 4e4x±4

√
17t + 7a12e

7x±(3
√
10+4

√
17)t

1 + e3x±3
√
10t + e4x±4

√
17t + a12e7x±(3

√
10+4

√
17)t

. (17)

When the auxiliary function f is set

f = 1 + C1e
θ1 + C2e

θ2 + C3e
θ3 + C1C2a12e

θ1+θ2 + C1C3a13e
θ1+θ3

+C2C3a23e
θ2+θ3 + C1C2C3b123e

θ1+θ2+θ3 , (18)

with Ci = 1 (1 ≤ i ≤ 3), we can obtain b123 through substituting Eqs. (10) and

(18) into Eq. (7). For the two above-mentioned cases, it can be readily found

b123 = a12a13a23. (19)

Similarly, we get three-soliton solutions as follows:

u =
12

2α+ β
· p
q
, (20)

with

p = 1 + 3eθ1 + 4eθ2 + 5eθ3 + 7a12e
θ1+θ2 + 8a13e

θ1+θ3 + 9a23e
θ2+θ3

+ 12a12a13a23e
θ1+θ2+θ3 ,

q = 1 + eθ1 + eθ2 + eθ3 + a12e
θ1+θ2 + a13e

θ1+θ3 + a23e
θ2+θ3

+ a12a13a23e
θ1+θ2+θ3 . (21)
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (Color online) The kink solutions (13), (17), (21) of Eq. (7) when α = β = 1, k1 = 3, k2 =

4, k3 = 5. (a)–(c) 2D plots; (d)–(f) 3D plots.

Fig. 2. (Color online) The two-kink solutions (17) of Eq. (7) at different time t = −2, 0, 2 with
specific parameters α = β = 1, k1 = 3, k2 = 4, k3 = 5.

It is noted that (7) is transformed into the corresponding equations in Ref. 56

while α = β = 4 or α = 0, β = 4, and the results obtained in this work are

consistent with those in Ref. 56. For these above-mentioned cases, this proves that

this generalized nonlinear fifth-order equation is completely integrable andN soliton

solutions can be obtained for the positive integer N .

Some graphs with specific parameters are given in Fig. 1 to illustrate the

aforementioned results. From Fig. 1, the kink solution travels from left to right.
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(a) (b) (c)

Fig. 3. (Color online) The singular kink solutions u of Eq. (7) for t = 2 when α = β = 1, k1 =
3, k2 = 4, k3 = 5. (a) Singular single kink solutions; (b) singular two-kink solutions; (c) singular

three-kink solutions.

Fig. 4. (Color online) The singular two-kink solutions u of Eq. (7) at different time t = −2, 0, 2
with specific parameters α = β = 1, k1 = 3, k2 = 4, k3 = 5.

Figure 2 depicts the elastic collisions among two-soliton solutions at different time

t = −2, 0, 2. It can be seen from 2 that the traveling wave of Eq. (7) can still keep

its shape and speed unchanged after interacting with other traveling wave.

Furthermore, proceeding as before for C1 = C2 = C3 = −1, the singular multiple

kink solutions can be found. The corresponding graphs for t = 2 of these singular

multiple kink solutions are shown by Fig. 3. Figure 4 depicts a singular two-kink

solution at different time t = −2, 0, 2.

3. A Generalized (2+1)-Dimensional Fifth-Order Nonlinear

Evolution Equation

We introduce a generalized (2+1)-dimensional fifth-order nonlinear evolution equa-

tions of the form

uttt − utyyyy − utxx − µ1utxxxx − µ2utyy − α(uyut)yy − β(uyuyt)y = 0, (22)
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where µ1, µ2 = 0, 01. By choosing different values of µ1 and µ2, Eq. (22) can be

turned into the four classes

uttt − utyyyy − utxx − α(uyut)yy − β(uyuyt)y = 0, (23)

uttt − utyyyy − utxx − utxxxx − α(uyut)yy − β(uyuyt)y = 0, (24)

uttt − utyyyy − utxx − utyy − α(uyut)yy − β(uyuyt)y = 0, (25)

uttt − utyyyy − utxx − utxxxx − utyy − α(uyut)yy − β(uyuyt)y = 0. (26)

While taking α = 0 and β = 4, (23) is reduced to the corresponding equation in

Ref. 56. The obtained results of Case 1 are consistent with those in the literature.56

To the best of our knowledge, Eqs. (24)–(26) have not been reported so far. It seems

that these equations take the similar forms, but they are totally different such as

the dispersion relations and phase shifts.

Case 1. Substituting u = eθ, θ = kx+ ry− ct into the linear term of (23) gives the

dispersion relation that reads

c = ±
√
r4 + k2, (27)

which implies the phase variable is

θ = kx+ ry ±
√
r4 + k2t. (28)

In order to get single kink solutions of (23), we set

u = R(ln(f))y, (29)

where the auxiliary function f(x, y, t) is determined by

f = 1 + C1e
θ1 , (30)

with C1 = 1. Substituting (29) into (23) and solving for R give

R =
12

2α+ β
. (31)

This in turn results in the single kink solution

u =
12

2α+ β

fy
f

=
12

2α+ β

r1e
k1x+r1y±

√
r14+k12t

1 + ek1x+r1y±
√
r14+k12t

. (32)

For the two-kink solutions, we can assume the auxiliary function

f = 1 + C1e
θ1 + C2e

θ2 + C1C2a12e
θ1+θ2 , (33)

with C1 = C2 = 1, then substituting (29) and (33) into Eq. (23), we notice that

the value of a12 is too long-winded to be listed. For simplicity, we take some special

values of parameters r1 = 1, r2 = 2, k1 = 3, k2 = 4, then for the case α = 0, β 6= 0,

the two-kink solutions can be found. Similarly, when taking special values r3 =

3, k3 = 5, we can get a13 from k1, r1, k3, r3 and a23 from k2, r2, k3, r3. After the
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tedious and complicated computations, the solutions of aij , 1 ≤ i < j ≤ 3 are given

by

α = 0, β 6= 0:

a12 =
−12
√

5 + 35

101
, a13 =

−27
√

5
√

53 + 959

2336
, a23 =

−108
√

53 + 995

4829
. (34)

Then, the two-kink solutions are given by

u =
12

β

e3x+y±
√
10t + 2e4x+2y±4

√
2t + 3

(−12√5+35
101

)
e7x+3y±(

√
10+4

√
2)t

1 + e3x+y±
√
10t + e4x+2y±4

√
2t +

(−12√5+35
101

)
e7x+3y±(

√
10+4

√
2)t
. (35)

Furthermore, if setting the auxiliary function

f = 1 + C1e
θ1 + C2e

θ2 + C3e
θ3 + C1C2a12e

θ1+θ2 + C1C3a13e
θ1+θ3

+C2C3a23e
θ2+θ3 + C1C2C3b123e

θ1+θ2+θ3 , (36)

where Ci = 1, 1 ≤ i ≤ 3. Substituting (29) and (36) into (23) leads to

b123 6= a12a13a23. (37)

Therefore, this shows that Eq. (23) does not have three kink solutions in the sense

of Hirota integrability.

However, it should be noted when taking ki = ri, 1 ≤ i ≤ 3: while α = 0, β 6= 0

and α = β 6= 0 the two-soliton solutions exist, and while α = 0, β 6= 0 the three-

soliton solutions do exist since b123 = a12a13a23. The solutions of the parameters

are as follows with choosing k1 = r1 = 1, k2 = r2 = 2, k3 = r3 = 3.

(i) α = 0, β 6= 0:

a12 =
−20
√

10 + 125

465
, a13 =

−9
√

5 + 85

220
, a23 =

−36
√

2 + 71

395
. (38)

(ii) α = β 6= 0:

a12 =
−6
√

10 + 33

81
, a13 =

−3
√

5 + 23

44
, a23 =

−6
√

2 + 11

35
. (39)

Taking α = 0, β = 1, k1 = 3, k2 = 4, k3 = 5 with y = 1, the three-dimensional

plots and two-dimensional plots at different time t = −5, 0, 5 of the single kink

solutions and two-kink solutions are presented in Figs. 5 and 6. At the same time,

the singular single kink solutions and singular two-kink solutions are presented as

follows with choosing Ci = −1 (i = 1, 2, 3)

u =
12

2α+ β

−r1ek1x+r1y±
√
r14+k12t

1− ek1x+r1y±
√
r14+k12t

, (40)

u = −12

β

e3x+y±
√
10t + 2e4x+2y±4

√
2t − 3

(−12√5+35
101

)
e7x+3y±(

√
10+4

√
2)t

1− e3x+y±
√
10t − e4x+2y±4

√
2t +

(−12√5+35
101

)
e7x+3y±(

√
10+4

√
2)t
. (41)

The two-dimensional plots for y = 1 at different times t = −5, 0, 5 of those single

singular kink solutions and singular two-kink solutions are presented in Fig. 7.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. (Color online) The 3D plots for kink solutions (32) and (35) of Eq. (23) at different time

t = −5, 0, 5 when α = 0, β = 1, r1 = 1, r2 = 2, r3 = 3, k1 = 3, k2 = 4, k3 = 5. (a)–(c) Single kink

solutions; (d)–(f) two-kink solutions.

(a) (b)

Fig. 6. (Color online) The 2D plots for kink solutions (32) and (35) of Eq. (23) at different time
t = −5, 0, 5 when α = 0, β = 1, r1 = 1, r2 = 2, r3 = 3, k1 = 3, k2 = 4, k3 = 5, y = 1. (a) Single
kink solutions; (b) two-kink solutions.

Case 2. Consider Eq. (24). Similarly, the dispersion relationship and the phase

variable can be obtained

c = ±
√
r4 + k2 + k4, (42)

2150555-9



January 26, 2022 10:12 MPLB S0217984921505552 page 10

L.-L. Zhang et al.

(a) (b)

Fig. 7. (Color online) The 2D plots for singular kink solutions u of Eq. (23) at different time

t = −5, 0, 5 when α = 0, β = 1, r1 = 1, r2 = 2, r3 = 3, k1 = 3, k2 = 4, k3 = 5, y = 1. (a) Singular
single kink solutions; (b) singular two-kink solutions.

θ = kx+ ry ±
√
r4 + k2 + k4t. (43)

Proceeding as before, substituting (29) and the auxiliary function (30) into Eq. (24),

we have

R =
12(k1

4 + r1
4)

r14(2α+ β)
. (44)

This in turn gives the single kink solution

u =
12(k1

4 + r1
4)

r14(2α+ β)

r1e
k1x+r1y±

√
r14+k12+k14t

1 + ek1x+r1y±
√
r14+k12+k14t

. (45)

In particular, if setting k1 to r1, then the parameter R is reduced to

R =
24

2α+ β
. (46)

Furthermore, if setting the auxiliary function f(x, y, t) to be (33), we find that

Eq. (24) has no two-soliton solutions for any α and β when ki is not equal to ri,

1 ≤ i ≤ 3. However, for k1 = r1 = 1, k2 = r2 = 2, k3 = r3 = 3, and α = 0, β 6= 0 or

α = β 6= 0, the two-kink solutions can be found. The phase shifts aij , 1 ≤ i < j ≤ 3

can be listed as follows:

(i) α = 0, β 6= 0:

a12 =
−4
√

3 + 15

59
, a13 =

−9
√

19
√

3 + 325

856
, a23 =

−108
√

19 + 671

3875
, (47)

(ii) α = β 6= 0:

a12 =
−4
√

3 + 13

33
, a13 =

−
√

19
√

3 + 29

56
, a23 =

−4
√

19 + 23

75
. (48)
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Consequently, the two-kink solutions follow immediately

u =
24

β

ex+y±
√
3t + 2e2x+2y±6t + 3

(−4√3+15
59

)
e3x+3y±(

√
3+6)t

1 + ex+y±
√
3t + e2x+2y±6t +

(−4√3+15
59

)
e3x+3y±(

√
3+6)t

, (49)

u =
8

α

ex+y±
√
3t + 2e2x+2y±6t + 3

(−4√3+13
33

)
e3x+3y±(

√
3+6)t

1 + ex+y±
√
3t + e2x+2y±6t +

(−4√3+13
33

)
e3x+3y±(

√
3+6)t

. (50)

Moreover, by setting the auxiliary function f(x, y, t) to be (36) and proceeding

as before, we find that

b123 = a12a13a23. (51)

It is observed that choosing C1 = C2 = C3 = −1 and proceeding as before can

yield single singular kink solutions, two singular kink solutions and three singular

kink solutions.

Case 3. Consider Eq. (25). In the same way, the dispersion relationship and the

phase variable are given by

c = ±
√
r4 + r2 + k2, (52)

θ = kx+ ry ±
√
r4 + r2 + k2t. (53)

Proceeding as before, substituting the transformation (29) and the auxiliary func-

tion (30) into Eq. (25), we find that

R =
12

2α+ β
. (54)

So, the single kink solution follows immediately

u =
12

2α+ β

r1e
k1x+r1y±

√
r14+r12+k12t

1 + ek1x+r1y±
√
r14+r12+k12t

. (55)

Setting the auxiliary function f(x, y, t) to (33) and taking r1 = 1, r2 = 2, r3 =

3, k1 = 3, k2 = 4, k3 = 5, the two-kink solutions do exist for α = 0, β 6= 0. The

phase shifts aij , 1 ≤ i < j ≤ 3 are given by

α = 0, β 6= 0:

a12 =
−18
√

11 + 77

215
, a13 =

−27
√

115
√

11 + 1366060

3259840
,

a23 =
−162

√
115 + 2165

9995
,

(56)

which in turn gives a two-kink solution

u =
12

β

e3x+y±
√
11t + 2e4x+2y±6t + 3

(−18√11+77
215

)
e7x+3y±(

√
11+6)t

1 + e3x+y±
√
11t + e4x+2y±6t +

(−18√11+77
215

)
e7x+3y±(

√
11+6)t

. (57)

However, for ki = ri, 1 ≤ i ≤ 3, the two-kink solutions are subsistent, the three

kink solutions do not exist when α = 0, β 6= 0 or α = β 6= 0. The solutions of the

2150555-11
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parameters are given by

(i) α = 0, β 6= 0:

a12 =
−2
√

2 + 5

17
, a13 =

−9
√

33 + 185

464
, a23 =

−18
√

66 + 197

1025
. (58)

(ii) α = β 6= 0:

a12 =
−4
√

2 + 9

21
, a13 =

−
√

33 + 17

32
, a23 =

−4
√

66 + 41

125
. (59)

Setting the auxiliary function f(x, y, t) to be (36) and proceeding as before, we

can have

b123 6= a12a13a23. (60)

Therefore, the three-kink solutions are not subsistent and (25) does not has multiple

soliton solutions for the positive integer N . Additionally, when C1 = C2 = C3 = −1,

the single singular kink solutions and two singular kink solutions can be found by

proceeding as before.

Case 4. Similarly, the dispersion relationship and the phase variable of Eq. (26)

are given by

c = ±
√
r4 + k4 + r2 + k2, (61)

θ = kx+ ry ±
√
r4 + k4 + r2 + k2t. (62)

Plugging (29) and the auxiliary function (30) into (26) can give

R =
12(k1

4 + r1
4)

r14(2α+ β)
. (63)

So, the single kink solution follows immediately

u =
12(k1

4 + r1
4)

r14(2α+ β)

r1e
k1x+r1y±

√
r14+k14+r12+k12t

1 + ek1x+r1y±
√
r14+k14+r12+k12t

. (64)

Furthermore, equating k1 and r1 reduces R to

R =
24

2α+ β
. (65)

Taking the auxiliary function f(x, y, t) in (33), we can find that (26) has no two-

soliton solutions for any α and β when ki is not equal to ri, 1 ≤ i ≤ 3. But, if taking

k1 = r1 = 1, k2 = r2 = 2, k3 = r3 = 3 yields two-kink solutions for α = 0, β 6= 0 or

α = β 6= 0. Meanwhile, the phase shifts aij , 1 ≤ i < j ≤ 3 are given by

(i) α = 0, β 6= 0:

a12 =
−4
√

10 + 25

93
, a13 =

−9
√

5 + 85

220
, a23 =

−36
√

2 + 71

395
. (66)
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(ii) α = β 6= 0:

a12 =
−2
√

10 + 11

27
, a13 =

−3
√

5 + 23

44
, a23 =

−6
√

2 + 11

35
. (67)

These give two-kink solutions while r1 = 1, r2 = 2, k1 = 1, k2 = 2

u =
24

β

ex+y±2t + 2e2x+2y±2
√
10t + 3

(−4√10+25
93

)
e3x+3y±(2+2

√
10)t

1 + ex+y±2t + e2x+2y±2
√
10t +

(−4√10+25
93

)
e3x+3y±(2+2

√
10)t

, (68)

u =
8

α

ex+y±2t + 2e2x+2y±2
√
10t + 3

(−2√10+11
27

)
e3x+3y±(2+2

√
10)t

1 + ex+y±2t + e2x+2y±2
√
10t +

(−2√10+11
27

)
e3x+3y±(2+2

√
10)t

. (69)

By setting the auxiliary function f(x, y, t) to be (36), and proceeding as before,

we find

b123 = a12a13a23. (70)

It is noted that C1 = C2 = C3 = −1 gives the singular single kink solutions, singular

two-kink solutions and singular three kink solutions by proceeding as before.

4. Conclusion

In this research, we carry out the analysis of two generalized fifth-order nonlin-

ear evolution equations with different dimensions by using the Hereman–Nuseir

method developed by Hereman and Nuseir.52,53 It is found that the parameters

are very important for classifying the resulting equations into integrable equations

or non-integrable equations. Using the Hereman–Nuseir method, we not only get

the necessary conditions for the parameters α and β guaranteeing these general-

ized equations integrable in the sense of Hirota’s integrability but also obtain the

multiple soliton solutions, including kink solutions and singular kink solutions. For

the (1+1)-dimensional equations, we find that it is integrable while α = 0, β 6= 0

or α = β, and obtained its soliton solutions. These solutions and their dynamic be-

haviors were described by corresponding graphs (seeing Figs. 1–4). For the (2+1)-

dimensional equations, Cases 1 and 3 only have two-soliton solutions if α = 0, β 6= 0

and ki 6= ri, 1 ≤ i ≤ 3, three soliton solutions do not exist, therefore these equations

do not admit multiple solitons. Cases 2 and 4 are integrable when α = 0, β 6= 0 or

α = β with ki = ri, 1 ≤ i ≤ 3, and we can obtain their multiple solitons.

As a future work, we might study other types of solutions such as lumps,

breathers and rogue waves of Eqs. (6) and (22).
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