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In this paper, two generalized fifth-order nonlinear evolution equations are intro-
duced and investigated: One is (1+1)-dimensional, the other is (2+1)-dimensional. The
Hereman—Nuseir method is used to derive the multiple kink solutions and singular kink
solutions, and the conditions for the cases of complete integrability of these two equa-
tions. Meanwhile, it is found that these equations have completely different dispersion
relations and physical structures. The corresponding graphs with specific parameters are
given to show the effectiveness and validness of the obtained results.
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1. Introduction

With the speedy development of nonlinear science and theoretical physics and com-
puter technology, research object gradually went from linear models to nonlinear
models, which have been applied many areas, for example, fluid, plasma, nonlin-
ear optics, atmospheric science, marine science and so on. Researchers put a lot of
research efforts into finding multiple soliton solutions of nonlinear systems.

For the nonlinear science, the research on soliton solutions with super stability
plays an important role and has attracted many researchers.®% Up to now, a great
deal of efficient approaches have been established: the Hirota bilinear method,?2:23
the homogeneous balance method,?* the inverse scattering method,2> the Backlund
transformation method, 2630 the Darboux transformation method3!32 the exponen-
tial function method,?? the Riemann-Hilbert problem method,® 42 the Lie symme-
try method?3 48 and so on. Amongst these approaches, the Hirota bilinear method
possesses powerful features due to its simplicity and directness.?? > Hereman and
his coworkers developed the so-called simplified Hirotas method (Hereman—Nuseri
method)®2:53 which is very heuristic and of significance in handling nonlinear sys-
tems with constant coefficients. These two methods are effective for the determi-
nation of multiple soliton solutions of a great many nonlinear evolution equations.
Furthermore, the Hereman—Nuseri method is independent of the construction of
the bilinear forms; it supposes that the multi-soliton solutions can be expressed
as polynomials of exponential functions. For more details of the Hereman—Nuseri
method, see Refs. 52 and 53.

Using the Hereman—Nuseri method, Wazwaz introduced and investigated a fifth-
order nonlinear integrable equation®*

Uttt — Utgzaxr — 4(Uxut)mc - 4(u1uxt)x =0. (1)
Furthermore, Wazwaz extended the above equation
Uttt — Utzzxe — Utyyyy — a(uxuact)x =0, (2)

Uttt — Utgrax — Utyyyy — Wtzzzz — 5(uxuxt)3: =0, (3)

whose soliton solutions of these two equations were studied.?®
In this work, based on the research on Egs. (1)-(3)2*%5 we introduce two gen-
eralized fifth-order nonlinear evolution equations which read

Uttt — Utzazxzr — )\utam - a(uxut)zm - ﬂ(uzumt)z = 07 (4)

Uttt — Utyyyy — Utoa — H1ltcgar — Haleyy — Q(Uyls)yy — Buyy)y = 0. (5)

which will be studied, where A, ji1, p1o, a, 5 are parameters. The conditions for the
parameters that guarantee these generalized forms integrable will be developed.
Moreover, it will be illustrated that multiple soliton solutions can be found for
suitable parameters.

The structure of this paper is as follows. In Sec. 2, based on the Hereman—Nuseri
method, the kink and singular kink solutions of Eq. (4) are obtained. In Sec. 3,
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we find the kink and singular kink solutions of Eq. (5). Particularly, the multiple
soliton solutions are formally derived for the cases of integrability with specific
values of parameters. Meanwhile, some corresponding graphs are given to illustrate
the obtained results. Section 4 contains a short summary and some discussions.

2. A Generalized (1+1)-Dimensional Fifth-Order Nonlinear
Evolution Equation

In this section, we will consider a generalized (1+1)-dimensional fifth-order nonlin-
ear evolution equations, which reads
Ut — Utzawe — Mize — a(uacut)m - ﬂ(uzum‘)x =0, (6)
where A = 0,1 and «, 5 are arbitrary constants. When A is equal to 0, then Eq. (6)
is changed into (1).%* In this research, we mainly handle the case of A = 1, i.e.
Uttt — Utzzze — Wtazx — a(umut)mz - B(uxuxt)x =0. (7)

Plugging u = €%, 6; = k;x — ¢;t into the linear terms of (7) yields the dispersion
relation given by

c=+k\V/1+ k2. (8)

In turn, this leads to the following phase variable:
0 =kx+kv1+ k2t (9)

To determine the single soliton solutions, according to the Hereman-Nuseri
method®?3 we might assume

u= R(In(f))z, (10)

with the auxiliary function f(z,t).
In order to get the single soliton solutions, the auxiliary function f is given by

f=1+Ce, (11)
and C; = 1,—1 and 6, is given by (9). For C; = 1, substituting (10) and (11) into
Eq. (7) and solving for R, we can find

12
R = .
2a+

Furthermore, this in turn yields the following single soliton solution:

12 fa 12 k1€k1mik1\/mt
U = Jz _ . .
20+ 5 f 20481 4 chthny/14k? (13)
In order to find two-soliton solutions, the auxiliary function f can be taken as
follows:

(12)

f =1+ 01601 + 02692 + 0102a12691+02. (].4)
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Similarly, for C; = Cy = 1, we can obtain the phase shift a2 by substituting (10)
and (14) into Eq. (7). In particular, we herein take special values k; = 3,ky = 4
since the expression of ajs is too big. From the computations, it is found that there
are two-soliton solutions for two cases a = 0,8 # 0 or a = 3 # 0. For other cases,
such as a« 2 0, 8 = 0 or a # 3, a, B # 0, there is no suitable solution of a2,
therefore, there are not any two-soliton solutions. Now, if we take k3 = 5, then the
solutions of a;;,1 <1 < j < 3 are given by

(i) a=0,8#0:
oo TT2V1TVI0+ 1135 —45vV5V13 4619
2 7399 P 3184 ’ as)
—404/264/17 + 949
a =
2 6669 ’
(i) a =B #0:
—12/17y/10 + 181 —3v5V/13 437
= a =
a2 637 ;413 112 ) 1)
- —20/264/17 4 461
3 1701 '
The two-soliton solution is presented as
B 12 363xi3mt +464zﬂ:4\/ﬁt + 7a12e7z:|:(3\/m+4\/ﬁ)t (17)
YT 201 B 4 eBeEIVIO 4 laEaVITE | gy T (BVIDHAVIDE
When the auxiliary function f is set
f=1+ 01691 + 02692 + 03693 + 0102a12601+92 + 0103a13691+93
+ CyCsag3e™ T + C1CoCsbyoze’ T027 05, (18)

with C; =1 (1 <4 < 3), we can obtain bja3 through substituting Eqgs. (10) and
(18) into Eq. (7). For the two above-mentioned cases, it can be readily found

bi23 = a12a13a23. (19)

Similarly, we get three-soliton solutions as follows:

12 14
uz?a—l—ﬁ.;’ (20)
with
p=1+ 3¢9t + 4e%2 + 5e% + 70,12601+92 + 8&13691+03 + 90,23602+93
+ 12a13a13a03¢” 02108,
g=1+¢e" +e” +e% + aje” 2 4 a13e" T + agze2 10
+ ajparzasze” T2, (21)
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Fig. 1. (Color online) The kink solutions (13), (17), (21) of Eq. (7) when o = 8 = 1,k1 = 3, k2 =
4,ks = 5. (a)—(c) 2D plots; (d)—(f) 3D plots.
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Fig. 2. (Color online) The two-kink solutions (17) of Eq. (7) at different time ¢t = —2,0,2 with
specific parameters « = 8 = 1,k1 = 3,ka =4,k3 = 5.

It is noted that (7) is transformed into the corresponding equations in Ref. 56
while @ = f = 4 or « = 0,8 = 4, and the results obtained in this work are
consistent with those in Ref. 56. For these above-mentioned cases, this proves that
this generalized nonlinear fifth-order equation is completely integrable and N soliton
solutions can be obtained for the positive integer .

Some graphs with specific parameters are given in Fig. 1 to illustrate the
aforementioned results. From Fig. 1, the kink solution travels from left to right.
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Fig. 3. (Color online) The singular kink solutions u of Eq. (7) for t = 2 when a = = 1,k1 =
3,ko = 4,k3 = 5. (a) Singular single kink solutions; (b) singular two-kink solutions; (c¢) singular
three-kink solutions.
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Fig. 4. (Color online) The singular two-kink solutions u of Eq. (7) at different time ¢t = —2,0, 2
with specific parameters a« = 3 =1,k1 = 3, ko = 4,k3 = 5.

Figure 2 depicts the elastic collisions among two-soliton solutions at different time
t = —2,0,2. It can be seen from 2 that the traveling wave of Eq. (7) can still keep
its shape and speed unchanged after interacting with other traveling wave.

Furthermore, proceeding as before for C; = Cy = C3 = —1, the singular multiple
kink solutions can be found. The corresponding graphs for t = 2 of these singular
multiple kink solutions are shown by Fig. 3. Figure 4 depicts a singular two-kink
solution at different time ¢t = —2,0, 2.

3. A Generalized (2+1)-Dimensional Fifth-Order Nonlinear
Evolution Equation

We introduce a generalized (2+1)-dimensional fifth-order nonlinear evolution equa-
tions of the form

Uttt — Utyyyy — Utzr — U1 Utzzzer — H2Utyy — a(uyut)yy - ﬁ(uyuyt)y =0, (22)
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where p1, p2 = 0,01. By choosing different values of uy and ps, Eq. (22) can be
turned into the four classes

Uty — Utyyyy — Utzz — C(UyUt)yy — BUyyt)y =0, 23

Uttt — Utyyyy — Utzx — Utzzcx — Oé(uyut)yy - ﬂ(uyuyt)y =0, 24

25

(23)
(24)
Uttt — Utyyyy — Utaz — Utyy — (UyUe)yy — Bluyuye)y = 0, (25)
(26)

Uttt — Utyyyy — Utzxr — Utzzrr — Utyy — a(uyut)yy - B(Uyuyt)y = 0.

While taking o = 0 and 8 = 4, (23) is reduced to the corresponding equation in
Ref. 56. The obtained results of Case 1 are consistent with those in the literature.?®
To the best of our knowledge, Egs. (24)—(26) have not been reported so far. It seems
that these equations take the similar forms, but they are totally different such as
the dispersion relations and phase shifts.

Case 1. Substituting u = €’, § = kz + 7y — ct into the linear term of (23) gives the
dispersion relation that reads

c=xvVrt+ k2, (27)
which implies the phase variable is
0 =kx+ry+£+/rt+ k2. (28)
In order to get single kink solutions of (23), we set
u= R(In(f))y, (29)

where the auxiliary function f(z,y,t) is determined by

f=1+Ce, (30)
with Cy = 1. Substituting (29) into (23) and solving for R give
12
=t 5 (31)
This in turn results in the single kink solution
L 12 f, 12 e/t 32)
20+ 8 f 200+ B 4 ghiatriyE/rmith?t
For the two-kink solutions, we can assume the auxiliary function
f=1+C1e" + Cge® + C1Coa12e" 72, (33)

with C; = Cy = 1, then substituting (29) and (33) into Eq. (23), we notice that
the value of a5 is too long-winded to be listed. For simplicity, we take some special
values of parameters ry = 1,170 = 2, k1 = 3, ko = 4, then for the case « = 0,5 # 0,
the two-kink solutions can be found. Similarly, when taking special values r3 =
3,k3 = 5, we can get ai3 from kyi,rq, ks, r3 and ag3 from ko, ro, k3, r3. After the
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tedious and complicated computations, the solutions of a;;,1 <14 < j < 3 are given
by

a=0,8#0:
—12v/5 4 35 —27/5/53 + 959 —108+/53 + 995
a1y = —————, 13 = , apy=—— ————. (34)
101 2336 4829
Then, the two-kink solutions are given by
Y E 63x+yi\/ﬁt + 264x+2yi4\/§t + 3( —121\{)51+35)e7w+3yi(\/ﬁ+4\/§)t - (35)
B8 1 + e3z+y V10t +€4m+2y:t4\/§t + (*121\6§+35)e7z+3yj:(\/ﬁ+4\/§)t
Furthermore, if setting the auxiliary function
f=1+ 01661 + 02602 + C’3€93 + 01020,12691+92 + C103a13691+93
+ CoCaz3e” % + C1CyC3b105e" H02 105, (36)
where C; = 1,1 < ¢ < 3. Substituting (29) and (36) into (23) leads to
bia3 # a12a13a23. (37)

Therefore, this shows that Eq. (23) does not have three kink solutions in the sense
of Hirota integrability.

However, it should be noted when taking k; = r;,1 <4 < 3: while a =0,8 #0
and o = f # 0 the two-soliton solutions exist, and while & = 0,5 # 0 the three-
soliton solutions do exist since b1z = ai2a13a23. The solutions of the parameters
are as follows with choosing k1 =11 = 1,ky =ry =2, k3 =r3 = 3.

(i) a=0,840:

01 — —20+/10 + 125 0y —9v/5 + 85 s —36v/2 + 7 (38)
465 ’ 220 ’ 395
(i) a =B #£0:
01y — —6v/10 + 33 o1 — —3v/5 +23 s — —6v/2 + 1 (39)
81 ’ 44 ’ 35
Taking o = 0,5 = 1,k; = 3, k2 = 4,k3 = 5 with y = 1, the three-dimensional
plots and two-dimensional plots at different time ¢ = —5,0,5 of the single kink

solutions and two-kink solutions are presented in Figs. 5 and 6. At the same time,
the singular single kink solutions and singular two-kink solutions are presented as
follows with choosing C; = —1 (i = 1,2, 3)

12 _T16k11+T1yi\/T14+k12t

U = , 40
2a + ﬁ 1 _ ek‘lz+7‘1y:|:\/’l‘14+k}12t ( )

12 eSery:t\/Et + 264:1:+2y:t4\/§t _ 3(—12\/5+35)e7z+3yi(\/ﬁ+4ﬂ)t
"= 101 (41)

B 1 — e3a+y£VI0t _ pdzt2y+4v/2t =+ (%)e7x+3yi(\/10+4\/§)t :

The two-dimensional plots for y = 1 at different times t = —5,0,5 of those single
singular kink solutions and singular two-kink solutions are presented in Fig. 7.
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Fig. 5. (Color online) The 3D plots for kink solutions (32) and (35) of Eq. (23) at different time
t=-5,0,5when a =0,8=1,r1 = 1,72 = 2,73 = 3,k1 = 3,k = 4,ks = 5. (a)—(c) Single kink
solutions; (d)—(f) two-kink solutions.
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Fig. 6. (Color online) The 2D plots for kink solutions (32) and (35) of Eq. (23) at different time
t =-5,0,5when a =0,8=1,r1 = 1,710 = 2,73 = 3,k1 = 3,ka = 4,k3 = 5,y = 1. (a) Single
kink solutions; (b) two-kink solutions.

Case 2. Consider Eq. (24). Similarly, the dispersion relationship and the phase
variable can be obtained

¢ =4+ k2 4 k4, (42)
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Fig. 7. (Color online) The 2D plots for singular kink solutions u of Eq. (23) at different time

t=-5,0,5whena=0,8=1,r1 =1,r0 =2,r3 = 3,k1 = 3,ko = 4,ks = 5,y = 1. (a) Singular
single kink solutions; (b) singular two-kink solutions.

0 =kx +ry+Vrt+ k2 + kit (43)

Proceeding as before, substituting (29) and the auxiliary function (30) into Eq. (24),
we have

_ 12(k14 + 7"14)

= m. (44)
This in turn gives the single kink solution
_ 12(/€14+r14) r1ek1’5+”yimt . (45)
2o+ B) 1 4 ekretriyEy/riitk 24k 1t
In particular, if setting k1 to 71, then the parameter R is reduced to
24
=t 5 (46)

Furthermore, if setting the auxiliary function f(z,y,t) to be (33), we find that
Eq. (24) has no two-soliton solutions for any « and S when k; is not equal to r;,
1 <i<3. However, for k1 =r1 = 1,ka =19 =2,ks=r3=3,and a =0,8 #0 or
a = f # 0, the two-kink solutions can be found. The phase shifts a;;,1 <¢ < j <3
can be listed as follows:

(i) a=0,8+#0:
- —4V/3 415 - —9v19v/3 + 325 e — —108v/19 + 671 (47)
12 — 59 9 13 — 356 ) 23 — 3875 )
(ii) a =B #0:
—4/3 413 —V19v3 + 29 —4/19 + 23
au:T, alS:T’ a23:775~ (48)
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Consequently, the two-kink solutions follow immediately
+V/ + —4V/3+15\ 3z+3y+
B 24 ety \/§t+262m+2y 6t+3( \é;+ )e3x+dy (V3+6)t

= — 4
v B 1+ e:c+yi\/§t + e2w+2y+6t (*4\ég+15)e31‘+3yi(\/§+6)t7 ( 9)
+y++/3 2x+2y+6 —4v3+13) 3z+3y+(V/3+6
Lo Bt V3L 9e2uH2yE0t | g(—AVBHLS) 3u+3y(V3H6)t (50)

Q1 4 ertytVE | o2ot2yt6t | (%)e&cwyi(\/ﬁ%)t'

Moreover, by setting the auxiliary function f(z,y,t) to be (36) and proceeding
as before, we find that

bi23 = a12a13a23. (51)

It is observed that choosing C7 = Cy = C35 = —1 and proceeding as before can
yield single singular kink solutions, two singular kink solutions and three singular
kink solutions.

Case 3. Consider Eq. (25). In the same way, the dispersion relationship and the
phase variable are given by

c=Vri+r2 4 k2, (52)
0 =kax+ry+Vrt+r?+ k2. (53)

Proceeding as before, substituting the transformation (29) and the auxiliary func-
tion (30) into Eq. (25), we find that

12
R = et B (54)
So, the single kink solution follows immediately
12 Tlek1$+r1y:t\/r14+r12+k12t ( )
55

u = :

200 + 5 1+ ek1x+r1yi\/r14+rlz+k12t

Setting the auxiliary function f(x,y,t) to (33) and taking ry = 1,79 = 2,r3 =

3,k1 = 3,ko = 4,k3 = 5, the two-kink solutions do exist for &« = 0,8 # 0. The
phase shifts a;;,1 < i < j < 3 are given by

a=0,8#0:
o1y — —18V11 + 777 01— —27V/115V/11 + 13660607
215 3259840 (56)
_ —162V/115 + 2165
42 = 9995 ’
which in turn gives a two-kink solution
Y 12 e3r+yE V1Lt + Qedut2y£6t 4 3(—18\2/11E+77)67w+3yi(\/ﬁ+6)t (57)

B 14 eBrtyEVITt 4 pdat2yd6t (*18\/21151+77)€7z+3y:t(\/11+6)t.

However, for k; = r;,1 < i < 3, the two-kink solutions are subsistent, the three
kink solutions do not exist when a = 0,8 # 0 or &« = 3 # 0. The solutions of the
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parameters are given by

(i) a=0,8#0:
po o T2V245 0 —9VB3+185 - —18v/66 + 197 (58)
2T 0 TR e 0 TP 102
(i) a =B +#0:
g = TW249 0 —VB34IT 466 441 (59)
12 — 21 ) 13 — 32 ) 23 — 125 .

Setting the auxiliary function f(z,y,t) to be (36) and proceeding as before, we
can have

b123 # ai2ai3ass. (60)

Therefore, the three-kink solutions are not subsistent and (25) does not has multiple
soliton solutions for the positive integer N. Additionally, when C; = Cy = C3 = —1,
the single singular kink solutions and two singular kink solutions can be found by
proceeding as before.

Case 4. Similarly, the dispersion relationship and the phase variable of Eq. (26)
are given by

c=+Vri+ k2 k2, (61)

0 = ka +ry £ /1t + k* + 2 + k2t (62)
Plugging (29) and the auxiliary function (30) into (26) can give
C12(kt 4 ?)

= 20t B) (63)
So, the single kink solution follows immediately
_ 12(k1* +7%) rpefretrvEymdtht b2tk . (64)
1420+ B) | 4 ekmtriyE/rittk e 2k %t
Furthermore, equating k; and r; reduces R to
B 2042j4k B (65)

Taking the auxiliary function f(x,y,t) in (33), we can find that (26) has no two-
soliton solutions for any o and 8 when k; is not equal to r;, 1 < i < 3. But, if taking
ki1 =11 =1,ko =19 = 2, kg = r3 = 3 yields two-kink solutions for « =0, # 0 or
a = f # 0. Meanwhile, the phase shifts a;;,1 <i < j < 3 are given by

(i) a=0,840:

po = “WVI0425 0 —9VH+85  —36v2+71 (66)
12 93 BT oo TE T 395
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(i) a=p#0:
v —2v/10 + 11 o —3v5+23 o — —6v2+11 (67)
12 — 27 ) 13 — 44 ) 23 — 35 .
These give two-kink solutions while 71 = 1,70 =2,k =1,k =2
24 :c+y:|:2t_|_2 2m+2y:|:2\/ﬁt_|_3 —4+/10425 31+3y:|:(2+2\/ﬁ)t
u = € € ( 93 )e (68)

o B 1+ ex+yi2t + €2w+2yi2\/ 10t + (—4x/91§+25)e3x+3yi(2+2\/ 10)t7

8 ew+yi2t+2€21+2yi2\/10t+3(—2x/1;)+11)631+3yi(2+2\/10)t
_° 2

u = . (69)
Q] 4 ertyE2t | p22+2y+2VI0t 4 (*2\/21?+11)631+3y:|:(2+2\/ﬁ)t

By setting the auxiliary function f(z,y,t) to be (36), and proceeding as before,
we find

b123 = a12a13a23. (70)

It is noted that C7; = Cy = C5 = —1 gives the singular single kink solutions, singular
two-kink solutions and singular three kink solutions by proceeding as before.

4. Conclusion

In this research, we carry out the analysis of two generalized fifth-order nonlin-
ear evolution equations with different dimensions by using the Hereman—Nuseir
method developed by Hereman and Nuseir.?>?3 It is found that the parameters
are very important for classifying the resulting equations into integrable equations
or non-integrable equations. Using the Hereman—Nuseir method, we not only get
the necessary conditions for the parameters a and [ guaranteeing these general-
ized equations integrable in the sense of Hirota’s integrability but also obtain the
multiple soliton solutions, including kink solutions and singular kink solutions. For
the (1+1)-dimensional equations, we find that it is integrable while & = 0,5 # 0
or o = [, and obtained its soliton solutions. These solutions and their dynamic be-
haviors were described by corresponding graphs (seeing Figs. 1-4). For the (2+1)-
dimensional equations, Cases 1 and 3 only have two-soliton solutions if « = 0,5 # 0
and k; # r;, 1 < i < 3, three soliton solutions do not exist, therefore these equations
do not admit multiple solitons. Cases 2 and 4 are integrable when oo = 0, 5 # 0 or
a = with k; = r;,1 <1i < 3, and we can obtain their multiple solitons.

As a future work, we might study other types of solutions such as lumps,
breathers and rogue waves of Egs. (6) and (22).
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