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The binary Darboux transformation method is applied to the coupled Sasa-Satsuma equations, which

can be used to describe the propagation dynamics of femtosecond vector solitons in the birefringent

fibers with third-order dispersion, self-steepening, and stimulated Raman scattering higher-order

effects. An N-fold iterative formula of the resulting binary Darboux transformation is presented in

terms of the quasideterminants. Via the simplest case of this formula, a few of illustrative explicit

solutions to the coupled Sasa-Satsuma equations are generated from vanishing and non-vanishing

backgrounds, which include the breathers, single- and double-hump bright vector solitons, and anti-

dark vector solitons. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4986807]

The binary Darboux transformation method is a very

effective tool in soliton theory to generate wide classes

of exact solutions of integrable nonlinear equations. The

coupled Sasa-Satsuma equations are one of the integra-

ble higher-order nonlinear Schr€odinger systems. The

binary Darboux transformation for the coupled Sasa-

Satsuma equations is constructed by use of an appropri-

ate dimensional reduction. Different types of exact

analytical solutions in terms of the quasideterminants

can be derived from vanishing and nonvanishing

backgrounds.

I. INTRODUCTION

The Sasa-Satsuma equation

i qT þ
1

2
qXX þ qjqj2 þ i e qXXX þ 6jqj2qX þ 3q jqj2

� �
X

h i
¼ 0;

(1)

where q(T, X) is a complex-valued function, and the sub-

scripts T and X denote the partial derivatives, is originally

presented as a model for the femtosecond pulse propagation

in a monomode fiber.1,2 The last three terms on the left-hand

side of Eq. (1) represent the third order dispersion, self-

steepening, and stimulated Raman scattering effects, respec-

tively. Equation (1) is a completely integrable higher-order

nonlinear Schr€odinger model in the sense of being solvable

by the inverse scattering transform.3,4 Its many integrable

properties and exact solutions have been studied extensively

by various methods.5–9

Equation (1) can be easily extended to a coupled case,

the so-called coupled Sasa-Satsuma equations10–12

iqj;T þ
1

2
qj;XX þ qj

X2

k¼1

jqkj2þ ie qj;XXX þ 6 qj;X

X2

k¼1

jqkj2
"

þ3 qj

X2

k¼1

jqkj2
 !

X

#
¼ 0; j¼ 1;2; (2)

which can be used to describe the propagation dynamics of

femtosecond vector solitons in the birefringent or two-mode

fibers.10,11 Many integrable properties of Eqs. (2) have been

studied, which include the Painlev�e property,11 infinitely

many conserved laws,12 the Hirota bilinear representation,13

and the B€acklund transformation.10 Recently, the single- and

double-hump soliton solutions have been obtained from the

zero seed solution by the basic Darboux transformation.14

The binary Darboux transformation method is a very

effective tool in soliton theory to construct wide classes of

exact solutions of integrable nonlinear equations.15–17 The

general idea of this method is to keep both the spectral prob-

lem and the corresponding adjoint spectral problem associ-

ated with nonlinear equations invariant with respect to the

action of the binary Darboux transformation. Moreover, the

iterative formula of the binary Darboux transformation is

expressible in terms of the quasideterminants. In this paper,

by an appropriate reduction from (2þ 1) to (1þ 1) dimen-

sions, we will give a systematic method to construct the

binary Darboux transformation for Eqs. (2). We will present

the N-fold iterative formula of the resulting binary Darboux

transformation and construct a few of illustrative explicit sol-

utions from vanishing and non-vanishing backgrounds.

The outline of this work is the following. In Sec. II, we

will recall the Lax pair of Eqs. (2) and its important symme-

try property. In Sec. III, via the theory of the quasidetermi-

nants,18,19 we will consider the dimensional reductions of the

binary Darboux transformation from (2þ 1) to (1þ 1)

dimensions, and present an N-fold iterative transformation.

In Sec. IV, we will give illustrative applications of the result-

ing binary Darboux transformation from vanishing anda)Author to whom correspondence should be addressed: hqzhang@usst.edu.cn
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non-vanishing backgrounds. Taking the once-iterated trans-

formation as an example, we will derive the breathers, sin-

gle- and double-hump bright vector solitons, and anti-dark

vector soliton solutions. Finally, Sec. V gives some conclud-

ing remarks.

II. LAX PAIR

Through the variable transformations10

qj X; Tð Þ ¼ uj x; tð Þexp
i

6e
X � T

18e

� �� �
; j ¼ 1; 2;

x ¼ X � T

12e
; t ¼ eT: (3)

Equations (2) are transformed into the following coupled

complex modified Korteweg-de Vries equations

uj;t þ uj;xxx þ 6 uj;x

X2

k¼1

jukj2 þ 3 uj

X2

k¼1

jukj2
 !

x

¼ 0;

j ¼ 1; 2; (4)

which can be commonly regarded as the coupled Sasa-

Satsuma equations. The Lax pair for Eqs. (4) can be pre-

sented as follows:10

L ¼ @x þ Jkþ R; (5a)

M ¼ @t þ 4Jk3 þ 4Rk2 � 2QkþW; (5b)

with

J ¼ i
1 0

0T �I

 !
; R ¼

0 �u

u† O

 !
;

Q ¼ i
uu† ux

u†
x �u†u

 !
;

W ¼
uxu† � uu†

x uxx þ 2uu†u

�u†
xx � 2u†uu† u†

xu� u†ux

 !
;

u ¼ u1; u2; u
�
1; u
�
2

� �
;

where I and O denote the 4� 4 identity matrix and zero

matrix, T stands for the transpose of a vector, and the asterisk

and the dagger denote the complex conjugate and the

Hermitian conjugate, respectively. It is straightforward to

verify that the compatibility condition of L;M½ � ¼ 0 is equiv-

alent to Eqs. (4), indeed.

Since the potential matrix R is skew-Hermitian, the

eigenvalue and the eigenfunction of the Lax pair (5) have the

following important symmetry property.

Proposition 1.1 If / ¼ /1;/2;/3;/4;/5ð ÞT is an eigen-
function of the Lax pair (5a) and (5b) with an eigenvalue k,
then w ¼ /�1;/

�
4;/

�
5;/

�
2;/

�
3

� �T
is also an eigenfunction of

the Lax pair (5a) and (5b) with an eigenvalue �k�.
The proof is a straightforward computation. Due to the

above-mentioned property, we can get the matrix solution of

the Lax pair (5a) and (5b)

hx þ JhKþ Rh ¼ 0; (6a)

ht þ 4JhK3 þ 4RhK2 � 2QhKþWh ¼ 0; (6b)

with

h ¼

/1 /�1
/2 /�4
/3 /�5
/4 /�2
/5 /�3

0
BBBBBB@

1
CCCCCCA
; K ¼

k 0

0 �k�

 !
:

III. BINARY DARBOUX TRANSFORMATION

In this section, we first review the binary Darboux trans-

formation in (2þ 1) dimensions.20 Then, by a separation of

variable technique, we consider the dimensional reductions

of the binary Darboux transformation from (2þ 1) to (1þ 1)

dimensions.

Let us consider the linear differential operators

L ¼ @x þ
XN

j¼0

aj@
j
y; M ¼ @t þ

XN

j¼0

bj@
j
y; (7)

where aj and bj are m�m matrices.

A basic Darboux transformation for the matrix differential

operators in Eqs. (7) is stated in the following proposition.

Proposition 3.1 Let h be a non-singular m�m matrix
solution of the linear system L /ð Þ ¼ M /ð Þ ¼ 0. Then, the
Darboux transformation

/! ~/ ¼ Gh /ð Þ ¼ h@yh
�1/; (8)

keeps the linear system L /ð Þ ¼ M /ð Þ ¼ 0 invariant, namely,
~/ also satisfies the same linear system L ~/

� �
¼ M ~/

� �
¼ 0

with different coefficients.
The corresponding binary Darboux transformation is

given in the following proposition.

Proposition 3.2 Let h and q be m� k matrix solutions of
the linear system L /ð Þ ¼ M /ð Þ ¼ 0 and its adjoint system
L† wð Þ ¼ M† wð Þ ¼ 0, respectively. Then, the binary Darboux
transformation

/! ~/ ¼ Bh;q /ð Þ ¼ /� hx h; qð Þ�1x /; qð Þ; (9a)

w! ~w ¼ B�†
h;q wð Þ ¼ w� q x h; qð Þ�†x h;wð Þ; (9b)

where x h; qð Þy ¼ q†h, keeps the linear system L /ð Þ ¼
M /ð Þ ¼ 0 and its adjoint system L† wð Þ ¼ M† wð Þ ¼ 0 invari-
ant, respectively.

We iterate the binary Darboux transformations (9a) and

(9b) N times, and further present an N-fold iteration expression.

Theorem 3.1 Suppose that h1; h2;…; hN are a set of
N linearly independent solutions of the linear system
L /ð Þ ¼ M /ð Þ ¼ 0, and q1; q2;…; qN are a set of N linearly
independent solutions of its adjoint system L† wð Þ ¼ M† wð Þ
¼ 0. Then, the N-fold iteration of the binary Darboux trans-
formation is in terms of the quasideterminants

073102-2 Zhang, Wang, and Ma Chaos 27, 073102 (2017)



(10a)

(10b)

where H ¼ h1; h2;…; hNð Þ; P ¼ q1; q2;…; qNð Þ; X H; Pð Þ
¼ x hi; qj

� �� �
i;j¼1;2;…;N

is an N�N matrix, X /; Pð Þ ¼
x /; qj

� �� �
j¼1;2;…;N

is an N-column vector, and X H; wð Þ ¼
x w; hið Þð Þi¼1;2;…;N is an N-row vector.

In the following, we consider the dimensional reduction

of the binary Darboux transformation from (2þ 1) to (1þ 1)

dimensions by a separation of variable technique20

/ x; y; tð Þ ¼ /r x; tð Þeky; w x; y; tð Þ ¼ wr x; tð Þely; (11)

h x; y; tð Þ ¼ hr x; tð ÞeKy; q x; y; tð Þ ¼ qr x; tð ÞePy; (12)

where k and l are two constants, and K and P are two k� k
matrices. Then, the matrix differential operators (7) become

Lr ¼ @x þ
XN

j¼0

ajk
j; Mr ¼ @t þ

XN

j¼0

bjk
j: (13)

If we assume that

x h; qð Þ ¼ eP†

xr hr; qrð ÞeKy;

x /; qð Þ ¼ e P†þkIð Þyxr hr; qrð ÞeKy; (14)

according to Eqs. (11) and (12), we have

P†xr hr; qrð Þ þ xr hr; qrð ÞK ¼ qr† hr;

P† þ k Ið Þxr /r; qrð Þ ¼ qr† /r: (15)

From now on, for notational simplicity, we omit the

superscript r denoting reduced objects and only discuss the

binary Darboux transformation in the reduced case. If we

choose K ¼ diag k1; k2;…; kNð Þ and P ¼ diag n1; n2;…;ð
nNÞ, then, from Eqs. (15), we can have

x h;qð Þ ¼
q† h
� �

ij

kjþ n�i
; x /;qð Þ ¼

q† /
� �

ij

kþ n�i
; i; j¼ 1;2;…;N:

(16)

It is straightforward to check that the Lax operators L
and M in Eqs. (5a) and (5b) are both anti-Hermitian, i.e.,

L† ¼ �L and M† ¼ �M. Due to this property, we choose

q ¼ h and P ¼ �K to keep constraints among the potentials

in the matrix R. Thus, the rest work is only to look for a rela-

tionship between new potentials and the original potentials.

Furthermore, because the form of the operator L is invariant

under the binary Darboux transformation

L! ~L ¼ Bh;qLB�1
h;q; (17)

where ~L has the same form as L except that R is replaced by
~R, it follows from Eq. (17) that

~R ¼ Rþ J; h x h; hð Þ�1h†
h i

: (18)

By introducing the matrix

U ¼ 1

2i

0 u

u† O

 !
; (19)

the potential matrix R can be rewritten as R ¼ U; J½ �.
Therefore, from Eq. (18), we can get the relation

(20)

where x h; hð Þ satisfies

x h; hð ÞK� K†x h; hð Þ ¼ h†h;

x h; hð Þ ¼ h† hð Þ
ij

kj � k�i
i; j ¼ 1; 2ð Þ: (21)

Via the above explicit expression of x h; hð Þ in Eq. (21), it is

easy to verify that the reductions and constraints among the

original potentials in the matrix R are consistent.

By iterating successively, the N-fold iterative potential

transformation can be given in the following theorem.

Theorem 3.2 Suppose that h1; h2;…; hN are N linearly
independent matrix solutions of linear system L /ð Þ ¼ M /ð Þ
¼ 0 corresponding to k1, k2 � � �, kN, respectively. Then, the
N-fold iterative potential transformation is expressed as

(22)

with

X H;Hð Þ ¼

x h1; h1ð Þ x h2; h1ð Þ � � � x hN; h1ð Þ
x h1; h2ð Þ x h2; h2ð Þ � � � x hN; h2ð Þ

..

. ..
. . .

. ..
.

x h1; hNð Þ x h2; hNð Þ � � � x hN; hNð Þ

0
BBBBBB@

1
CCCCCCA
;

H ¼ h1; h2;…; hNð Þ; hk ¼

/5k�4 /�5k�4

/5k�3 /�5k�1

/5k�2 /�5k

/5k�1 /�5k�3

/5k /�5k�2

0
BBBBBBBB@

1
CCCCCCCCA
;

k ¼ 1; 2;…;Nð Þ;

where x hi; hj

� �
satisfies

x hi; hj

� �
Ki � K†

j x hi; hj

� �
¼ h†

j hi; Ki ¼ diag ki;�k�i
� �

;

i; j ¼ 1; 2;…;Nð Þ:
(23)
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From the above Eq. (23), we get

x hi; hj

� �
¼ Fij �G�ij

Gij �F�ij

� �
; (24)

with

Fij ¼
1

ki � k�j
/5i/

�
5j þ /5i�1/

�
5j�1 þ /5i�2/

�
5j�2

�
þ/5i�3/

�
5j�3 þ /5i�4/

�
5j�4

�
;

Gij ¼
1

ki þ kj
/5i/5j�2 þ /5i�1/

�
5j�3 þ /5i�2/5j

�
þ/5i�3/5j�1 þ /5i�4/5j�4

�
:

By use of the above expression (22), we can obtain the

concrete N-fold iterative potential transformations

(25)

(26)

(27)

(28)

where Uj j ¼ 1; 2;…; 5ð Þ is the jth row vector of the matrix

H. With the aid of the properties of quasideterminants, one

can directly check that the above expressions are consistent.

IV. SOLUTIONS OF THE COUPLED SASA-SATSUMA
EQUATIONS

In this section, applying the potential transformations

(25) and (26), we will construct different types of exact ana-

lytical solutions of Eqs. (4) from vanishing and non-

vanishing backgrounds.

Let us consider the once-iterated potential transforma-

tions (25) and (26)

(29a)

(29b)

where

F11 ¼
1

k1� k�1

X5

j¼1

j/jj2; G11 ¼
1

2k1

/2
1þ 2/2/4þ 2/3/5

� �
:

A. Solutions with vanishing background

With u1 ¼ u2 ¼ 0 as a seed solution of Eqs. (4), the lin-

ear system L /ð Þ ¼ M /ð Þ ¼ 0 becomes

/x þ k J/ ¼ 0; (30a)

/t þ 4k3J/ ¼ 0: (30b)

The fundamental solution of Eqs. (30a) and (30b) can be

given as

/ ¼ ae�iv; beiv; ceiv; deiv; .eiv
� �T

; v ¼ k xþ k2tð Þ; (31)

where a; b; c; d, and . are all complex constants. By

substituting the above solution (31) into Eqs. (29a) and

(29b), we obtain

u 1½ � ¼ 2g

jaj2
a� s1 þ s2ð Þcosh 2ivð Þ þ s2 � s1ð Þsinh 2ivð Þ
� 	

þ a s3 þ s4ð Þcosh 2iv�ð Þ þ s3 � s4ð Þsinh 2iv�ð Þ
� 	

-cosh 2i v� � vð Þ �
u1

2


 �
þ 2g2jbdþ c.jcosh 2i v� þ vð Þ �

u2

2


 �
þ N n2 þ g2

� � ; (32a)

u 2½ � ¼ 2g

jaj2
a� 11 þ 12ð Þcosh 2ivð Þ þ 12 � 11ð Þsinh 2ivð Þ
� 	

þ a 13 þ 14ð Þcosh 2iv�ð Þ þ 13 � 14ð Þsinh 2iv�ð Þ
� 	

-cosh 2i v� � vð Þ �
u1

2


 �
þ 2g2jbdþ c.jcosh 2i v� þ vð Þ �

u2

2


 �
þ N n2 þ g2

� � ; (32b)

with

s1 ¼ a2b�n ig� nð Þ; s2 ¼ 2ib�g bdþ c.ð Þ n� igð Þ � dN n2 þ g2
� �

;

s3 ¼ a2�dn �ig� nð Þ; s4 ¼ �2idg b�d� þ c�.�ð Þ nþ igð Þ � b�N n2 þ g2
� �

;

11 ¼ a2c�n ig� nð Þ; 12 ¼ 2ic�g bdþ c.ð Þ n� igð Þ � .N n2 þ g2
� �

;

13 ¼ a2�.n �ig� nð Þ; 14 ¼ �2i.g b�d� þ c�.�ð Þ nþ igð Þ � c�N n2 þ g2
� �

;

- ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ g2
� �

N2 þ 4g2jbdþ c.j2
q

; N ¼ jbj2 þ jcj2 þ jdj2 þ j.j2;

u1 ¼ ln
N2 n2 þ g2
� �

þ 4g2jbdþ cqj2

jaj4 n2 þ 2g2
� � ; u2 ¼ ln

a2 b�d� þ c�.�ð Þ
a2� bdþ c.ð Þ ;

where n and g 6¼ 0ð Þ are the real and imaginary parts of k.
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The above presented solutions (32a) and (32b) represent

the complicated breather transition dynamics in the space and

time coordinates, which is characterized by seven involved

parameters of a, b, c, d, ., n, and g. Figures 1(a) and 1(b)

depict the evolution plot of a vector breather in the two com-

ponents u1 and u2. Note that when either b ¼ c ¼ 0; b ¼ .
¼ 0; d ¼ c ¼ 0, or d ¼ . ¼ 0 holds, the solutions (32a) and

(32b) degenerate to the bright vector solitons including the

single- and double-hump bright solitons. The values of

parameters n and g determine the type of bright vector soliton.

If jnj �
ffiffiffi
3
p
jgj, the solutions (32a) and (32b) represent a

single-hump bright vector soliton, but they are a double-hump

typed vector soliton for the case jnj <
ffiffiffi
3
p
jgj. Figures 2 and 3

show the propagation dynamics of a single-hump vector soli-

ton and a double-hump vector soliton, respectively.

In high bit-rate optical communication systems, the

double-hump or multi-hump soliton has been proposed as an

appropriate information carrier.21,22 The main advantage of

the double-hump soltions lies in the fact that they are not

affected with time position shifts arising from intra-channel

interaction in high bit-rate systems.21 Moreover, this prop-

erty of double-hump soltions can be exploited profitably to

develop error preventable line-coding schemes, in which

binary data are assigned to the single and double-hump soli-

tons.23 We hope that the single- and double-hump vector sol-

itons in Eqs. (4) will be valuable to the study of the future

development of high bit-rate optical communication systems

by use of vector solitons as carriers of information.

B. Solutions with a non-vanishing background

Starting from the seed solution uj ¼ cj j ¼ 1; 2ð Þ with

cj as complex constants, we solve the linear system

L /ð Þ ¼ M /ð Þ ¼ 0, and obtain the general solution

/ ¼ /1;/2;/3;/4;/5ð ÞT

/1 ¼ be# þ ce�#; (33a)

/2 ¼
a
2

c2ef þ c�1 bvþe# þ cv�e�#
� �

; (33b)

FIG. 1. The propagation dynamics of a vector breather via solutions (32a)

and (32b). The parameters of relevant quantities are, respectively, a ¼ b ¼ c
¼ d ¼ 1; . ¼ �2; n ¼ �1, and g ¼ 1.

FIG. 2. The propagation dynamics of a single-hump bright vector soliton via

solutions (32a) and (32b). The parameters of relevant quantities are, respec-

tively, a ¼ c ¼ 1; b ¼ . ¼ 0; d ¼ �2, n ¼ 1, and g ¼ 1.

FIG. 3. The propagation dynamics of a double-hump bright vector soliton

via solutions (32a) and (32b). The parameters of relevant quantities are,

respectively, a ¼ 1; b ¼ c ¼ 0; d ¼ 5; . ¼ 6; n ¼ 1
8
, and g ¼ 1.

073102-5 Zhang, Wang, and Ma Chaos 27, 073102 (2017)



/3 ¼ �
a
2

c1ef þ c�2 bvþe# þ cv�e�#
� �

; (33c)

/4 ¼
a
2

c�2ef þ c1 bvþe# þ cv�e�#
� �

; (33d)

/5 ¼ �
a
2

c�1ef þ c2 bvþe# þ cv�e�#
� �

; (33e)

where a, b, and c are all complex constants, and

# ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2 jc1j2 þ jc2j2

� �q
xþ 4 k2 � jc1j2 � jc2j2

� �
t

� 	
;

f ¼ ik xþ 4k2tð Þ; v6 ¼
k i6i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 2 jc1j2 þ jc2j2

� �q
2 jc1j2 þ jc2j2
� � :

Inserting the above solution (33a)–(33e) into Eqs. (29a) and

(29b), one can construct explicit solutions of Eqs. (4), includ-

ing the periodic solutions, the resonant soliton solutions, and

the anti-dark vector soliton solutions.

For example, by substituting the solutions (33a)–(33e)

with k ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jc1j2 þ jc2j2
� �q

and b ¼ 0 into Eqs. (29a) and

(29b), we have

u 1½ � ¼ c1 1�2 a�cþac�ð Þ

a�c�ac�ð Þ� 2
ffiffiffi
2
p
jcj2c�2ef

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1j2þjc2j2
� �q

a2�c2þa2c2�ð Þþ 4jcj4e2f

jc1j2þjc2j2

2
666664

3
777775;

(34a)

u 2½ � ¼ c2 1�2 a�cþac�ð Þ

a�c�ac�ð Þþ 2
ffiffiffi
2
p
jcj2c�1ef

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jc1j2þjc2j2
� �q

a2�c2þa2c2�ð Þþ 4jcj4e2f

jc1j2þjc2j2

2
666664

3
777775;

(34b)

with f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 jc1j2 þ jc2j2
� �q

x� 8 jc1j2 þ jc2j2
� �

t
� 	

.

It is found that the solutions (34a) and (34b) can exhibit

anti-dark vector solitons, as seen in Fig. 4. Obviously, when

t! 61, the intensity of an anti-dark soliton is an infinitely

extended constant, which is different from that of the bright

soliton (the bright solitons have vanishing amplitude as

t! 61). Recently, anti-dark solitons have received consid-

erable attention in the last few years.24–28 As one specific type

of soliton, anti-dark solitons are localized excitations on a

continuous wave background. Experimentally, Ref. 24 has

firstly observed anti-dark optical solitons in non-instantaneous

nonlinear media. The instability of anti-dark optical solitons

can be totally eliminated by properly engineering the incoher-

ence of background beam.24

V. CONCLUDING REMARKS

In this paper, we have studied the coupled Sasa-Satsuma

equations describing the propagation dynamics of femtosec-

ond vector solitons in the birefringent fibers with third-order

dispersion, self-steepening, and stimulated Raman scattering

higher-order effects. Based on the linear spectral problem of

this model, we have given a systematic approach for con-

structing the binary Darboux transformation. With the theory

of quasideterminants, we have presented a determinant form

of the N-fold iterative binary Darboux transformation. From

the once-iterated transformation, we have derived the breath-

ers, single- and double-hump bright vector solitons, and anti-

dark vector solitons.

In Refs. 10–14, some solutions of Eqs. (2) have been

studied by various methods. Through comparing our

obtained results with those published previously, we have

the following remarks:

(1) In this paper, by a separation of variable technique, we

have given a systematic approach for constructing the

binary Darboux transformation of the coupled Sasa-

Satsuma equations. The technique presented may also be

applicable to other nonlinear integrable systems.

(2) By the N-fold iterative binary Darboux transformation,

we have presented exact solutions of the coupled Sasa-

Satsuma equations in terms of compact quasideterminant

forms. The resulting solutions in this paper cover many

previously published solutions. The obtained formulas

allow one to construct various new solutions, including

bright solitons, anti-dark solitons, breathers, rational sol-

utions, and interaction solutions.

(3) Although our explicit solutions exhibited here are from

the first iteration, it is feasible to construct more compli-

cated Nth-order bright vector soliton, breather, and anti-

dark soliton solutions. Based on those solutions, collision

dynamics among solitons or breathers can be discussed,

occurring between two components. Finally, it is also

FIG. 4. The propagation dynamics of an anti-dark vector soliton via solu-

tions (34a) and (34b). The parameters of relevant quantities are, respec-

tively, a ¼ c ¼ 1 and c1 ¼ c2 ¼ 1.
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interesting to explore rogue wave solutions of the cou-

pled Sasa-Satsuma equations by the presented binary

Darboux transformation.
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