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The binary Darboux transformation method is applied to the coupled Sasa-Satsuma equations, which
can be used to describe the propagation dynamics of femtosecond vector solitons in the birefringent
fibers with third-order dispersion, self-steepening, and stimulated Raman scattering higher-order
effects. An N-fold iterative formula of the resulting binary Darboux transformation is presented in
terms of the quasideterminants. Via the simplest case of this formula, a few of illustrative explicit
solutions to the coupled Sasa-Satsuma equations are generated from vanishing and non-vanishing
backgrounds, which include the breathers, single- and double-hump bright vector solitons, and anti-
dark vector solitons. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4986807]

The binary Darboux transformation method is a very
effective tool in soliton theory to generate wide classes
of exact solutions of integrable nonlinear equations. The
coupled Sasa-Satsuma equations are one of the integra-
ble higher-order nonlinear Schrodinger systems. The
binary Darboux transformation for the coupled Sasa-
Satsuma equations is constructed by use of an appropri-
ate dimensional reduction. Different types of exact
analytical solutions in terms of the quasideterminants
can be derived from vanishing and nonvanishing
backgrounds.

I. INTRODUCTION

The Sasa-Satsuma equation

. 1 -
iq7 + 5 dxx + algl’ +ie|quo + 6la’qx + 3‘1(|Q|2)x} =0,
(M

where ¢(T, X) is a complex-valued function, and the sub-
scripts T and X denote the partial derivatives, is originally
presented as a model for the femtosecond pulse propagation
in a monomode fiber."* The last three terms on the left-hand
side of Eq. (1) represent the third order dispersion, self-
steepening, and stimulated Raman scattering effects, respec-
tively. Equation (1) is a completely integrable higher-order
nonlinear Schrodinger model in the sense of being solvable
by the inverse scattering transform.>* Its many integrable
properties and exact solutions have been studied extensively
by various methods.”™

Equation (1) can be easily extended to a coupled case,
the so-called coupled Sasa-Satsuma equations'®'?
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which can be used to describe the propagation dynamics of
femtosecond vector solitons in the birefringent or two-mode
fibers.'®!! Many integrable properties of Egs. (2) have been
studied, which include the Painlevé property,'' infinitely
many conserved laws,'? the Hirota bilinear representation,'?
and the Bicklund transformation.'® Recently, the single- and
double-hump soliton solutions have been obtained from the
zero seed solution by the basic Darboux transformation.'*

The binary Darboux transformation method is a very
effective tool in soliton theory to construct wide classes of
exact solutions of integrable nonlinear equations.>~'” The
general idea of this method is to keep both the spectral prob-
lem and the corresponding adjoint spectral problem associ-
ated with nonlinear equations invariant with respect to the
action of the binary Darboux transformation. Moreover, the
iterative formula of the binary Darboux transformation is
expressible in terms of the quasideterminants. In this paper,
by an appropriate reduction from (2+ 1) to (1 + 1) dimen-
sions, we will give a systematic method to construct the
binary Darboux transformation for Egs. (2). We will present
the N-fold iterative formula of the resulting binary Darboux
transformation and construct a few of illustrative explicit sol-
utions from vanishing and non-vanishing backgrounds.

The outline of this work is the following. In Sec. II, we
will recall the Lax pair of Egs. (2) and its important symme-
try property. In Sec. III, via the theory of the quasidetermi-
nants,m’19 we will consider the dimensional reductions of the
binary Darboux transformation from (2+41) to (1+1)
dimensions, and present an N-fold iterative transformation.
In Sec. IV, we will give illustrative applications of the result-
ing binary Darboux transformation from vanishing and
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non-vanishing backgrounds. Taking the once-iterated trans-
formation as an example, we will derive the breathers, sin-
gle- and double-hump bright vector solitons, and anti-dark
vector soliton solutions. Finally, Sec. V gives some conclud-
ing remarks.

Il. LAX PAIR

Through the variable transformations'®

qj(X,T) = uj(x,t )exp{ég <X—&)}, i=12,
T

:X——
. 126

t=¢T. 3)

Equations (2) are transformed into the following coupled
complex modified Korteweg-de Vries equations

2 2
Uj s+ Uj e + O Uj Z |uk|2 +3u; <Z |uk|2> =0,
k=1 =1

X

J=12, “)

which can be commonly regarded as the coupled Sasa-
Satsuma equations. The Lax pair for Egs. (4) can be pre-

sented as follows: '°
L=0,+J.+R, (5a)

M=0,+4J)> +4R/> =20/ + W,

o ) (i D)
=% %)
(L

(5b)

with

wu' — uuT

u. +2uu'u
W )

f—2u'uu’ wu—uu,

(”17”27”1;”2)

where / and O denote the 4 x 4 identity matrix and zero
matrix, T stands for the transpose of a vector, and the asterisk
and the dagger denote the complex conjugate and the
Hermitian conjugate, respectively. It is straightforward to
verify that the compatibility condition of [L, M] = 0 is equiv-
alent to Egs. (4), indeed.

Since the potential matrix R is skew-Hermitian, the
eigenvalue and the eigenfunction of the Lax pair (5) have the
following important symmetry property.

Proposition 1.1 If ¢ = (¢, ¢,, ¢, a4, (;’)S)T is an eigen-
function of the Lax pair (5a) and (5b) with an eigenvalue 1,
then \ = (¢7, ¢, s, 5, ¢§)T is also an eigenfunction of
the Lax pair (5a) and (5b) with an eigenvalue —J.".

The proof is a straightforward computation. Due to the
above-mentioned property, we can get the matrix solution of
the Lax pair (5a) and (5b)
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0, +JOA + RO =0, (6a)
0, + 4J0A> + 4ROA> — 200A + W0 = 0 (6b)

with

b1 ¢y

& d"j 0

9 = ¢3 ¢5 ) A - 0 —i* .
by ¢
ds 93

lil. BINARY DARBOUX TRANSFORMATION

In this section, we first review the binary Darboux trans-
formation in (24 1) dimensions.” Then, by a separation of
variable technique, we consider the dimensional reductions
of the binary Darboux transformation from (24 1) to (1 4 1)
dimensions.

Let us consider the linear differential operators

N
L=0,+ Zaja}’:,
=0

where a; and b; are m X m matrices.
A basic Darboux transformation for the matrix differential
operators in Egs. (7) is stated in the following proposition.
Proposition 3.1 Let 0 be a non-singular m x m matrix
solution of the linear system L(¢) = M(¢p) = 0. Then, the
Darboux transformation

N
M=0,+3 b3,
=0

b — ¢ =Go(¢) = 00,0, (8)

keeps the linear system L(¢)
(2) also satisfies the same linear system L(qﬁ)
with different coefficients.

The corresponding binary Darboux transformation is
given in the following proposition.

Proposition 3.2 Letr 0 and p be m x k matrix solutions of
the linear system L(¢p) = M(¢p) =0 and its adjoint system

= M(¢) = 0 invariant, namely,
=M(¢) =0

LT (y) = MT(\f) = 0, respectively. Then, the binary Darboux
transformation
¢ — ¢ =Boy(¢) = d—00(0,p) 'o(d,p),  (Ya)
Y=Y =B, () =¥ —pa(0,p) w(0,y),  (©Ob)

where (0, p), = p 10, keeps the linear system L(¢p) =
M(¢) = 0 and its adjoint system L' () = M' () = 0 invari-
ant, respectively.

We iterate the binary Darboux transformations (9a) and
(9b) N times, and further present an N-fold iteration expression.

Theorem 3.1 Suppose that 01,0,,...,0y are a set of
N linearly independent solutions of the linear system
L(¢p) =M(p) =0, and py, p,, ..., py are a set of N linearly
independent solutions of its adjoint system LT(y) = M"(\))
= 0. Then, the N-fold iteration of the binary Darboux trans-
formation is in terms of the quasideterminants
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. _|Q(e,pP) MQH’
o qﬁm—\ o
=¢p—-0Q®,P)'Q(p,P).  (10a)
Qe,.pP) QO,y)
— Y|N| =
¥ — IN] \ ;
=y —PQO,P) Q(O,4)",  (10b)

where © = (01,04, ...,0y), P = (p1,p2;---, Pn), O, P)
= (a)(f)i,pj))i.j:um]v is an NxN matrix, Q(¢,P) =
(o(¢, pj)),':l‘z‘,..yzvy is an N-column vector, and Q(®, ) =
(0, 0;));_1 5y is an N-row vector.

In the follOWing, we consider the dimensional reduction
of the binary Darboux transformation from (24 1) to (1 4 1)

. . . . . 2
dimensions by a separation of variable technique®”

D(x,y,1) = ¢’ (x,1)e”,
O(x,y,1) = 0'(x, t)eAy,

Y(x,y,0) =y (x, e, (11)

P,y 1) = p'(x, 0™, (12)

where A and p are two constants, and A and IT are two k X k
matrices. Then, the matrix differential operators (7) become

N N
L'=0+> i, M =0+ bi. (13
=0 =0

If we assume that

(0, p) = "o/ (0, p)e™,

o(, p) = (07, p ), (14)
according to Eqgs. (11) and (12), we have
HTwr(gp’ p;) + wl‘(01‘7 pr)A _ prT 0r7

(" + 200/ (¢, p") = p'" ¢ (15)
From now on, for notational simplicity, we omit the
superscript r denoting reduced objects and only discuss the
binary Darboux transformation in the reduced case. If we

choose A =diag(y,42,...,Ay) and TII =diag(&, &, ...,
én), then, from Egs. (15), we can have

(PT d))lj
I+ &

o(0,p) = o(p,p) = i,j=1,2,...,N.

(16)

It is straightforward to check that the Lax operators L
and M in Egs. (5a) and (5b) are both anti-Hermitian, i.e.,
LT = —L and M" = —M. Due to this property, we choose
p = 0 and IT = —A to keep constraints among the potentials
in the matrix R. Thus, the rest work is only to look for a rela-
tionship between new potentials and the original potentials.
Furthermore, because the form of the operator L is invariant
under the binary Darboux transformation

L—L= BovpLBg,[l,, (17)
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where L has the same form as L except that R is replaced by
R, it follows from Eq. (17) that

R=R+[7.0000.0)0]. (18)

By introducing the matrix

U—l 0 u (19)
2i\ut 0)

the potential matrix R can be rewritten as R = [U,J].
Therefore, from Eq. (18), we can get the relation

‘w@m 0
U=U+

0 [0

where (0, 0) satisfies

=U—-0w(0,0)"0, (20)

(0,0)A — AT w(0,0) =070,
(0" 0);

0,0) =
ol0,0) =75

(i.j=1.2). 1)

Via the above explicit expression of w(0, 0) in Eq. (21), it is
easy to verify that the reductions and constraints among the
original potentials in the matrix R are consistent.

By iterating successively, the N-fold iterative potential
transformation can be given in the following theorem.

Theorem 3.2 Suppose that 01,0,, ...,0y are N linearly
independent matrix solutions of linear system L($) = M(¢)
= 0 corresponding to Ay, 1y -, Ay, respectively. Then, the
N-fold iterative potential transformation is expressed as

UW]IH‘M&®)®WU®MQ®)@1
) [0]
(22)
with
(01,01)  (02,01) o(Oy, 01)
w(01,0,) @(0y,0,) - @(Oy,0,)
Q(0,0) = . . . . ;
w(01,0y) (02, 06y) o(Oy, Oy)
Psi—s Psia
bsi—z  Psii
O = (01,00,....,00), O=| dsin &5 |,
Dsi-1 Psis
bsi Do
(k=1,2,...,N),

where (0;,0;) satisfies

o (0, 0)Ai — Ao (0:,0,) = 010;, A = diag (4, —%}),
(i,j=1,2,...,N).
(23)
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From the above Eq. (23), we get

F;j -G
w(0:,0;) = (Gj _Fj> (24)
with
Fy= i (‘1551(155, T &si1951 + bsiads s
+¢5i 3¢ij 3+ Osiadsig)s
Gij = (Dsithsi 2+ Psi195;3 + Psia¢bs

/1 + /1
+¢si_3Psj—1 + ¢5i—4¢5j—4)'

By use of the above expression (22), we can obtain the
concrete N-fold iterative potential transformations

! i
MI[N] = U + 21 Q(®’ ®) (DZ = U + 21 Q(®7 ®) (I)l 9
o [0 o, [
(25)
I i
M2[N] =uy + 2i Q(G)’ ®) (D3 =u + 20 Q(®7 G)) (Dl ’
(26)
i +
ui[N] = uj +2i €06,0) o _ i +2i| NS ©) Pl
0, [0] @, 0]
27
i +
5[N] = 1l + 2i Q(0,0) o _ s+ 2i Q(0,0) :
(28)

where @, (j =1,2,...,5) is the jth row vector of the matrix
®. With the aid of the properties of quasideterminants, one
can directly check that the above expressions are consistent.

27 o [(t1 + Tz)cosh(Zix) +

(12 — rl)sinh(2ix)} + oc[('c3 + 14)cosh(2iy*) +

Chaos 27, 073102 (2017)

IV. SOLUTIONS OF THE COUPLED SASA-SATSUMA
EQUATIONS

In this section, applying the potential transformations
(25) and (26), we will construct different types of exact ana-
lytical solutions of Eqs. (4) from vanishing and non-
vanishing backgrounds.

Let us consider the once-iterated potential transforma-
tions (25) and (26)

Fiy _GTI 4’;
wll] =u +2i|Gyy —F}, ¢4, (29a)
o ¢y [0
Fii =Gy ¢3
uz[l] =u +2i|G  —F, os |, (29b)
b ;[0
where
1
Fii= A*Zkﬁ, » Gt =55 (81 + 20204 +26305).

A. Solutions with vanishing background

With u; = u; = 0 as a seed solution of Egs. (4), the lin-

ear system L(¢) = M(¢) = 0 becomes
b +iJp =0, (30a)
¢, + 430 =0. (30b)

The fundamental solution of Egs. (30a) and (30b) can be

given as
¢ = (ae™, e, yeit, e, ge)", y = 2(x+ %), (1)

where o, f5,7,0, and ¢ are all complex constants. By
substituting the above solution (31) into Egs. (29a) and
(29b), we obtain

(15 — t4)sinh(2iy")]

ull] = — ) (32a)
o wcosh | 2i(y* — x) f% + 21%|po + ypolcosh | 2i(x* + 1) — % E(fz + 172)
u[2] = 2n o« [(c1 + g2)cosh(2ix) + (52— gl)sinh(Zix)] + o[(c3 + ca)cosh(2ix*) + (c3 — c4)sinh(2iy")] (325)
= _ ,
[ wcosh | 2i(y* —)()—% + 217%| o + yo|cosh | 2i(x* +y)—% E(éernz)

with
T = 2ﬁ E(in = &),
o6& (—in — &),
&1 = oy Elin — &),
e<(

A
(98]
| |

7
I

Qs“

T = 2if" (B0 + ye) (& — in)

T4 = —2ion(f 0" + ") (& +in)
S =2iy"'n(Bo + o) (& —in) —
—in— &), ¢y =—2ign(B 0" +y7") (& +in) — y'E(E +n?),

o = /(& +r2)Z + 42185 + vl
E2(& + 1) + 40| + ypl”

¢, =1In
‘ ol (& +2i12)

where & and 7 (£ 0) are the real and imaginary parts of /.

- 55(62 + 172>a
- ﬁ*:(éz + 772)7
0=(& + 1),

E =B+ 1] + 18] + lef,
_ 1 FB +70)
? a2 (B3 +y0)



073102-5 Zhang, Wang, and Ma

The above presented solutions (32a) and (32b) represent
the complicated breather transition dynamics in the space and
time coordinates, which is characterized by seven involved
parameters of o, 5, 7, J, ¢, &, and 5. Figures 1(a) and 1(b)
depict the evolution plot of a vector breather in the two com-
ponents u; and u,. Note that when either f =y =0, f =9
=0,0=7=0, or d = = 0 holds, the solutions (32a) and
(32b) degenerate to the bright vector solitons including the
single- and double-hump bright solitons. The values of
parameters ¢ and 1 determine the type of bright vector soliton.
If |¢] > +/3]y|, the solutions (32a) and (32b) represent a
single-hump bright vector soliton, but they are a double-hump
typed vector soliton for the case |¢| < +/3|n]|. Figures 2 and 3
show the propagation dynamics of a single-hump vector soli-
ton and a double-hump vector soliton, respectively.

In high bit-rate optical communication systems, the
double-hump or multi-hump soliton has been proposed as an
appropriate information carrier.’’"** The main advantage of
the double-hump soltions lies in the fact that they are not
affected with time position shifts arising from intra-channel
interaction in high bit-rate systems.?! Moreover, this prop-
erty of double-hump soltions can be exploited profitably to
develop error preventable line-coding schemes, in which
binary data are assigned to the single and double-hump soli-
tons.>> We hope that the single- and double-hump vector sol-
itons in Eqgs. (4) will be valuable to the study of the future
development of high bit-rate optical communication systems
by use of vector solitons as carriers of information.

B. Solutions with a non-vanishing background

Starting from the seed solution u; = ¢;(j = 1,2) with
¢j as complex constants, we solve the linear system

FIG. 1. The propagation dynamics of a vector breather via solutions (32a)
and (32b). The parameters of relevant quantities are, respectively, o« = f =y
=d0=1,0=-2,¢(=—1,andy = 1.

Chaos 27, 073102 (2017)

Juy |

(b)

FIG. 2. The propagation dynamics of a single-hump bright vector soliton via
solutions (32a) and (32b). The parameters of relevant quantities are, respec-

tively,a =y=1,=90=0,0=-2,& = l,andn = 1.
L(¢) =M(p) =0, and obtain the general solution
¢ = ($1. b2, b3, s, §5)"
by = pe’ +9e7, (33a)
by =20t +ci(Bre’ +9r7e?),  (33b)

2

(b)

FIG. 3. The propagation dynamics of a double-hump bright vector soliton
via solutions (32a) and (32b). The parameters of relevant quantities are,

respectively, o = 1,/3:7:0,5:57Q:6,5:%,andr/ =1.
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¢ = —sacl +a(Bre’ e, (330
du=3cse’ +ar(prte’ +y7e), (30
b5 =—>cie +a(prte’+yre), (3

2

where o, f3, and 7y are all complex constants, and

9 =i/ +2(eiP + o) [x + 402 = Jer P = |l

riziy/ 2+ 2(es + o)
2(Jer]* + leal)

(=idx+42%), 5=
Inserting the above solution (33a)—(33e) into Egs. (29a) and
(29b), one can construct explicit solutions of Egs. (4), includ-
ing the periodic solutions, the resonant soliton solutions, and
the anti-dark vector soliton solutions.

For example, by substituting the solutions (33a)—(33e)

with 2 = i1/2(|c1|* + |c2|*) and f = 0 into Egs. (29a) and
(29b), we have

* * 2\/§V2C'*€£
- ks ;
cry/ er|” + ez
ulll =cy [1—=2(a*y +ay®) 57 ,
2402 1 202 4yle”
(0292 +02y?) +—3F—
i lel]” +ea|” |
(34a)
[ 2272]pPct et
(O!*’})—OC'))*)+ \/_|/2 1 -
. . cay/ (Jer]* +1eal?)
ul2 =cy [ 1-2("y+ay*) T ,
Dk 1 w202 4yle
(0292 +02y%) —F—
i len]” +leal” ]
(34b)

with { = 1/2(le1]* + |c2*) [x = 8(Je1 |* + |e2])1].

It is found that the solutions (34a) and (34b) can exhibit
anti-dark vector solitons, as seen in Fig. 4. Obviously, when
t — *00, the intensity of an anti-dark soliton is an infinitely
extended constant, which is different from that of the bright
soliton (the bright solitons have vanishing amplitude as
t — *00). Recently, anti-dark solitons have received consid-
erable attention in the last few years.**® As one specific type
of soliton, anti-dark solitons are localized excitations on a
continuous wave background. Experimentally, Ref. 24 has
firstly observed anti-dark optical solitons in non-instantaneous
nonlinear media. The instability of anti-dark optical solitons
can be totally eliminated by properly engineering the incoher-
ence of background beam.”*

V. CONCLUDING REMARKS

In this paper, we have studied the coupled Sasa-Satsuma
equations describing the propagation dynamics of femtosec-
ond vector solitons in the birefringent fibers with third-order
dispersion, self-steepening, and stimulated Raman scattering
higher-order effects. Based on the linear spectral problem of

Chaos 27, 073102 (2017)

(b)

FIG. 4. The propagation dynamics of an anti-dark vector soliton via solu-
tions (34a) and (34b). The parameters of relevant quantities are, respec-
tively, o =y=1landc; =c, = 1.

this model, we have given a systematic approach for con-
structing the binary Darboux transformation. With the theory
of quasideterminants, we have presented a determinant form
of the N-fold iterative binary Darboux transformation. From
the once-iterated transformation, we have derived the breath-
ers, single- and double-hump bright vector solitons, and anti-
dark vector solitons.

In Refs. 10-14, some solutions of Egs. (2) have been
studied by various methods. Through comparing our
obtained results with those published previously, we have
the following remarks:

(1) In this paper, by a separation of variable technique, we
have given a systematic approach for constructing the
binary Darboux transformation of the coupled Sasa-
Satsuma equations. The technique presented may also be
applicable to other nonlinear integrable systems.

(2) By the N-fold iterative binary Darboux transformation,
we have presented exact solutions of the coupled Sasa-
Satsuma equations in terms of compact quasideterminant
forms. The resulting solutions in this paper cover many
previously published solutions. The obtained formulas
allow one to construct various new solutions, including
bright solitons, anti-dark solitons, breathers, rational sol-
utions, and interaction solutions.

(3) Although our explicit solutions exhibited here are from
the first iteration, it is feasible to construct more compli-
cated Nth-order bright vector soliton, breather, and anti-
dark soliton solutions. Based on those solutions, collision
dynamics among solitons or breathers can be discussed,
occurring between two components. Finally, it is also
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interesting to explore rogue wave solutions of the cou-
pled Sasa-Satsuma equations by the presented binary
Darboux transformation.
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