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1. Introduction

One of the hallmarks of integrable nonlinear evolution equa-
tions (NLEEs) is that they can be written as the compatibility
condition of linear eigenvalue equations which are usually re-
ferred as a Lax pair and comprised of the spatial part and the
temporal part. The Lax pair plays an important role in the study
of integrable properties of NLEEs like the N-soliton solution. It has
been well known that many NLEEs with Lax pairs can be solved
by means of the inverse scattering transform (IST) method, such
as the Korteweg-de Vries equation [1], the nonlinear Schrodinger
(NLS) equation [2,3] and the coupled NLS equations [4,5]. For the
IST method, each soliton is associated with a discrete eigenvalue
for the scattering problem. Under the reflectionless coefficients,
the N-soliton solutions of integrable NLEEs can be derived by
solving the Gel'fand-Levitan-Marchenko (GLM) integral equations.
Later on, Ref. [6] developed the Riemann-Hilbert formulation
which simplifies the reconstruction of the potentials, instead of
using the GLM integral equations. In general, by the analysis for
analytical properties of the eigenfunction, the inverse problem can
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be formulated in terms of a Riemann-Hilbert problem. Further-
more, the N-soliton solution of a given NLEE is usually obtained
from the asymptotic form of a rational matrix function which has
N distinct simple poles. In recent years, the solutions to many inte-
grable equations can be formulated as a solution to an appropriate
Riemann-Hilbert problem [7-12]. Moreover, the Riemann-Hilbert
method has been generalized to solve initial-boundary value
problems of integrable equations on the half-line [13,14].
The coupled NLS equations (Manakov system)

Ty + U+ 2(Jun* + |uz*)uy =0, (1a)
iUy + g+ 2(u2|? + | *)uy = 0, (1b)
are a physically and mathematically significant nonlinear

model [15]. In optical fibers, the Manakov system (1) can be
used to describe the propagation of two optical fields in the Kerr
or Kerr-like media [16]. The initial value problems of system (1)
both with vanishing and nonvanishing boundary conditions can
be solved by the IST method [5,15,17]. The N-soliton solution to
the Manakov system has been obtained by the Riemann-Hilbert
problem approach [18]. The bright multi-soliton solution have
been obtained by the Hirota method [19]. It has been shown
that the collisions with complete or partial switching of energy
between bright solitons can take pace in Manakov system [20,21].
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In this paper, we consider the following coherently-coupled NLS
system

iUy + o+ 2(Jur [ + 2[uz]*)uy — 2u3u; =0, (2a)
iu24t+u2,xx+2(|u2|2 +2|U1|2)UZ —ZU%UZ :0, (Zb)

which can be used to describe the simultaneous propagation of po-
larized optical waves in an isotropic medium [22,23]. Compared
with system (1), the additional last terms represent the coherent
coupling that governs the energy exchange between two axes of
the fiber [22,23]. For system (2), many exact solutions have been
obtained such as the bright multi-soliton solutions [24-28] and
rogue wave solutions [29] by the Hirota bilinear method and the
Darboux transformation method. In Ref. [25], it has been shown
that system (2) admits both degenerate and non-degenerate soli-
tons in which the latter can take single-hump, double-hump and
flat-top profiles. Moreover, in Refs. [25,26], the collision mecha-
nisms of bright solitons in system (2) have been revealed, namely,
the collisions among degenerate solitons alone or among non-
degenerate solitons alone are elastic; the collision of a degenerate
soliton with a non-degenerate soliton can undergo nontrivial be-
havior. Furthermore, the integrability and bright soliton solutions
for N-coupled version of system (2) have also been studied exten-
sively in Refs. [30-32].

Recently, Ref. [33] has studied a similar coupled NLS system by
the Riemann-Hilbert method. Keeping in mind the features of sys-
tem (2), we have found that the coupled system (2) is different
from that in Ref. [33]. The main reason for this is that the poten-
tial matrices in linear spectral problem of two system have differ-
ent forms (This issues can be seen in Ref. [24]). To the best of our
knowledge, the Riemann-Hilbert problem of system (2) associated
with a 4 x 4 matrix spectral problem has not been investigated.

In this paper, we will apply the Riemann-Hilbert approach to
investigate the coherently-coupled NLS system (2). In Section 2,
firstly we study the analyticity of the scattering eigenfunctions
for the 4 x4 Lax pair; Secondly, the inverse problem is formu-
lated as a matrix Riemann-Hilbert problem associated with an-
alytic eigenfunctions. By considering the asymptotic behavior of
the eigenfunction for large values of the scattering parameters, we
present the reconstruction expressions of the potentials; Finally,
we discuss the involution properties and the time evolution of the
scattering data. In Section 3, we present the N-soliton solution of
the coherently-coupled NLS system (2) from a specific Riemann-
Hilbert problem with vanishing scattering coefficients. In Section 4,
we give our conclusions.

2. Riemann-Hilbert problem

In this section, we will consider the scattering and inverse scat-
tering transforms, and formulate a Riemann-Hilbert problem on
the real line for the coherently-coupled NLS system (2).

The Lax pair associated with Eqgs. (2a) and (2b) can be written
as the 4 x 4 Ablowitz-Kaup-Newell-Segur form

Yo = (i A +Q)Y, (3a)
Yo = (=2i0*A +2Q +iA(Q - QY))Y. (3b)
with
1 0 0 O 0 0w u
o 1 0o o | o 0 —u
A=lo o -1 o ¢= -uj w0 0
0 0 0 -1 -u; —uj 0 0

where ¢ is a spectral parameter, Y(x, t, {) is a matrix function, and
the asterisk denotes the complex conjugate. One can check that the
compatibility condition Yy = Yix is equivalent to Eqgs. (2a) and (2b).

2.1. Spectral analysis of the Lax pair

In our analysis, we always assume that potential functions u4(x,
t) and uy(x, t) decay to zero sufficiently fast as x — 4 co. Hence, we
see from Eqs. (3a) and (3b) that Y o E = e~ Ax-2i¢?At By introduc-
ing the variable transformation

Y =J(x, t)e—i{Ax—Zi{ZAt’ (4)
we find that the original forms of Lax pair (3a) and (3b) become

Jo=—1g[AJ]+ Q. (5a)
Jo = =2i*[AJ1+ Q. (5b)

where [A,J] = AJ —JA is the matrix commutator, and Q = 20Q +
iA(Qx —Q?). Notice that the traces of both matrices Q and Q are
equal to zero, i.e., tr(Q) = tr(d) =0 (“tr” denotes the trace of a
matrix), and the potential matrix Q is anti-Hermitian, i.e., QT = —Q.

In what follows, we only consider the scattering Eq. (5a) and
will treat time t as a dummy variable. Let us construct two Jost
matrix solutions J4 (x, ¢) for Eq. (5a)

Jr = Uzl U<l Usls, Uxla), (6)
with the asymptotic condition
-1 X — *+o0, (7)

where [J+]; (j =1,2,3,4) denotes the jth column of J., I is the
4 x 4 identity matrix, and the subscripts in J+ refer to which end
of the x-axis the boundary conditions are set.

Using the method of variation of parameters as well as the
boundary condition (7), we can turn the scattering Eq. (5a) into
Volterra integral equations

L) =1+ / " ARG () (y, £)el Ay, (8a)
peo=1- [ " A 0Q ()], (3, £)el AN dy, (8b)

It can be noted that the existence and uniqueness of the Jost
solutions J4 (x, ¢) for integral Eqs. (8a) and (8b) can be proved ac-
cording to the standard procedures [4]. Thus, J+ (x, ¢) allow analyt-
ical continuations off the real axis { € R as long as the integrals on
their right hand sides converge. In view of the structure of the po-
tential matrix Q, we find that [J_];, [J-]2. [J+]3 and [J+]4 can be an-
alytically continued to the upper half-plane C* = {z e C |Im(z) >
0}. In a similar way, [J_]3, [J-14. [J+]1 and [J;], are analytically con-
tinued to the upper half-plane C~ = {z € C |Im(z) < 0}.

Utilizing Abel’s identity and the boundary condition (7), from
Eq. (5a) we see that

det/s(x,¢) = 1. 9)

Since J+(x, ¢)E; (E; = e iA%) are both solutions of Eq. (3a), they
must be linearly related by a matrix S(¢)

J-Ev=JiEiS(8).  CeR, (10)

where S(¢)=(sjj)ax4 is called the scattering matrix. It is obvious
to verify that detS(¢) =1 from Egs. (9) to (10). Furthermore, from
Eq. (10) we can derive the integral expression of the scattering ma-
trix

+00
S@) =1+ / eEAQ (X)) (x. £ et MM dx. (1)
—00
According to the above analytical property of J_(x,{), we imme-
diately see that the scattering matrix elements s1q, S12, Sp1 and Sy
can be analytically extended to the upper half-plane C*, whereas
S33, S34, S43 and S44 can be analytically extended to the lower half-
plane C~. Other elements do not allow analytical extensions to C*.
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In order to present the formulation of a Riemann-Hilbert prob-
lem, we introduce the following matrix as a collection of columns
in Jost solution J 1 (x, ¢)

(&) = (U-h. U-Ta. Us 13, Usla) =J-(x, O )H1 +J1 (x, £ )Ha, (12)
which is analytic in ¢ € C*, where
H; =diag(1,1,0,0), H, =diag(0,0,1,1). (13)

Furthermore, by considering the large-¢ asymptotic behavior of
ot (), we find that

() =1 § eC' - . (14)
Similarly, the Jost matrix solution

(U-Ts, U-Tas Us 11, Us 12) = J+ (%, $)H1 +]-(x, § )Ha, (15)
is analytic in ¢ € C™, and its large-¢ asymptotic is

U-13. U-1a. Us . Usl2) = 1.

In what follows, we construct the analytical counterpart of
®*(¢) in C~ to formulate a Riemann-Hilbert problem. We con-
sider the adjoint equation of scattering Eq. (5a)

{ eC — oo (16)

Ky = —i¢[A, K] - KQ. (17)

where K(x, t) is the Hermitian of J(x, t). It is easy to see that
jf (x, ¢) satisfy adjoint Eq. (17), and have the boundary condi-
tion J{!(x, ) — I as x> =+ oco. We express the inverse Jost matrices
];1 (x,¢) as a collection of rows

—_
—_

—_
SRy S S—)
N

5% 0) = (18)

w

e ey e ey
RN
d
S

where [];1]j (j=1,2,3,4) denotes the j-th row of J:1(x, ¢).
By similar spectral analysis used above, we can show that four
rows []:1]1, []:1]2, [];1]3, [];1]4 can be analytically extended to

the lower half-plane C~, whereas [jjl]g, []‘1]4, [];1]1, [j;l]z al-

low analytic extensions to the upper half-plane C*. By collecting
the rows in J;!(x, £), we can show that the matrix solution

IS
I
']

=)

is analytic for ¢ € C~, and the other matrix solution

I

I

1=y

p='T
is analytic for { € C*. In the same way, by considering the large-¢
asymptotic behavior, we find that

P(¢) = =HyJ-' +HyJ" (19)

=HJ' +HJ !, (20)

P (L)—>I, ¢ eC — . (21)

and

]
174
['Ll}] — 1, { eCh — oo. (22)

By an inverse computation for Eq. (10), we have
ETUT=ROEYY,  CeR, (23)

where R($) = (1jj)axa = S=1(¢). Similarly, according to the above
analytical properties of J. (x, ¢), we show that the scattering ma-
trix elements ryq, 3, 21 and 5, can be analytically extended to
the lower half-plane C~, whereas r33, 34, 143 and r44 can be an-
alytically extended to the upper half-plane C*. Other elements do
not allow analytical extensions to C*.

Hence, we have constructed two matrix functions ®~(¢) and
®*(¢) which are analytic in C~ and C*, respectively. On the real
line, they are related by

D(H)PF (L) =G(D).

where the jump matrix G(¢) takes the form

¢ eR, (24)

1 0 I3 4
0 1 23 24
4 4
G(&)=E|sn S32 Z% I'j383; Zl riss3j |E-1. (25)
" e
Syt Sa2 ) Tj3Sqj ) TjaSaj

Jj=1 J

[
-

In fact, by use of R(¢) =S~1(¢) and detS(¢) = 1, the jump matrix
G(¢) can be simplified as

1 0 13 a4

_ 0 1 13 14|
GO =E|, o T (26)
Sat Sz O 1

Hence, Eq. (24) determines a matrix Riemann-Hilbert prob-
lem on the real ¢-line for the coherently-coupled system (2). The
canonical normalization condition for this Riemann-Hilbert prob-
lem has been obtained from Eqs. (14) to (21)

D) > I, { eC*t - . (27)

If this Riemann-Hilbert problem can be solved from the given scat-
tering data {s31, S32, S41,» S42, 13, 14, 123, 24}, then the potential Q
can be reconstructed from the following asymptotic expansion

PEX L) =1+ OT) + 057, ¢ - oo (28)

Substituting this expansion into Eq. (5a) and comparing the same
power about ¢, we have

, ) 0 0 (@7 (o7
Q=ilA, ®T]=2i 1723 1724

! _(¢T)31 _(®T)32 0 0

_(q)l+ M _(CI){r 42 0 0

Furthermore, the potentials u;(x, t) and u,(x, t) can be recon-

structed by
up = Zi(q>1+)13 = 2i(q>;r) Uz = 2i(cl>;r)14 = 721’((1)?)23’

(30)

24’

uj = 2i(®@7),, = 2i(®7) up = =2i(®7),, = 2i(P7)

4
(31)
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From Egs. (30) and (31), it follows that
(QT)B = (q);r)n = _(CDT); = _((DT)ZT (32)

+) = +\ — () = +)*
(q)] )14 _(q)1 )23 - (Cbl )32 - _(q)l )41' (33)
In general, the Riemann-Hilbert problem (24) is not regular and
does not have a unique solution because det®*(¢) and det®~ (¢)
may have zero roots at certain discrete locations ¢, € C* and ¢ €
(G

2.2. Riemann-Hilbert problem

In this subsection, we solve the Riemann-Hilbert problem by
considering the second order zeros of determinants of eigenfunc-
tion matrices. Let ®*({) and ®~(¢) each have but one second-
order zero ¢; and ¢;, respectively:

detd(§) = (£ —6)’p(©),  detd™ () = (§ - 5)°P (&),
(34)

where ¢(£1)#0 and gb(;:]) # 0. Suppose the geometric multiplic-

ities of ¢1 and ¢; are the same and equal to its algebraic multi-

plicity. Thus, in the kernels of the matrices ®+(¢;) and ®=(¢;),
vectors v; 1 and ¥;4 (j =1, 2) satisfy

ST =0, T P(8) =0, (j=12). (35)

We introduce two new matrices to cancel the zeros {1 of ®*(¢)
and ¢; of ®~(¢)

D) = DTOATQ), D) = X1 ()P (), (36)
with

_ _Cl—é:1 ey . 81— & 3
@) =1 —é__épl, @) =1+ (37)

where P; is a projector matrix and expressible in the form

2
Pr=Y"viaKylvl s,

k=1

Kk—U]]Uk1 (38)

It is easy to see that det x1(¢) = (¢ —1)%/(¢ - ;:1)2. Then, *(¢)
is the unique solution to the following regular Riemann-Hilbert
problem

D (0)PH(E) = x1(O)GE) X1 (©),

where <T>—(§) and 5+(§) are nondegenerate and analytic in the
domains C~ and C™, respectively, and a)i(;‘) — I as { — oo. By the
matrix x1(¢), it has been shown that a Riemann-Hilbert problem
with zeros is reduced to another one without zeros.

In a general case, we can consider the case of N pairs of second-
order zeros {&k}h_, and {g )N . The geometric multiplicities of
¢y and ¢ are the same and equal to 2, and the null vectors
{V1 - V2 }h_; and {¥y . U5 }R_, from the respective kernels:

O (G =071, P (&) =0, (k=1,2,...,N; j=1,2).  (40)

By repeating the above process of Eq. (36), we have the follow-
ing regular Riemann-Hilbert problem:

C eR, (39)

()P (0) =T(E)GEIT (). ¢ R, (41)
with
N 2 (M1 b
re)y=I- Z Z M
ij=1m,l=1 ¢ =&
-1 _ N > v ( - )]limDm*i
r (C)—I'i‘ZZ#? (42)

ij=1m,l=1

where the element in matrix M is given by

U iV

Mim ji = ——2,

=G

To this stage, the following scattering data are needed to solve
the nonregular Riemann-Hilbert problem (24)

{53]'({), S4j(§)r Tj3 (;): rj4(§)v ¢ eR; &, éjk, Vj ks DM,
(j=1,2;1<k<N)}. (44)

In what follows, using the symmetry relation QT = —Q, we de-
duce the involution properties in the scattering matrix as well
as in the Jost solutions. The Hermitian equation of the spectral
Eq. (5a) is

(L)x = -ic*[AJL] - JlQ. (45)

from which we obviously see that ]1 satisfy the adjoint Eq. (17).
Recalling that ];1 also satisfy the adjoint Eq. (17) and the boundary
conditions at x— £ oo, we obtain the following involution prop-
erty

(1<ml<2;1<i,j<N). (43)

JE o) =JL(x. ), (46)
which in turn leads to
(@H'(¢") = o). (47)

Furthermore, from this property as well as the relation J_E = JES,
we obtain the involution property of the scattering matrix

S'(¢*) =571(¢) =R(). (48)
Due to the involution property in Eq. (48) and the definitions of
®*(¢), it is shown that if ; is a zero of det®*(¢), then &, = &

is a zero of det®~(¢). Furthermore, we can derive the relationship
between each pair of v; (x, t) and 7;(x, t) from Eq. (40)

D ) =vh 0, (j=1,21<k=<N). (49)

where the spatial evolution for vectors v; , can be determined by
taking the x-derivative of Eq. (40)

iLg Ax

_ i Ax
Vik=2¢€ Pjks Ginx

(J=12:1<k=<N),
(50)

. |
vj.k—pj,ke

where p; are column constant vectors.
2.3. Scattering data evolution

In this subsection, we investigate the time evolution of the scat-
tering data (44). Using the vanishing conditions of the potentials
and taking the t-derivative of Eq. (5b), we get
Se = —2iC?[A,S), (51)
from which the time evolution of the scattering data (44) can be
written as

$3j(6:8) = 535(0: )M s4y(t:8) = 545(0: ),
(j=1,2). (52)

Now we can derive the time evolution for vectors v; by taking
the t-derivative of Eq. (40)

81/]k
at

Therefore, recalling the spatial dependence (50), we present the
expressions of vy and ¥

+ 21§,< Avy = (53)

. ir2 « ir#2
— e—z{kAx—ZI{k At AXx+2i8; At’

Dk Vi = p;_keigk
(j=1,21<k<N). (54)

ijk
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Fig. 1. A non-degenerate soliton via solution (57): (a) a single-hump non-degenerate soliton in the u; component; (b) a double-hump non-degenerate soliton in the u,

component.

Fig. 2. Elastic collision of non-degenerate solitons.

3. N-soliton solution

It is well known that the soliton solution corresponds to the
vanishing of scattering data {s3;, s4j, 7j3. rj4}]2.=1. For this case, the
jump matrix G(¢) is a 4 x4 identity matrix, and corresponding
solutions uq(x, t) and uy(x, t) are called the reflectionless poten-
tials. According to the solution to the regular Riemann-Hilbert
problem (41) and the asymptotic expression of I'(¢) in Eq. (42) as
¢ — oo, we can derive the matrix function ®7 in the expansion
(28)

N 2
P t)y=-Y > vm,i(M”)im’ﬂf},, i (55)

i,j=1m,I=1

where the matrix M has been given in Eq. (43).
Thus, from Eq. (30) the N-soliton solution of system (2) can be
written explicitly as

N 2
uy =2i(®7),, = —21'(2 > vmi(M7Y), 0 j) (56a)
i.j=1m,l=1 13
N 2
up =2i(®7),, = —2i<z > vni(M )imyﬂ',’j) . (56b)
ij=1m,I=1 14

By letting py . = (ot Br, Vi )" and pa i = (=P ot =8k i)
with o, By, ¥« and &, as complex constants, one can easily check
the identities in Egs. (32) and (33).

When N =1, we get the one-soliton solution from the above
formulas as

24y /Kikze” % cosh(§; + 1)

= , (57a)
Vab[2cosh? (& +7) - 1]+ 4
5 — 281/ fze? Y cosh (&} + v) (57b)
«/@[Zcoshz(é‘l +v)—1]+ g’
with
£ =0,+0;, 6 =—iix—2ickt, €= % e = %

Ky = ()/1*2 +5T2)(051V1 + B161),

w1 = (0 + B8 — Bivy). M2 = (% +872)(1d1 — Biyr).
a=la[*+ Bl + ol + Blai®,  b=Inl*+181* + ¥ + 8T,
p =P+ 1811 U112 +18112) + (1 B — o5 B1) (v185 — 81¥7).

The intensity profiles of the presented one-soliton solu-
tion (57a) and (57b) have two kinds of shapes, i.e., the single-
and double-hump solitons. Moreover, these solitons can vary their
profile from a single hump to a double hump through a flat-top
profile. The reason for this is that this one-soliton solution (57a) or

K1 = (0F + B (eiyy + Bid)).
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(57b) corresponds the Riemann-Hilbert problem (39) with the
second-order zero. By analyzing the form of solution (57), we
find that the one-soliton solution (57) is the same as that (the
non-degenerate case) obtained in Refs. [24,2528]. When the
parameters are chosen as y; = +id; or 8; = =i, solution (57) only
has the single-hump soliton which is referred to as the degenerate
case in Refs. [25,28].

For illustrative purpose, we plot the single- and double-hump
solitons from solution (57a) and (57b), as shown in Fig. 1(a) and
(b) for the parameters oy =0.5, 1 =1-2i, y; =2i, §; =4 and
¢1 =0.1 —1i. For N =2, two-soliton solution (56a) and (56b) can
describe the collision dynamics of between two single-hump
solitons, two double-hump solitons, or single- and double-hump
solitons. In three kinds of collisions, under certain parametric
conditions the interacting solitons can undergo shape-preserving
or shape-changing behaviors between two components. Since
the explicit expressions of the two-soliton solution is fairly com-
plicated, we just show an illustrative example in Fig. 2 for the
parameters oy =0.5, f1=1-2i, y1=2i, 61 =4, ap =1, B =2,
)/2=]+i, 5221, ¢ =01 —iand & =-01-1

4. Conclusions

By using the Riemann-Hilbert approach, we have studied
an integrable coherently-coupled nonlinear Schrédinger system
associated with a 4 x4 matrix spectral problem. By analyzing
the spectral problem and considering the second order zeros
of determinants of eigenfunction matrices, we have presented
the Riemann-Hilbert problem. Moreover, from the identity jump
matrix corresponding to the reflectionless state, we have gener-
ated the N-soliton solution to the coherently-coupled nonlinear
Schrodinger system.
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