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ABSTRACT. We aim to generalize the (241)-dimensional Hirota-Satsuma-Ito
(HSI) equation, passing the three-soliton test, to a new one which still has
diverse solution structures. We add all second-order derivative terms to the HSI
equation but demand the existence of lump solutions. Such lump solutions are
formulated in terms of the coefficients, except two, in the resulting generalized
HSI equation. As an illustrative example, a special completely generalized
HSI equation is given, together with a lump solution, and three 3d-plots and
contour plots of the lump solution are made to elucidate the characteristics of
the presented lump solutions.

1. Introduction. Lump solutions are analytical rational function solutions which
are localized in all directions in space, originated from solving integrable equations
in (2+1)-dimensions (see, e.g., [19, 20, 36]). Taking long wave limits of N-soliton
solutions, one can work out specific lumps [34]. Many integrable equations in (241)-
dimensions exhibit the strickingly high richness of lump solutions (see, e.g., [19, 20]),
which can be used to describe various wave phenomena in sciences. Those equations
include the KPI equation [21], whose special lump solutions are generated from N-
soliton solutions [30], the three-dimensional three-wave resonant interaction [11],
the BKP equation [5, 42], the Davey-Stewartson equation II [34], the Ishimori-I
equation [10], and the KP equation with a self-consistent source [47].
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In soliton theory, the Hirota bilinear method provides us with a working approach
to soliton solutions, historically developed for nonlinear integrable equations [9].
Soliton solutions are analytic and exponentially localized in all directions in space
and time. Let a polynomial P define a bilinear differential equation

P(Dy, Dy, Dy)f - f =0,

in (2+1)-dimensions, where D, D, and D, are Hirota’s bilinear derivatives [9] (but
could also be generalized bilinear derivatives [22]). The associated partial differ-
ential equation with a dependent variable u is usually determined by one of the
logarithmical transformations:

u=2(nf),, uv=2(Inf)z.

On the basis of bilinear forms, an important step in constructing lump solutions
is to find positive quadratic function solutions to bilinear equations [19, 20]. Then
through the mentioned logarithmical transformations, one presents lump solutions
to nonlinear differential equations (see, e.g., [19] for the case of Hirota bilinear
equations and [20] for the case of generalized bilinear equations).

In this paper, we would like to generalize the (2+1)-dimensional Hirota-Satsuma-
Ito (HSI) equation to a new one which still has diverse solution structures. Our
analysis will be based on the Hirota bilinear formulation (see, e.g., [19, 20, 18, 1] for
other equations). We will add all second-order derivative terms to the original HSI
bilinear equation while requiring the existence of lump solutions. Via symbolic com-
putations with Maple, we will determine lump solutions in terms of the coefficients,
except two, in the resulting completely generalized HSI equation. As an illustrative
example, a special completely generalized HSI equation will be presented, together
with a lump solution, and three 3d-plots and three contour plots of the lump so-
lution will be made via the Maple plot tool, to shed light on the characteristic of
the presented lump solutions. A few concluding remarks will be given in the final
section.

2. Lump solutions. The Hirota-Satsuma shallow water wave equation reads [9]
Up = Uggt + Ul — FULVE — Uy, Vp = —1U, (1)
which possesses a Hirota bilinear form
(DeD} = DDy = D2)f - f =0, (2)

under the logarithmic transformations v = 2(In f),;, and v = —2(In f),. An in-
tegrable (2 4+ 1)-dimensional extension of this Hirota-Satsuma equation is defined
by

Ugzat T 3(ua:ut)w + Uyt + Upy = 0; (3)
which passes the Hirota three-soliton test [7], and has a Hirota bilinear form under
the logarithmic transformation v = 2(In f),:

(D3Dy+ DDy + D2)f - f = 0. (4)

We refer the interested readers to [8, 23] for plenty of examples of or supporting
details on the Hirota three-soliton test. The nonlinear equation (3) is called the
(241)-dimensional Hirota-Satsuma-Ito (HSI) equation [7].

We would like to add all four other second-order derivative terms to the (2+1)-
dimensional HSI equation to formulate a new one:

P(u) = Uggxt + 3<uwut):r + 61uyt + 62”19: + 63uwy + 64u:rt + 65uyy + 66utt = 07 (5)
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which has at least diverse lump solutions. This equation is called a completely gen-
eralized Hirota-Satsuma-Ito (cgHSI) equation, due to an involvement of all second-
order dissipative-type terms. It possesses a Hirota bilinear form under the logarith-
mic transformation v = 2(In f),:

B(f) = (D3Ds+ 61Dy Dy + 65 D2 + 63D, Dy + 64Dy Dy + 65D, 4+ 66 D7) f - f = 0. (6)

(%)x, under u = 2(In f),.
In what follows, we are going to search for lump solutions to the (2+1)
-dimensional cgHSI equation (5), through symbolic computations with Maple. We

start to determine positive quadratic solutions to the cgHSI bilinear equation (6):

Actually, we have the relation P(u)

f = (a12 + asy + ast + a4)? + (asz + agy + art + ag)? + ag, (7)

to present lump solutions to the cgHSI equation (5). Plugging this quadratic func-
tion f into the cgHSI bilinear equation (6) leads to a system of algebraic equations
on the parameters a;, 1 < i < 9, and the coefficients §;, 1 <1 < 6. It consists of ten
complicated equations, each of which contains more than twenty terms. Though
we have no clue about the existence of solutions, we finally determine, through
conducting direct symbolic computations with Maple, a solution for the parameters
and the coefficients:

3(af 4 a)(a3 + ag)(aras + asar)
(a1a6 — azas)?ds — (ara6 — agas)(azar — azag)ds + (azar — asag)?ds’

b1 s b2
; 03 =
(a3 + a2)(a1a7 — azas) (a3 + a2)(ara7 — azas)’

ag = —

01 =
(8)
where the involved two constants b; and by are determined by
by = (a2 + a?)(a1a6 — azas)da — (a3 + a2)(azar — azae)dy
—(a3 + a2)(aras — azas)ds + [(a% — a2)(arae + azas)
—2azar(araz — asag)]de,
be = [2ajas(azas — agar) — (a? — a2)(agar + azag)|da

—(a3 + a2)(ara6 — agas)ds — (a3 + a2)(azar — azag)ds

+((L§ + a%)(a2a7 — (L3(16)56,

and all other a;’s and d;’s are arbitrary. Those formulas in (8) and (9) were made
through a simplification process with the help of Maple.
First, when one takes

51 =1, 6 =1,03 =64 = 05 = 66 = 0, (10)

one recovers the original (2+1)-dimensional HSI equation (3), and obtains a system
of two algebraic equations on the parameters:

2

(af + a2)(a1a6 — azas) = (a3 + a§)(arar — azas),
2a1a5(azaz — agar) = (a3 — a2)(azar + azag).
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Solving this system to get the expressions for as and ag and substituting them into
the expression for ag in (8) give rise to

a%ag + 2ai1as5a7 — agag
az = — 2 2 )
as + az
2 2
_ajay — 2a1a3a5 — azay 1
ag = 2 2 ) ( )
asg + as
2 2\/(,2 2
ag = ~ 3(af +a3)(a3 + a?)(a1as + asar)
(ara7 — azas)?

It is now easy to know that

(a? + a2)(a1ar — azas)
a3 + a?

a1 — Q205 —

9

and hence, the two conditions of
airas + asar <0, ajayr —agas # 0 (12)

guarantee that v = 2(In f), with (7) and (11) presents a class of lump solutions to
the (2+1)-dimensional HSI equation (3).
Secondly, taking
Jo =086 =1, §y = -2, (13)
we have a compact expression for ag:
3(af + a2)(a3 + a3)(aras + asar)

[(0,1 — ag)a()‘ — ag(ag) — CL7)]2 ’

- (14)

from (8). It then follows that the function f in (7) is positive, if one requires
ajaz + asar < 0, ajag — axas # azag — a2a7. (15)
Together with
aiag — azas # 0, (16)
the conditions in (15) ensure that the function f defined by (7) with (8) and (9)

yields a class of lump solutions:

2fe
w=2(nf), = % (17)
to the (241)-dimensional cgHSI equation (5) generated with (13).

Further taking

1
alz_la 0/2:1, a3:2; Cl4:2, a5:_23 a/6:37 a7:2a a8:87 65257 (18)
we obtain
ag = 36, (51 = —4, 53 = —1, (19)
and thus, we have the following special cgHSI equation:
1
Upgat + 3(Uplt)g — Ayt + 2Ugy — Ugy — 2Uqgy + 2 Uy + uy = 0, (20)

which, through (17), possesses a Hirota bilinear form

1
(D3D, —4D,D, +2D? — D, D, — 2D, D; + §D§ +DHf-f=0. (21)
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The corresponding lump solution, defined by (17), for the special cgHSI equation
(20) reads

46t —5x+ Ty +18)
2t—r4+y+2)2+2t—2x+3y+8)2+36
Three 3d-plots and contour plots of this lump solution are made with the Maple
plot tool, to shed some light on the characteristics of the presented lump solutions,
in Figure 1.
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FIGURE 1. Profiles of w when x = 0,25,50: 3d plots (top) and
contour plots (bottom)

3. Concluding remarks. We have studied a (2+1)-dimensional completely gener-
alized Hirota-Satsuma-Ito (cgHSI) equation, via symbolic computations with Maple.
The results enrich the context of lumps and solitons, adding a new example of
(241)-dimensional nonlinear equations which possess lump structures. An illustra-
tive example of the resulting cgHSI equation and its lump solution were presented
with Maple, together with three 3d-plots and contour plots of the lump solution.

All the exact solutions presented in the last section add helpful insights into
the existing theories on soliton solutions and dromion-type solutions, built through
many powerful solution techniques such as the Hirota perturbation approach, the
Riemann-Hilbert approach, the Wronskian technique, symmetry reductions and
symmetry constraints (see, e.g., [14]-[24]).

Recent studies also demonstrate the remarkable richness of lump solutions to lin-
ear partial differential equations [25] and nonlinear partial differential equations in
(241)-dimensions (see, e.g., [48]-[33]) and in (3+1)-dimensions (see, e.g., [26]-[35]).
There exist abundant interaction solutions for many integrable equations in (241)-
dimensions as well, including lump-soliton interaction solutions (see, e.g., [43]-[45])
and lump-kink interaction solutions (see, e.g., [37]-[12]). Diversity of lump and in-
teraction solutions supplements exact solution structures formulated from different
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kinds of combinations and yields various Lie-Backlund symmetries, which can also
be used to determine conservation laws by symmetries and adjoint symmetries [28].
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