Modern Physics Letters B
W rl ientifi
Vol. 34, No. 21 (2020) 2050219 (11 pages) \\h wwf/v)wgldssgenetl nt Co‘n’]

(© World Scientific Publishing Company
DOI: 10.1142/S021798492050219X

Abundant solutions of an extended KPII equation combined
with a new fourth-order term

Ligin Zhang® %1t Wen Xiu Mal#:8 %141 and Yehui Huang®**

*College of Information Science and Artificial Intelligence,
Xiamen Institute of Technology, Xiamen 361021, Fujian, China
t Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China
¥ Department of Mathematics, King Abdulaziz University,
Jeddah 21589, Saudi Arabia
8 Department of Mathematics and Statistics,

University of South Florida, Tampa, FL 33620, USA
9School of Mathematics, South China University of Technology,
Guangzhou 510640, China
I International Institute for Symmetry Analysis and Mathematical Modelling,
Department of Mathematical Sciences, North-West University,
Mafikeng Campus, Private Bag X2046, Mmabatho 27385, South Africa
**School of Mathematics and Physics,

North China Electric Power University,

Beijing, 102206, China
1 aqin98@163.com
Hmawz@cas.usf. edu

Received 18 November 2019
Revised 22 January 2020

Accepted 23 January 2020
Published 27 May 2020

An extension of the KPII equation is studied. Adding a new fourth-order derivative
term and some second-order derivative terms, we formulate an extended KPII equa-
tion. Different types of solutions of the extended equation are obtained by the Hirota
bilinear method, and the presented solutions include soliton solutions, lump solutions
and interaction solutions. Their dynamical behaviors are analyzed through plots.

Keywords: Hirota’s bilinear form; KPII equation; solitary solution; lump solution; inter-
action solution.

AMS Subject Classifications (2000): 35B45, 35L65, 35Q60, T6N10

1.+ Corresponding authors.

2050219-1


https://dx.doi.org/10.1142/S021798492050219X
mailto:aqin98@163.com
mailto:mawx@cas.usf.edu

L. Zhang, W. X. Ma € Y. Huang

1. Introduction

In mathematical physics, the Kadomtsev-Petviashvili (KP) equation

3 1
(ut + Ut + 4um) + 02Uy, = 0. (1.1)

describes many important nonlinear physical situations, such as the evolution of
nonlinear long waves of small amplitude with slow dependence on the transverse
coordinate.! When o = i, (1.1) is the KPI equation, which is used to model waves
in thin films with high surface tension.? And when o = 1, (1.1) is known as the
KPII equation, which describes water waves with small surface tension.2

The KP equation was accepted as a natural extension of the classical KAV
equation to two spatial dimensions which has captured imagination of many sci-
entists. The KP equation was derived as a model for surface and internal water
waves by Ablowitz and Segur,! and in nonlinear optics by Pelinovsky, Stepanyants
and Kivshar, as well as in other physical settings.* The research of the KPI equa-
tion lies on mathematical structure, lax pair and equivalent formulations,?? bilinear
form® and wronskian representations,” connection with sato theory,® exact solutions
and two-dimensional wave phenomena, line solitons,! existence and stability of two-
dimensional solitary waves? and so on, while transverse stability of one-dimensional

10 yesonant interactions of line solitons,!' and finite-genus and quasi-

solitary waves,
periodic solutions were studied for the KPII equation from then on. In the last
couple of decades, many extensions of the KP equation was studied in.12'* This
inspires us to explore more extensions of the KP equation.

One of the most exciting and extremely active areas of research investigation
arises on the study of exact solution and the related issue of the construction of
solutions to a wide class of nonlinear equations. Exact solutions of partial differen-
tial equations describe significant mathematical and physical phenomena. A soliton
solution is an exact solution determined by exponentially localized functons, which
localized in all directions both in time and in space. Lump solutions are also a kind
of exact solutions of partial differential equations, obtained from soliton theory by
taking long wave limits." Nevertheless, a lump solution is localized in all direc-
tions just in space. In addition, it is well known that interaction solutions between
lump solutions and soliton solutions allow to describe more nonlinear phenomena.!®
However, the interaction properties are rarely discussed because the involved math-
ematical computation is much more complicated.

Generally, through a depended variable transformation, a partial differential
equation can be mapped into a Hirota’s bilinear form

P(Dy,Dy,Dy)f-f=0, (1.2)
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where P is a polynomial, and D, D,,, D, are the Hirota bilinear dirivatives,® defined
by

D, Dy Dy f(x,y,t) - g(x,y,t)

(9 aN' (e aN'[fo a\"
= <8x - 83:’) (8y - 8y’> <8t - 8t’> f(z,y,t) - g(2',y' st )|I’:z,y’:y,t’:t-

(1.3)

When f solves (1.2), it presents the N-soliton solution in (2+1)-dimensions to the
corresponding PDE under the transformation v = 2(In f).:

N
f= Z exXp Zﬂifi‘FZMi/LJ’aij , (1.4)
1=1

n=0,1 i<j

where Z denotes the sum over all possibilities for pq,...,un in 0,1, and
pn=0,1
Si=kiv+ Ly —wit+E&o, 1<i<N,

kL ] s — o (1.5)
P(ki — kj,l; — 1, wj wl)’ | <i<j<N,
P(ki 4 kj, li + 1, wj + wi)
with k;,l;, w; satisfying the dispersion relation, and &; o being arbitrary shifts.

As is well known, the KPI equation possesses lump solutions:'” u = 2(In ),

eaij = —

where

2
aja3 — aja? + 2a2a5a6t i )
4

a%—i—ag

I ——

2a1a2a6 ; a§a25 + a5a%t N a8>2 . 3(a} +a2)? .

ay + ag (a1a6 — asas)?
The condition ajag — azas # 0 guarantees the rational localisation in all directions
in the (z,y)-plane.

In the past few decades, many researchers have studied soliton solutions,
lump solutions and other classes of solutions to integrable equations, such as the
Ishimori-I equation,'® the Davey-stewarton equation II,! the BKP equation,!?-2°
the three-dimensional three-wave resonant interaction,?! the KP equation with a

+ (a5x + agy +

self-consistent source?? and so on.?326 Some non-integrable equations have lump
solutions as well, such as the generalized KP, Sawada-Kotera equations.2” 22 More-
over, various studies show the existence of interaction solutions between lumps and
other kind of exact solutions to nonlinear integrable equation.?036

This paper is concerned with the following extended KPII equation combined
with new fourth-order terms:

3 1
U + §UUm -+ ZUIII + Uyy + 51Uyt + 52uzy + 53“11
x

)
+ g(umwt + Buztgt + Bugug) = 0. (1.6)
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where 0;,7 = 1,2,3,4, are arbitrary constants. It reduces to the KPII equation
by choosing §; = 63 = d3 = §, = 0. Based on a bilinear transformation, the
equation possesses a Hirota’s bilinear form. Solitary solutions, lump solutions and
interaction solutions are obtained through symbolic computation with Maple. We
exhibit three-dimensional plot and contour plot profiles of these solutions and study
their dynamic behaviors. Some concluding remarks are given in the final section.

2. Bilinear Form

We substitute the logarithmic transformation v = 2(In f),, into (1.6), and then the
equation has the following Hirota’s bilinear form:

04

1
(Dth + 1D;L + D} + 61Dy Dy + 6,D; Dy + 63D + 2D2Dt)f f=0, (21)

equivalently,

+251(ffyt - fyft) + 262(ffmy - f:rfy) + 263(ffm:1: - fa%)
+54(ffazxzt - faczxft - ?’fzfz:ct + 3fmzfxt) =0. (22)

Therefore, if f solves the bilinear equation (2.2), then w = 2(ln )., will solve
Eq. (1.6).

3. Solitary Solutions
Based on Hirota’s bilinear method, we would like to construct soliton solutions and

take a choice with a combination of exponential functions for f:

f =14 ea1x+a2y+a3t 4 ea4m+a5y+a6t7 (31)

where a;,2 = 1,2,3,...,6, are arbitrary real constants to be determined. We insert
(3.1) into (2.2), and then solve the resulting algebraic system by Maple symbolic
computations to obtain the following parameters:

4. a1b10103 + a1b20304 + a1b301 + a1b404 + a2bs
3 Aléf + A30104 + A301 + Aydy ’

(3.2)
a4b16163 — agbads3dy + asbsdy + agbydy + asbs

A16% + A0104 + A3y + Asdy

ag =

2050219-4



Abundant solutions of an extended KPII equation

where b;,i =1,2,3,...,5,4;,i = 1,2,3,4, satisfy:

bl = —8(a1a5 — a2a4)2 s

by = —dayraqs(ar — aq)(2a1 — ag)(aras — asay),

by = —2(afa? — 4alazasas + 6alazalas — dajazaias + ala}),

by = a17a4a5 — 3a16a42a5 + 2a15a43a5 + 2a14a2a44 - 3a13a2a45
+a12a9a4% — da1tasas? + dai3ax?aqa5 + 12a13asaqa5?
—12a;%a2%a4?as — 12a;12asa42as? + 16aia22asas — 4as3as?, (3.3)

by = 3a14a42 — 6(1130,43 + 3(112(144 — 4a12a52 + 8aiasasas — 4&22(142 s

Ay = araq (a1 — ag) (a1*as — 2a13a4a5 + 2a1a2a4® — azaq*),

Ay = —2a1%a52 + 8a3asasas — 12a;12asa42as + 8ajasasas — 2a22as?,

Az = —4(ara5 — azay)?,

A4 = 2&1&4 (a1 — a4) (a12a5 + 2a1a2a4 — 2&1&4@5 — a2a42) .
And 05 satisty:
01(51(5354 + 625% + 63(5%53+ C4(5i+ 65(5353+ 666154+ 0763644- 0861+ 09(544- C10

%= A107 + Agb164 + Azdy + Ay ’
(3.4)

where ¢;,7 = 1,2,3,..., 10, satisfy:

Cc1 = 4(11(14 (a1 — a4) (a12a5 + 2a1a2a4 — 2(11&4&5 — a2a42) s

Coy = 2a14a52 — 8a13a2a4a5 + 12a12a2a42a5 — 8a1a2a43a5 + 2a22a44 s

3 = 8 (aras — azas)”

¢y = 2a1%a5% — 6a1%aqa5? + 6a1%as2a5? — dar3asaq’as

+6a12a22a4* — 6ajas2as® + 2a5%a48 ,
cs = 2a1%a4? (a1? — araq + as?) (ag — as)”
ce = —aras(a; — ayq)(aras — 2a13agas + 2aa2a43 (3.5)

— a2a44 — 12a22a5 + 12@2@52>7

C7r = 12(112@42 (a1 — a4)2 ,

cs = —4daray (a1 — ayq) (a12a5 + 2a1a0a4 — 2010405 — a2a42) ,
co = —a1%a42 + 3a1%°a4® — dar1%as* + 3a1%a4® — a12a4°% + 8a1%as?
— 8a13a2a4a5 — 12a13a4a52 + 12a12a22a42 + 12a12a42a52
—12a1a22a4® — 8ajasas’as + 8as2aq?,
c10 = —6a1%as® + 12a13a4> — 6a12as* + 8a1%as5? — 16a1aza4as + SasZas’.

Substituting (3.1) into (2.2) yields soliton solutions:

a%eall-ﬁ-azyﬁ-%t + aiea4w+a5y+a6t + (al _ a4)2€a1w+a2y+a3tea47;+a5y+a6t

u=2
(1 4+ emztazytast ea4w+a5y+aet)2

where as, ag, 2 satisfy (3.2) and (3.4). When we substitute the following

f=1+ etz tazytast 4 casztasytast | Kealw+a2y+astea4w+a5y+ast’ (3.6)
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Fig. 2. (Color online) soliton solution w with ¢ = 0,15, 30: contour plots.

into (2.2), we solve that K = 0 under the condition az, ag, 02 satisfy (3.2) and
(3.4). And we prove that this solution we find is a resonant soliton solution of (1.6).

We take a special choice for the parameters: a; =1, as = —1, ag = -1, a4 =
2, a5 =1, ag = _TN, 0 =1, ds = %, 03 = 1, §4 = 1, and plot the graphs of
the solution in Figs. 1 and 2, where we found that the soliton solution w is shown
as “Y” shaped. The characteristics of the soliton which are caused by dispersive
effects can help us to understand the dynamical behaviors of solutions.

4. Lump Solutions

A search for positive quadratic solutions to the bilinear equation (2.2) generates a
class of lump solutions to the equation (1.6):

f=(a1z+ a2y + ast + a4)2 + (asx + agy + a7t + a8)2 +ag. (4.1)

where a;,7 =1,2,3,...,9, are arbitrary real constants to be determined. We insert
(4.1) into (2.2), and then solve the resulting algebraic system by Maple symbolic

2050219-6
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computations to obtain the following parameters:

G — _a1b1§1(52 + b2(5153 + a2b151 + a2b3§2 + a1b353 + b4
° (a1 + d1a2)? + (as + d1a6)? ’
o — _a5b10102 + b50103 + agb101 + agbsdz + asbsds + be
! (a1 + 01a2)? + (as + 01a¢)? ’
(4.2)
o — §2b1b§(5152(54 + 2b7b§(51(53(54 — blbg(S% + 2b1b3b76104 + 2b7b§(5254
P b2(6205 — 0105 + 1)
2036304 + 2b7b301 + 2b3 (b2 — b3)d4 — b3
b§(5%53 — 0100 + 1) '
The above involved eight constants b;,7 =1,2,3,...,8, are defined as follows:
by = (a2® +a6?), bs =ag(as® — ar?) + 2a1a0as5,
by = as(a1? — as?) + 2a1asa6, b = as(as® — a2?) + 2a1a24a6, (43)
4.3

_ (.2 2 _
bs = (a1? + as?), br = airaz + asag,

2 2
by = a1(a2® — ag”) + 2a2asa6, bs = ajas — a20as .

Therefore, besides aiag — asas # 0, the condition guaranteeing the nonsingularity
of the lump solution is (6793 — 8102 + 1) # 0, and they should satisfy the following
constraint conditions:
2()1[)3(516254 + 2b7b§(516364 - blbg(S% + 2b1b3b70104
(6263 — 6102 + 1)

L 207625204 + 2630364 + 2b70361 + 2b3(b2 — b3)d4 — b3 o
(6263 — 6102 + 1)
we take a special choice for the parameters: a1y = 1, as = —1, ag = —%, ay =
2,a5=1,a6=3,ar=-3,as=6,a9=32,01=1,0=1,6=1, 04 =1,
under which f by (4.1), (4.2), (4.3) will present the lump solution to (1.6).
1024(15t% — 17tz — 3ty + 422 + S8zy — 12y? — 54t + 32z + 39)
(169¢2— 136tx— 248ty + 3222 + 64y + 160y2— 656t + 256z + 512y + 712)2
(4.5)

0. (4.4)

We plot the graphs of this solution in Figs. 3 and 4.

Though the KPII equation does not have any lump solution, we have presented
lump solutions to its extended equation by means of the Hirota bilinear formulation.
The solutions have been depicted for special values of the parameters and three
different values of ¢. Figure 3 shows lump wave, which has a peak and two valleys
and algebraically decays in all space directions. Because the height of the peak is
larger than the depths of the valley bottoms, the solution (4.5) can be called the
bright lump wave solution. By caculating, we find that the lump solution reaches
the peak at © = —3,y = —1, when ¢t = 0. As time goes on, the waves moving
forward reach the same amplitude at other points.

2050219-7
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Fig. 3. (Color online) lump solution w with ¢ = 0, 15, 30: 3d plots.
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Fig. 4. (Color online) lump solution u with ¢ = 0,15, 30: contour plots.

5. Interaction Solutions

We would like to consider interaction solutions of the extedned KPII equation.
We mix a quadratic function with an exponential function. This would tell us
interactions between lump waves and soliton solutions. Let

f=(a12 + agy + ast + as)® + (a57 + agy + art + ag)® + ag + ke“1orTonytant
(5.1)

where a;,1 = 1,2,3,...,12, are arbitrary real constants to be determined. We insert
(5.1) into (2.2), and then solve the resulting algebraic system by Maple symbolic
computations to obtain the following parameters:

a9 Qg
a3 =—-——, ar=-——
3 51 5 7 51 )
gie = 1 a10°01 + 2a10a1104 + 4a100103 + 4an
12 2 51 (410201 + 2) ) (5.2)

5 — 1%04542 + a10%01% + 4a10%04 + 46,253 + 4
2 2 51 ((1102(54 —+ 2) ’

2050219-8
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we obtain the interaction solution for (1.6). The parameters not determined above
are arbitrary constants. Therefore, the condition for guaranteeing solution is §; #
0, (a10%64+2) # 0, ag > 0. Taking a special choice for the parameters: a; = 1, ay =
—1, 0,3:1, a4:2, CL5:0, a6:3, a7:—3, ag:4, CL9:27 (Ll():—l, a1 —
—4, aip = %, k=38, 61 =1, 05 = %, 03 =1, d4 = 1, we can get the interaction
solution between a lump solution and a one-kink soliton.

(40t2 + 8tx—80ty + 42> —8xy + 40y>—64t + 32x + 64y + 128)e ¢4y +29t/6
(102 + 2tz —20ty + x2—2xy + 10y? + 8e~*—4w+29t/6 20t + 4x + 20y + 22)2

8t2 2tz —16ty—a + 2xy + 8y>—28t—4x + 28y + 14
(10t24-2tx—20ty + 22 —22y+10y2 + 8e~*—4w+29t/6 _20t + 4z + 20y + 22)2
(5.3)

+4

We plot the graphs of this solution in Figs. 5 and 6.

Fig. 5. (Color online) interaction solution u with ¢t = 0,15, 30: 3d plots.

Fig. 6. (Color online) interaction solution u with ¢ = 0, 15, 30: contour plots.
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6. Conclusion and Remarks

In this paper, we have considered an extension of the KPII equation. We have
worked out a class of particular soliton solutions, lump solutions and interaction
solutions by Hirota’s bilinear method. It is important to remark that the KPII
appears in [18] as a nonintegrable example to show the applicability of Hirota’s
method to nonintegrable systems. The extended terms added to the KPII equation
enhance the integrability of KP models. The extended model was proved to pos-
sess the integrability and soliton solutions. The effect of the extensed terms was on
the dispersion relation as shown. It is also worth mentioning that our interest in
investigating the existence of lump solutions for the extended KPII equation stems
from the fact that the KPII equation does not have lump solutions. Exact solutions
of the extended KPII are abundant, which can explain more physical phenomena.
All the above results offer us abundant new exact solutions, which enrich the exist-
ing theories of solutions®3? 43 to equations, and add valuable insights into soliton
solutions and dromion-type solutions, developed through various powerful solution
techniques including the Hirota perturbation approach, the Riemann-Hilbert ap-
proach, the Wronskian technique, symmetry reductions, and symmetry constraints.
It is also interesting to research for lump and interaction solutions to other gener-
alized bilinear differential equations.44> The research to establish a fundamental
theory of lump and interaction solutions for PDEs deserve our further effort.
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