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Abstract: A KP-like nonlinear differential equation is
introduced through a generalised bilinear equation which
possesses the same bilinear form as the standard KP bilin-
ear equation. By symbolic computation, nine classes of
rational solutions to the resulting KP-like equation are
generated from a search for polynomial solutions to the
corresponding generalised bilinear equation. Three gen-
eralised bilinear differential operators adopted are associ-
ated with the prime number p=3.
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1 Introduction

Hirota bilinear equations [1] and generalised bilinear
equations [2] generate diverse nonlinear equations of
mathematical physics, among which are the KdV equa-
tion, the Boussinesq equation, the Toda lattie equation,
and the KP equation. In recent years, there has been a
renewed and growing interest in rational solutions to
nonlinear differential equations (see, e.g., [3, 4]). Par-
ticularly, rogue wave solutions draw big attention of
mathematicians and physicists worldwide, and such
rational solutions could be used to describe significant
nonlinear wave phenomena in both oceanography [5, 6]
and nonlinear optics [7, 8]. It is very natural and interest-
ing for us to study rational solutions to nonlinear dif-
ferential equations generated from generalised bilinear
equations.
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Rational solutions to integrable equations (see [1, 9,
10]) have been considered systematically on the basis of
the Wronskian formulation, the Casoratian formulation
and the Pfaffian formulation. The celebrated examples
include the KdV equation and the Boussinesq equation in
(1 + 1)-dimensions, the KP equation in (2 + 1)-dimensions,
and the Toda lattice equation in (0 + 1)-dimensions (see,
e.g., [11-14]). Attempts have been made to find rational
solutions to the nonintegrable (3 + 1)-dimensional KP I [15,
16] and KP II [17] by direct approaches including the tanh-
function method [18], the tanh-coth function method [19]

and the g-expansion method [20]. Rational solutions to

the (3 + 1)-dimensional KP II can also be generated from
rational solutions to the good Boussinesq equation by a
transformation of dependent variables [17]. Moreover,
bilinear Backlund transformations are used to construct
rational solutions to (3 + 1)-dimensional generalised KP
equations (see, e.g., [21]).

In this article, we introduce a KP-like nonlinear dif-
ferential equation in terms of a generalised bilinear differ-
ential equation of KP type using three generalised bilinear
differential operators DB’X, D3, .and Dly. We will search for
polynomial solutions to the corresponding generalised
bilinear equation by Maple symbolic computation and
generate nine classes of rational solutions to the resulting
KP-like equation. Three particular rational solutions will
be plotted to exhbit different distributions of singularities.
A few concluding remarks will be given at the end of the
article.

2 AKP-like Equation

Let us begin with a generalised bilinear differential equa-
tion of KP type:

(D, D, +D: +D2)f f=2f f-2f.f +6f

4]
+2fyyf—2fy2 =0.

This bilinear equation has the same bilinear form as the
standard bilinear KP equation [1]. The bilinear differential
operators adopted above are a kind of generalised bilinear
differential operators associated with the prime number
p=3, which are introduced in various research [2, 22, 23]:
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where a; is computed under the rule of

a;=(—l)"’(s), s=r,(s) mod p. 3)
Note that , is a symbol and we do not have

i+j
p

a’pai}za ,1,j20,

when p is a prime number greater than 2.
When p=3, we have

a=-1,a=1a,=1,ai=-1,a.=1,a5=1,
7 8 9
a;=-La;=1a;=1,
and, thus, we obtain

D3,tD3,xf'f=2fxtf_2fxft’ D;,xf.f=6 xi’
D f-f=2f f-2f".

When p =2, which corresponds to the Hirota case, we
obtain

DZ,tDZ,xf ’ f = zfx(f - zfxft )
D f-f=2f f-8f f +6f,
D f-f=2f, f-2f;,

and so, the standard bilinear KP equation reads [1]:

(DZ,IDZ,X + D;,x + D22,y )f : f = 2fxtf - 2fxft + 2fxxxxf

, ; (4)
~8f, f,+6f2+2f f-2f’=0,

and the KP equation:

u,+6uu +6u+u  +u =0, (5)

XXXX yy

through the transformation u=2(Inf) .
Bell polynomial theories (see, e.g., [22-24]) suggest a
dependent variable transformation

u=2(Inf) , (6)

to transform bilinear equations to nonlinear equations.
From the generalised bilinear (1), we obtain, through (6),
a KP-like nonlinear differential equation

u, +3uu +3uu2+§u3u +§u2u +u_=0. @)
X X XX X 2 X 2 XX Yy
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Actually under the transformation (6), we have the
following equality:

(D, D

3t 3,x

+D; +D; )f-f
fZ

3
=u_+3uu_+3u’+=u’u
xt XXX X 2 X

35
+—-uu_+u .
2 xx v
8)

Therefore, if fsolves (1), then u=2(In f) will present a solu-
tion to the KP-like (7). The KP-like (7) has more terms and
higher nonlinearity than the standard KP (5). Comparing
their bilinear counterparts, we see a different phenom-
enon that the generalised bilinear KP (1) is much simpler
than the standard bilinear KP (4).

Resonant solutions to generalised bilinear equations
have been analyzed in terms of the two kinds of tran-
scendental functions: exponential functions and trigono-
metric functions [22, 23, 25]. In the following section, we
generate rational solutions to the KP-like (7), on the basis
of a search for polynomial solutions to the generalised
bilinear (1).

3 Rational Solutions

We apply the computer algebra system Maple to search for
polynomial solutions to the generalised bilinear KP (1). A
direct Maple symbolic computation with

f=22 36Xty ©)

i=0j=0k=0

presents 15 classes of polynomial solutions to (1). Those
solutions, in turn, lead to nine classes of rational solu-
tions to the KP-like (7) through the transformation (6). We
list those classess of rational solutions as follows. The first
class of rational solutions to (7) reads

u=— (10)

with
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The second class of rational solutions to (7) reads 2¢,,,
8 = xc -;-’c ) (15)
— p 1,20 0,20
U, =—— (11)
q
. The seventh class of rational solutions to (7) reads
with
2
, e . ) L= 2(6byc3’0,0 +3¢,,,X +2¢,,,x+ CLO,O)
p= ( tc xc., > +4yc -C,..C )c 7 3 2 ’
0,0,2 0 1,1 03,0 2 0,0,2 0 1,1 1,0,0 70,1,1 0052 2’ 6bxyc3‘0’0 + X Cs,o,o + 2bycz,0y0 + X Cz,o,o + XCLO’0 + Co,o,o
q= tcon 00,2_860,0,2 xtc, +4C011 tycooz +16C b*=3.
- 16 0,0,2 XyCOII +4C002 y C +tC011 1,00 (16)
2
+ 4Cl,O,OXCO,l,l C + 4COOO 0,1,1 CO,O,Z + 2atCO,l,l + 2ayCO,O,Z ’
The eighth class of rational solutions to (2.7) reads
8 6 2 3 2 _
where —768c0,0,2 +Cy,, € T2ac,, °c o +a =0.
u =—2P (17)
The third class of rational solutions to (7) reads 8 q
2p with
u, ==L (12)
q 2 3 2
p:l}xybcu0 —-2X°c,, 24 2ybc110 a0~ 3X7°€C 0G0
with _ _ ", _
2XC0,1,0C2,1,0 XC1,1,0 Co 10C1 ,10°
A 2 2. 2
p:c (tc _2 +yc +c ) q_XCZ,l,O +2X CllO 210+2X C0106210+XC1,1,0
1,10 11,0 101 1,0,1 110 1,0,0 110 2 2 2 2
= txc ~xc 24 xve E 3 12y C2,1,0 + 2XC0,1,0 1,10 o 10 ? b*=
q_ 1,1,0 101 1,1 lel 1,10 010 1,10
2
+ xc *+yc 4 c,, : . ;
1006110 T YC010C104110 Cioa The ninth class of rational solutions to (7) reads
2 4
+Co,1,oC1,o,0C1,1,o - 12("1,0,1 .
4p
ng = —7 (18)
The fourth class of rational solutions to (7) reads
with
2c. 2
0,0,1
u4 = ; 3 . (13) s R 5
COJ’O - +yC°01 010+C0’O,0C0,1,0 p=x bcou 310+72X ybc310 —18x C310 -X bC011 1,10
2 3
—2xybc0‘1,1 - 36y bC011C310+XC011 - 24x° C110 3,10
The fifth cl f rational soluti d +36x%yc +648xy’c. >~ 2xbc
e fifth class of rational solutions to (7) reads 0116310 310 010%0.11
2
2p _36ybC010 3,10 -18x’ Co10C3.10 6XC1,1,0
u, =——
5 q (14) 6yc0“ 1,10 6Co10 1,10°
ith a= 12x° C3,1,0 -x' CO,l,l +24x" C10%510 —48x° ycon 3,10
W1 2.,2 2
-1296x°y"c, 10 +24%° c010 310 +12x? (o
_ 2 2
p_108x C3,00 +72XC200 3,0,0 COOl +12C200 ’ +24X)/CO“ 110+12y C011 +24XC010 1,10
_ 3 2 2 _
q=36x cm0 +36x° Cr00C300 T 1296tc300 —XCyp, + 24yc010 o T 12c010 ,b"=3.
2
+ 12XCZ,O,O + 36yC001 3,0,0 + 36(:000 300°

The sixth class of rational solutions to (7) reads

The aforementioned eighth and ninth solutions are
generated from
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f=tCc,  +itxc, +2btyc, +x°c,  +tc, e 2(108x +72x +11) 1)
XC, € Co0€ 36x° + 36X + 1296t + 11x + 36y + 36
4 01107200 4 5 bycz,o,o 0,1,0°2,0,0 , y
2,10 2,10
1 . . s .
f= tx3c3’1’0 _,_g btxzco,l,l +6btxyc, , + Xscs,o,o rxe,, t[he‘solutlons in (19), F20), and (21) with t=1 are depicted
5 in Figures 1-3, respectively.
X C0,1,1C3,O,0
+tyc,, + e +6 bxycm0 +icy o
3,1,0
xc,. ¢ c.C...¥y C . C
+ 1,1,0 73,0,0 + 0,1,173,0,0 + 0,1,0 "3,0,0 , °
Coo Co G 4 Concluding Remarks
respectively. On the basis of the generalised bilinear formulation [2, 22,
A special solution of (11) with 23], we introduced a KP-like nonlinear differential equa-

tion through a generalised bilinear equation of KP type,
and constructed nine classes of rational solutions to the
is given by resulting KP-like equation by symbolic computation. The

¢, =1+ijk, 0<i<3,0<j, k<2,

8(2t-8x+4y-1)

¢ 3243t + 32\/§y+t2 —8tx + 4ty +16X° —16xy + 4y° —t+4x—2y+4' 19)
A special solution of (12) with basic tool is the generalised bilinear differential operators
o o . . D, and D, introduced from three studies [2, 22, 23].
Cpp =1HT+] +, 0<i<3,0<j, k<2, " We remark that it is very interesting to see if there
. exists any Wronskian solutions, more generally, Pfaffian
is given by

solutions, to the KP-like nonlinear (7). Are there stable

6(3t—6x+3y+2) solutions to its Cauchy problems (see, e.g., [26] for analysis
u= 9tx—9x> + 9xy + 6t +6x+6y—100 @0) 5 the Burgers type equations)? Moreover, a kind of gen-
eralised tri-linear differential equations was introduced in

A special solution of (14) with [27], together with resonant solutions in terms of exponen-
tial functions. Rational solutions to generalised tri-linear
differential equations, which can be viewed as continuous
is given by functions of the extended complex variables, particularly

ci,j’k=1+ijk, 0<i<3,0<j,k<2,
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Figure 1: Pictures of (19) with t=1: 3d plot (left) and density plot (right).
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Figure 3: Pictures of (21) with t=1: 3d plot (left) and density plot (right).

rogue wave solutions, will be another extremely inter-
esting topic. Higher-order rogue wave solutions will be
linked to a wide variety of mathematical topics including
generalised Wronskian solutions [28, 29] and generalised
Darboux transformations [30]. In addition, higher dimen-
sional generalisations, especially (3 + 1)-dimensional
ones and discrete cases (see, e.g., [21, 31]), would be a
good topic for future research.
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