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Abstract: A KP-like nonlinear differential equation is 
introduced through a generalised bilinear equation which 
possesses the same bilinear form as the standard KP bilin-
ear equation. By symbolic computation, nine classes of 
rational solutions to the resulting KP-like equation are 
generated from a search for polynomial solutions to the 
corresponding generalised bilinear equation. Three gen-
eralised bilinear differential operators adopted are associ-
ated with the prime number p = 3.
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1  Introduction
Hirota bilinear equations [1] and generalised bilinear 
equations [2] generate diverse nonlinear equations of 
mathematical physics, among which are the KdV equa-
tion, the Boussinesq equation, the Toda lattie equation, 
and the KP equation. In recent years, there has been a 
renewed and growing interest in rational solutions to 
nonlinear differential equations (see, e.g., [3, 4]). Par-
ticularly, rogue wave solutions draw big attention of 
mathematicians and physicists worldwide, and such 
rational solutions could be used to describe significant 
nonlinear wave phenomena in both oceanography [5, 6] 
and nonlinear optics [7, 8]. It is very natural and interest-
ing for us to study rational solutions to nonlinear dif-
ferential equations generated from generalised bilinear 
equations.

Rational solutions to integrable equations (see [1, 9, 
10]) have been considered systematically on the basis of 
the Wronskian formulation, the Casoratian formulation 
and the Pfaffian formulation. The celebrated examples 
include the KdV equation and the Boussinesq equation in 
(1 + 1)-dimensions, the KP equation in (2 + 1)-dimensions, 
and the Toda lattice equation in (0 + 1)-dimensions (see, 
e.g., [11–14]). Attempts have been made to find rational 
solutions to the nonintegrable (3 + 1)-dimensional KP I [15, 
16] and KP II [17] by direct approaches including the tanh-
function method [18], the tanh-coth function method [19] 

and the -G
G

′ expansion method [20]. Rational solutions to 
the (3 + 1)-dimensional KP II can also be generated from 
rational solutions to the good Boussinesq equation by a 
transformation of dependent variables [17]. Moreover, 
bilinear Bäcklund transformations are used to construct 
rational solutions to (3 + 1)-dimensional generalised KP 
equations (see, e.g., [21]).

In this article, we introduce a KP-like nonlinear dif-
ferential equation in terms of a generalised bilinear differ-
ential equation of KP type using three generalised bilinear 
differential operators D3,x, D3,t and D3,y. We will search for 
polynomial solutions to the corresponding generalised 
bilinear equation by Maple symbolic computation and 
generate nine classes of rational solutions to the resulting 
KP-like equation. Three particular rational solutions will 
be plotted to exhbit different distributions of singularities. 
A few concluding remarks will be given at the end of the 
article.

2  A KP-like Equation
Let us begin with a generalised bilinear differential equa-
tion of KP type:

4 2 2
3, 3, 3, 3,

2

( ) 2 2 6
2 2 0.
t x x y xt x t xx

yy y

D D D D f f f f f f f
f f f

+ + ⋅ = − +
+ − = �

(1)

This bilinear equation has the same bilinear form as the 
standard bilinear KP equation [1]. The bilinear differential 
operators adopted above are a kind of generalised bilinear 
differential operators associated with the prime number 
p = 3, which are introduced in various research [2, 22, 23]:
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where s
pα  is computed under the rule of

	 ( )( 1) , ( )  mod .pr ss
p ps r s pα = − = � (3)

Note that αp is a symbol and we do not have

, , 0,i ji j
p p p i jα α α += ≥

when p is a prime number greater than 2.
When p = 3, we have

2 3 4 5 6
3 3 3 3 3 3
7 8 9
3 3 3

1, 1, 1, 1, 1, 1, 
1, 1, 1,

α α α α α α

α α α

=− = = = − = =
= − = =

and, thus, we obtain
4 2

3, 3, 3,
2 2
3,

2 2 , 6 , 
2 2 .

t x xt x t x xx

y yy y

D D f f f f f f D f f f
D f f f f f

⋅ = − ⋅ =
⋅ = −

When p = 2, which corresponds to the Hirota case, we 
obtain

2, 2,
4 2
2,
2 2
2,

2 2 ,
2 8 6 ,
2 2 ,

t x xt x t

x xxxx xxx x xx

y yy y

D D f f f f f f
D f f f f f f f
D f f f f f

 ⋅ = −


⋅ = − +
 ⋅ = −

and so, the standard bilinear KP equation reads [1]:
4 2

2, 2, 2, 2,
2 2

( ) 2 2 2
8 6 2 2 0,
t x x y xt x t xxxx

xxx x xx yy y

D D D D f f f f f f f f
f f f f f f

+ + ⋅ = − +
− + + − = �

(4)

and the KP equation:

	 26 6 0,xt xx x xxxx yyu uu u u u+ + + + = � (5)

through the transformation u = 2(ln f)xx.
Bell polynomial theories (see, e.g., [22–24]) suggest a 

dependent variable transformation

	 2( ln ) ,xu f= � (6)

to transform bilinear equations to nonlinear equations. 
From the generalised bilinear (1), we obtain, through (6), 
a KP-like nonlinear differential equation

	
2 3 23 33 3 0.

2 2xt x xx x x xx yyu u u uu u u u u u+ + + + + =
�

(7)

Actually under the transformation (6), we have the 
following equality:

	

4 2
3, 3, 3, 3, 2 3

2
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( ) 33 3
2

3 .
2

t x x y
xt x xx x x

x

xx yy

D D D D f f
u u u uu u u

f

u u u

 + + ⋅
  = + + +
  

+ +

� (8)

Therefore, if f solves (1), then u = 2(ln f)x will present a solu-
tion to the KP-like (7). The KP-like (7) has more terms and 
higher nonlinearity than the standard KP (5). Comparing 
their bilinear counterparts, we see a different phenom-
enon that the generalised bilinear KP (1) is much simpler 
than the standard bilinear KP (4).

Resonant solutions to generalised bilinear equations 
have been analyzed in terms of the two kinds of tran-
scendental functions: exponential functions and trigono-
metric functions [22, 23, 25]. In the following section, we 
generate rational solutions to the KP-like (7), on the basis 
of a search for polynomial solutions to the generalised 
bilinear (1).

3  Rational Solutions
We apply the computer algebra system Maple to search for 
polynomial solutions to the generalised bilinear KP (1). A 
direct Maple symbolic computation with

	

3 2 2

, ,
0 0 0

i j k
i j k

i j k

f c x t y
= = =

= ∑∑∑
�

(9)

presents 15 classes of polynomial solutions to (1). Those 
solutions, in turn, lead to nine classes of rational solu-
tions to the KP-like (7) through the transformation (6). We 
list those classess of rational solutions as follows. The first 
class of rational solutions to (7) reads

	
1

2pu
q

=
�

(10)

with
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The second class of rational solutions to (7) reads

	
2

8pu
q

= −
�

(11)

with
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4 3 2 2 4
0,0,2 0,1,1 0,0,2 0,1,1 0,1,1 1,0,0

2
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8 6 2 3 2
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4 2 2 ,  

where 768 2 0.

c c c atc ayc

c c c ac c a

+ + +

− + + + =

The third class of rational solutions to (7) reads
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The fourth class of rational solutions to (7) reads

	

2
0,0,1

4 2 2
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The fifth class of rational solutions to (7) reads

	
5
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The sixth class of rational solutions to (7) reads
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The seventh class of rational solutions to (7) reads

	

2
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The eighth class of rational solutions to (2.7) reads
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The ninth class of rational solutions to (7) reads

	
9
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The aforementioned eighth and ninth solutions are 
generated from

(
)

6 3 2 4 2 5 2 2 2 4 3 2
2,0,0 0,0,2 0,0,2 0,1,1 2,0,0 0,1,1 2,0,0 0,0,2 2,0,0 0,0,2 0,1,1 2,0,0 0,0,2 0,1,1 2,0,0 0,0,2 0,1,1 2,0,0

5 2 2
0,0,2 1,0,0 0,0,2 0,1,1 1,0,0 2,0,0

2 7 2
0,0,2 0
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4 4 4
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2 2
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2
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6
6
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c
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+ + + + 1,0
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,
xc c c c y c c
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respectively.
A special solution of (11) with

, , 1 , 0 3, 0 , 2,i j kc ijk i j k= + ≤ ≤ ≤ ≤

is given by

Figure 1: Pictures of (19) with t = 1: 3d plot (left) and density plot (right).

	
2 2 2

8(2 8 4 1)
.

32 3 32 3 8 4 16 16 4 4 2 4

t x y
u

t y t tx ty x xy y t x y

− + −
= −

+ + − + + − + − + − +
�

(19)

A special solution of (12) with
2 2 2

, , 1 , 0 3, 0 , 2,i j kc i j k i j k= + + + ≤ ≤ ≤ ≤

is given by

	
2

6(3 6 3 2)
.

9 9 9 6 6 6 100
t x y

u
tx x xy t x y

− + +
=

− + + + + − �
(20)

A special solution of (14) with

, , 1 , 0 3, 0 , 2,i j kc ijk i j k= + ≤ ≤ ≤ ≤

is given by

	

2

3 2

2(108 72 11)
.

36 36 1296 11 36 36
x x

u
x x t x y

+ +
=

+ + + + + �
(21)

The solutions in (19), (20), and (21) with t = 1 are depicted 
in Figures 1–3, respectively.

4  Concluding Remarks
On the basis of the generalised bilinear formulation [2, 22, 
23], we introduced a KP-like nonlinear differential equa-
tion through a generalised bilinear equation of KP type, 
and constructed nine classes of rational solutions to the 
resulting KP-like equation by symbolic computation. The 

basic tool is the generalised bilinear differential operators 
D3,x and D3,t introduced from three studies [2, 22, 23].

We remark that it is very interesting to see if there 
exists any Wronskian solutions, more generally, Pfaffian 
solutions, to the KP-like nonlinear (7). Are there stable 
solutions to its Cauchy problems (see, e.g., [26] for analysis 
on the Burgers type equations)? Moreover, a kind of gen-
eralised tri-linear differential equations was introduced in 
[27], together with resonant solutions in terms of exponen-
tial functions. Rational solutions to generalised tri-linear 
differential equations, which can be viewed as continuous 
functions of the extended complex variables, particularly 
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rogue wave solutions, will be another extremely inter-
esting topic. Higher-order rogue wave solutions will be 
linked to a wide variety of mathematical topics including 
generalised Wronskian solutions [28, 29] and generalised 
Darboux transformations [30]. In addition, higher dimen-
sional generalisations, especially (3 + 1)-dimensional 
ones and discrete cases (see, e.g., [21, 31]), would be a 
good topic for future research.
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