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Abstract: The paper aims to construct nonlocal PT-symmetric integrable equations of fourth-order,
from nonlocal integrable reductions of a fourth-order integrable system associated with the Lie algebra
so(3,R). The nonlocalities involved are reverse-space, reverse-time, and reverse-spacetime. All of the
resulting nonlocal integrable equations possess infinitely many symmetries and conservation laws.

Keywords: matrix spectral probems; nonlocal integrable reduction; PT-symmetry

1. Introduction

Matrix spectral probems associated with matrix Lie algebras are used to construct
and classify integrable equations [1–3], which possess infinitely many symmetries and
conservation laws. Hamiltonian structures that guarantee the Liouville integrability can be
established through the trace identity [4,5]. Associated with simple Lie algebras, the well-
known integrable equations include the KdV equation, the nonlinear Schrödinger equation
and the derivative nonlinear Schrödinger equation [6–8]. Nonlocal integrable equations
have also been recently explored in soliton theory, including scalar equations [9,10] and
vector generalizations (see, e.g., [11,12]).

In this paper, we will use the special orthogonal Lie algebra g = so(3,R) over the field
of real numbers. This Lie algebra can be presented by all 3× 3 trace-free, skew-symmetric
real matrices, and a basis can be chosen as follows:

e1 =


0 0 −1

0 0 0

1 0 0

, e2 =


0 0 0

0 0 −1

0 1 0

, e3 =


0 −1 0

1 0 0

0 0 0

, (1)

whose corresponding structure equations are

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2. (2)

There is another representation su(2) of this Lie algebra, which uses 2× 2 complex matrices,
in the study of soliton surfaces [13,14]. The special orthogonal Lie algebra so(3,R) and the
special linear algebra sl(2,R) are the only two three-dimensional real Lie algebras, whose
derived algebra is equal to itself. The special linear algebra sl(2,R) has been frequently
used to study integrable equations [2]. An important fact is that the two Lie algebras
sl(2) and so(3) are not isomorphic over the field of real numbers, but they are isomorphic
over the field of complex numbers. We will be concentrated on the field of real numbers,
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and so, if we only consider real potentials, integrable equations associated with those two
Lie algebras cannot be transformed into each other, which reflects this subtle difference
between the two Lie algebras.

The corresponding matrix loop algebra that we will use is

g̃ = s̃o(3,R) = {M ∈ so(3,R) | entries of M - Laurent series in λ}, (3)

where λ is a spectral parameter. Take two spectral matrices, U and V, from a given matrix
loop algebra, for example, s̃o(3,R), and then the zero curvature equation

Ut −Vx + i[U, V] = 0 (4)

will present integrable equations. Here, and thereafter, the subscripts denote the partial
derivatives with respect to the independent variables. This zero curvature equation is the
compatibility condition of the following two matrix spectral problems:

− iφx = Uφ, −iφt = Vφ, (5)

which is often used to establish inverse scattering transforms to solve associated integrable
equations. The matrix loop algebra s̃o(3,R) has been recently used to generate integrable
equations [15,16].

More generally, if we start from non-semisimple Lie algebras, matrix spectral problems
can yield so-called integrable couplings [17], and the variational identity [18] is a powerful
tool for furnishing their Hamiltonian structures and hereditary recursion operators in block
matrix form [19]. Integrable couplings possess rich mathematical structures and need
further investigation. Based on the perturbation-type loop algebras of s̃o(3,R), we can
present integrable couplings [20].

In this paper, based on the zero curvature formulation, we would first like to recall
an application of so(3,R) to integrable equations [15], with a slightly modified spectral
matrix from the one in [15]. We will then make three pairs of nonlocal integrable reductions
for an associated integrable system to present scalar nonlocal PT-symmetric integrable
equations of fourth-order, which possess the Liouville integrability, i.e., possess infinitely
many commuting symmetries and conservation laws. Let δ = ±1. The presented scalar
nonlocal integrable equations are the nonlocal reverse-space integrable equation

iδpt = p∗xxxx(−x, t)− 5
2 (p∗(−x, t))2 p∗xx(−x, t)− 5

2 p∗(−x, t)(p∗x(−x, t))2

− 3
2 p2 p∗xx(−x, t)− 3ppx p∗x(−x, t)− ppxx p∗(−x, t)

+ 1
2 p2

x p∗(−x, t) + 3
8 p∗(−x, t)[p2 + (p∗(−x, t))2]2,

(6)

where p∗ denotes the complex conjugate of p, the nonlocal reverse-time integrable equation

iδpt = pxxxx(x,−t)− 5
2 (p(x,−t))2 pxx(x,−t)− 5

2 p(x,−t)(px(x,−t))2

− 3
2 p2 pxx(x,−t)− 3ppx px(x,−t)− ppxx p(x,−t)

+ 1
2 p2

x p(x,−t) + 3
8 p(x,−t)[p2 + (p(x,−t))2]2,

(7)

and the nonlocal reverse-spacetime integrable equation

iδpt = −pxxxx(−x,−t) + 5
2 (p(−x,−t))2 pxx(−x,−t) + 5

2 p(−x,−t)(px(−x,−t))2

+ 3
2 p2 pxx(−x,−t) + 3ppx px(−x,−t) + ppxx p(−x,−t)

− 1
2 p2

x p(−x,−t)− 3
8 p(−x,−t)[p2 + (p(−x,−t))2]2.

(8)

Those nonlinear integrable equations share the PT symmetry, i.e., they are all invariant
under the parity-time transformation (x → −x, t→ −t, i→ −i). Note that PT-symmetric



Mathematics 2021, 9, 2130 3 of 9

non-Hermitian physics has been the subject of intense study and broad interest over the
past decades in both classical optics and quantum mechanics (see, e.g., [21]).

2. Matrix Spectral Problems and Bi-Hamiltonian Structure
2.1. Matrix Spectral Problems

We consider a pair of matrix spectral problems:

− iφx = Uφ = U(u, λ)φ, −iφt = Vφ = V(u, λ)φ, (9)

where

U = U(u, λ) =

0 −q −λ

q 0 −p
λ p 0

, (10)

and

V = V(u, λ) =
4

∑
l=0

 0 −cl −al

cl 0 −bl

al bl 0

λl (11)

are two matrices in the matrix loop algebra s̃o(3,R). In the above matrix spectral prob-
lems, λ is a spectral parameter, u = (p, q)T is a potential, φ = (φ1, φ2, φ3)

T is a column
eigenfunction, and al , bl , cl are determined by

a0 = −1, b0 = c0 = 0;

b1 = −p, c1 = −q, a1 = 0;

b2 = iqx, c2 = −ipx, a2 = 1
2 (p2 + q2);

b3 = −pxx +
1
2 p3 + 1

2 pq2, c3 = −qxx +
1
2 p2q + 1

2 q3, a3 = i(pxq− pqx);

b4 = i(qxxx − 3
2 p2qx − 3

2 q2qx), c4 = i(−pxxx +
3
2 p2 px +

3
2 pxq2),

a4 = ppxx + qqxx − 1
2 p2

x − 1
2 q2

x − 3
8 (p2 + q2)2.

The coefficients al , bl , cl are determined by the recursion relation

bl+1 = −icl,x + pal , cl+1 = ibl,x + qal , al+1,x = i(pcl+1 − qbl+1), l ≥ 0. (12)

under the integration condition

al |u=0 = 0, l ≥ 1, (13)

i.e., take the constant of integration as zero, which implies that

bl |u=0 = cl |u=0 = 0, l ≥ 1. (14)

Such a matrix in s̃o(3,R)

W = ae1 + be2 + ce3 =
∞

∑
l=0

 0 −cl −al

cl 0 −bl

al bl 0

λ−l (15)

solves the stationary zero curvature equation

Wx = i[U, W]. (16)

This equation reads

ax = i(pc− qb), bx = i(−λc + qa), cx = i(λb− pa),
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which leads to the recursion relation (12). The solution W is the starting point for generating
a soliton hierarchy [4,5].

It is direct to see that the zero curvature equation with the above pair of matrix
spectral matrices

Ut −Vx + i[U, V] = 0, (17)

presents a fourth-order integrable system:

pt = −i[−qxxxx +
5
2

q2qxx +
5
2

qq2
x +

3
2

p2qxx

+3ppxqx + ppxxq− 1
2

p2
xq− 3

8
q(p2 + q2)2],

qt = i[−pxxxx +
5
2

p2 pxx +
5
2

pp2
x +

3
2

pxxq2

+3pxqqx + pqqxx −
1
2

pq2
x −

3
8

p(p2 + q2)2].

(18)

2.2. Bi-Hamiltonian Structure

We can apply the trace identity [4] with our spectral matrix iU:

δ

δu

∫
tr(W

∂U
∂λ

) dx = λ−γ λ

∂λ
λγ tr(W

∂U
∂u

), (19)

where the constant γ is determined by [19]

γ = −λ

2
d

dλ
ln |〈W, W〉| (20)

to construct the following bi-Hamiltonian structure [22] for the integrable system (18):

ut = J
δH2

δu
= M

δH1

δu
, (21)

where the Hamiltonian pair, J and M, is given by

J =

[
0 −1

1 0

]
, M = i

[
−∂ + q∂−1q −q∂−1 p

−p∂−1q −∂ + p∂−1 p

]
, (22)

and the Hamiltonian functionals,H1 andH2, are defined by

H1 =
1
4

∫
(pxxxq− pqxxx − pxxqx + pxqxx

−3
2

p2 pxq +
3
2

pq2qx +
3
2

p3qx −
3
2

pxq3) dx,
(23)

and
H2 = − i

5

∫
[ppxxxx + qqxxxx − px pxxx − qxqxxx +

1
2

p2
xx +

1
2

q2
xx

−5
2

p(p2 + q2)pxx −
5
2

q(p2 + q2)qxx − 5pqpxqx

−5
4
(p2 − q2)p2

x +
5
4
(p2 − q2)q2

x +
5
16

(p2 + q2)3] dx.

(24)

There is more information on how to generate such Hamiltonian structures in the literature
(see, e.g., [15]).



Mathematics 2021, 9, 2130 5 of 9

The bi-Hamiltonian structure (21) leads to infinitely many symmetries and conserva-
tion laws for the integrable system (18), which can often be generated through symbolic
computation by computer algebra systems (see, e.g., [23,24]). The operator

Φ = MJ−1 = i

[
q∂−1 p −∂ + q∂−1q

∂− p∂−1 p −p∂−1q

]
, ∂ =

∂

∂x

is a common hereditary [25] recursion operator [26] for the integrable system (18).

3. Nonlocal Integrable Equations by Reduction
3.1. Nonlocal Reverse-Space Reductions

Firstly, we consider two specific nonlocal reverse-space reductions for the spectral matrix

U†(−x, t,−λ∗) = −CU(x, tλ)C−1, C =


0 0 δ

0 1 0

δ 0 0

, δ = ±1, (25)

where † denotes the Hermitian transpose. This pair of reductions leads to the potential
reductions

p(x, t) = −δq∗(−x, t), δ = ±1, (26)

respectively. Under these potential reductions, one can have

a∗l (−x, t) = (−1)lal(x, t), b∗l (−x, t) = (−1)lδcl(x, t), l ≥ 1. (27)

The results in (27) can be proved by the mathematical induction. Actually, under the
induction assumption for l = n and applying the recursion relation (12), one can compute

b∗n+1(−x, t) = ic∗n,x(−x, t) + p∗(−x, t)a∗n(−x, t)

= (−1)n+1δ[ibn,x(x, t) + q(x, t)an(x, t)]

= (−1)n+1δcn+1(x, t),

a∗n+1,x(−x, t) = −i[p∗(−x, t)c∗n+1(−x, t)− q∗(−x, t)b∗n+1(−x, t)]

= i(−1)n+1[p(x, t)cn+1(x, t)− q(x, t)bn+1(x, t)]

= (−1)n+1an+1,x(x, t).

Therefore, one obtains
V†(−x, t,−λ∗) = CV(x, t, λ)C−1, (28)

and further

((Ut −Vx + i[U, V])(−x, t,−λ∗))† = −C(Ut −Vx + i[U, V])(x, t, λ)C−1. (29)

This implies that both of the potential reductions in (26) are compatible with the zero
curvature representation (17) of the integrable system (18).

Obviously, the reduced nonlocal reverse-space fourth-order integrable equations read

iδpt = p∗xxxx(−x, t)− 5
2 (p∗(−x, t))2 p∗xx(−x, t)− 5

2 p∗(−x, t)(p∗x(−x, t))2

− 3
2 p2 p∗xx(−x, t)− 3ppx p∗x(−x, t)− ppxx p∗(−x, t)

+ 1
2 p2

x p∗(−x, t) + 3
8 p∗(−x, t)[p2 + (p∗(−x, t))2]2,

(30)

where p∗ denotes the complex conjugate of p. They are PT-symmetric, and present two
nonlocal reverse-space PT-symmetric integrable equations of fourth-order associated with
Lax pairs from the Lie algebra so(3,R). They inherit Hamiltonian structure from the
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integrable system (18). The infinitely many symmetries and conservation laws for the
integrable system (18) are reduced to infinitely many ones for the two scalar nonlocal
integrable equations in (30).

3.2. Nonlocal Reverse-Time Reductions

Secondly, we consider two specific nonlocal reverse-time reductions for the spectral matrix

UT(x,−t,−λ) = −CU(x, tλ)C−1, C =


0 0 δ

0 1 0

δ 0 0

, δ = ±1, (31)

where T stands for the transpose of a matrix. They yield the potential reductions

p(x, t) = −δq(x,−t), δ = ±1. (32)

Under these potential reductions, we can have

al(x,−t) = (−1)lal(x, t), bl(x,−t) = (−1)lδcl(x, t), l ≥ 1. (33)

We can prove these results by the mathematical induction. In fact, under the induction
assumption for l = n and using the recursion relation (12), one can make the following
computation:

bn+1(x,−t) = −icn,x(x,−t) + p(x,−t)an(x,−t)

= (−1)n+1δ[ibn,x(x, t) + q(x, t)an(x, t)]

= (−1)n+1δcn+1(x, t),

an+1,x(x,−t) = i[p(x,−t)cn+1(x,−t)− q(x,−t)bn+1(x,−t)]

= i(−1)n+1[p(x, t)cn+1(x, t)− q(x, t)bn+1(x, t)]

= (−1)n+1an+1,x(x, t).

Therefore, we obtain
VT(x,−t,−λ) = CV(x, t, λ)C−1, (34)

and further

((Ut −Vx + i[U, V])(x,−t,−λ))T = C(Ut −Vx + i[U, V])(x, t, λ)C−1. (35)

This implies that both of the potential reductions in (32) are compatible with the zero
curvature representation (17) of the integrable system (18).

Evidently, the reduced nonlocal reverse-time fourth-order integrable equations read

iδpt = pxxxx(x,−t)− 5
2 (p(x,−t))2 pxx(x,−t)− 5

2 p(x,−t)(px(x,−t))2

− 3
2 p2 pxx(x,−t)− 3ppx px(x,−t)− ppxx p(x,−t)

+ 1
2 p2

x p(x,−t) + 3
8 p(x,−t)[p2 + (p(x,−t))2]2,

(36)

which are PT-symmetric. They present two nonlocal reverse-space PT-symmetric integrable
equations of fourth-order associated with Lax pairs from the Lie algebra so(3,R). Both
equations inherit Hamiltonian structures from the integrable system (18). The infinitely
many symmetries and conservation laws for the integrable system (18) are reduced to
infinitely many ones for the two scalar nonlocal integrable equations in (36).
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3.3. Nonlocal Reverse-Spacetime Reductions

Thirdly, we consider two specific nonlocal reverse-spacetime reductions for the spec-
tral matrix

UT(−x,−t, λ) = CU(x, tλ)C−1, C =


0 0 δ

0 1 0

δ 0 0

, δ = ±1, (37)

where T stands for the transpose of a matrix again. They generate the potential reductions

p(x, t) = δq(−x,−t), δ = ±1. (38)

Under these potential reductions, one can have

al(−x,−t) = al(x, t), bl(−x,−t) = δcl(x, t), l ≥ 1. (39)

We can prove these formulas by the mathematical induction. Actually, under the induction
assumption for l = n and applying the recursion relation (12), one can compute

bn+1(−x,−t) = −icn,x(−x,−t) + p(−x,−t)an(−x,−t)

= iδbn,x(x, t) + δq(x, t)an(x, t)

= δcn+1(x, t),

an+1,x(−x,−t) = −i[p(−x,−t)cn+1(−x,−t)− q(−x,−t)bn+1(−x,−t)]

= i[p(x, t)cn+1(x, t)− q(x, t)bn+1(x, t)]

= an+1,x(x, t).

Therefore, one obtains
VT(−x,−t,−λ) = CV(x, t, λ)C−1, (40)

and further

((Ut −Vx + i[U, V])(−x,−t,−λ))T = −C(Ut −Vx + i[U, V])(x, t, λ)C−1. (41)

This implies that both of the potential reductions in (38) are compatible with the zero
curvature representation (17) of the integrable system (18).

It is now easy to see that the reduced nonlocal reverse-time fourth-order integrable
equations read

iδpt = −pxxxx(−x,−t) + 5
2 (p(−x,−t))2 pxx(−x,−t) + 5

2 p(−x,−t)(px(−x,−t))2

+ 3
2 p2 pxx(−x,−t) + 3ppx px(−x,−t) + ppxx p(−x,−t)

− 1
2 p2

x p(−x,−t)− 3
8 p(−x,−t)[p2 + (p(−x,−t))2]2,

(42)

which are PT-symmetric. They give rise to two nonlocal reverse-spacetime PT-symmetric
integrable equations of fourth-order associated with Lax pairs from the Lie algebra so(3,R).
Both equations inherit Hamiltonian structures from the integrable system (18). The in-
finitely many symmetries and conservation laws for the integrable system (18) are reduced
to infinitely many ones for those two scalar nonlocal integrable equations in (42).

4. Conclusions and Remarks

We have constructed three pairs of scalar nonlocal PT-symmetric integrable equations
of the fourth-order, based on the zero curvature formulation, associated with the Lie algebra
so(3,R). The presented nonlocal integrable equations inherit bi-Hamiltonian structures
and infinitely many commuting symmetries and conservation laws. In each pair of nonlocal
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reductions, the two resulting nonlocal integrable equations have only a sign difference.
This feature for integrable equations associated with so(3,R) is different from the one
for integrable equations associated with sl(2,R). In the case of sl(2,R), there are two
inequivalent focusing and defocusing integrable reductions.

There are many other interesting problems for both local and nonlocal integrable
equations associated with the special orthogonal Lie algebras. For instance, how can
one establish general structures of Darboux transformations associated with the special
orthogonal Lie algebras, based on general formulations of Darboux transformations associ-
ated with the special linear Lie algebras [27,28]? We also do not know how to formulate
Riemann–Hilbert problems and construct inverse scattering transforms to solve integrable
equations associated with so(3,R). The eigenfunctions of matrix spectral problems associ-
ated with those two kinds of Lie algebras exhibit a very different feature of analyticity with
respect to the spectral parameter.
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