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Abstract

Based on two higher-dimensional extensions of Lie algebras, three
kinds of specific Lie algebras are introduced. Upon constructing
proper loop algebras, six isospectral matrix spectral problems are pre-
sented and they yield nonlinear integrable couplings of theAblowitz-
Kaup-Newell-Segur hierarchy, the Broer-Kaup hierarchy and the
Kaup-Newell hierarchy. Especially, the reduced cases of the resulting
integrable couplings give nonlinear integrable couplingsof the nonlin-
ear Schrödinger equation and the classical Boussinesq equation. Two
linear functionals are introduced on two loop algebras of dimension 6
and Hamiltonian structures of the obtained nonlinear integrable cou-
plings are worked out by employing the associated variational identity.
The proposed approach can also be used to generate nonlinearinte-
grable couplings for other integrable hierarchies.

©2012 L&H Scientific Publishing, LLC. All rights reserved.

1 Introduction

Integrable couplings are coupled systems of integrable equations, which contain given integrable equations
as their sub-systems [1–3]. The general definition on integrable couplings is as follows: for a given in-
tegrable system of evolution typeut = K(u), an integrable coupling is a new bigger triangular integrable
system

{

ut = K(u),

vt = S(u,v),
(1)

where the vector-valued functionS should satisfy the non-triviality condition∂S/∂ [u] 6= 0, [u] denoting a
vector consisting of all derivatives ofu with respect to the space variable. In the paper [4], a kind of3×3
matrix Lie algebras was introduced and the associated integrable coupling of the TD hierarchy was obtained.
A general procedure for generating integrable couplings was proposed in [3], based on semi-direct sums of
Lie algebras. The basic idea is as follows.
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Let G be a matrix Lie algebra. Assume that a continuous integrablesystem of evolution type

ut = K(u) = K(u,ux,uxx, . . .) (2)

is linked withG. That is, there exists a pair of Lax matricesU andV in G so that the matrix spectral problem

φx = Uφ = U(u,λ )φ (3)

and the associated matrix spectral problem

φt = Vφ = V(u,ux, . . . ,
∂ n0u
∂xn0

;λ ) (4)

generate the integrable system (2) through the isospectral(λt = 0) compatibility condition

Ut −Vx +[U,V] = 0. (5)

To construct an integrable coupling of Eq.(2), we enlarge the Lie algebraG by using semi-direct sums of
Lie algebras as follows

Ḡ = G A Gc, (6)

where[G,Gc] = {[A,B]|A∈ G,B∈ Gc}, andG andGc satisfy that

[G,Gc] ⊂ Gc. (7)

Therefore,Gc is an ideal Lie sub-algebra of̄G. Take a pair of new Lax matrices in the semi-direct sumḠ :

Ū = U +Uc,V̄ = V +Vc,Uc,Vc ∈ Gc. (8)

Then the compatibility condition of the Lax pair̄U andV̄, i.e., the enlarged zero curvature equation

Ūt −V̄x +[Ū ,V̄] = 0

is equivalent to
{

Ut −Vx +[U,V] = 0,

Uc,t −Vc,x +[U,Vc]+ [Uc,V]+ [Uc,Vc] = 0.
(9)

The first equation (9) presents Eq. (2). The whole system (9) provides an integrable coupling of Eq. (2). In
particular, we can choose the enlarged spectral matricesŪ andV̄ as follows [3]:

Ū =













U Ua1 . . . Uaν

0 U
. ..

...
...

. . . . .. Ua1

0 . . . 0 U













,V̄ =













V Va1 . . . Vaν

0 V
. . .

...
...

. . . . . . Va1

0 . . . 0 V













, (10)

Thus, the coupling system (9) becomes that






ut −Vx +[U,V] = 0,

Uai ,t −Vai ,t + ∑
l+k=i,k,l≥0

[Uak,Val ] = 0,
(11)
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whereUa0 =U,Va0 = 0. Besides the form of Lax pairs in (10), another enlarged form of the spectral matrices
[5]

Ū =

(

U Ua

0 0

)

(12)

corresponds to the semi-direct sum of Lie algebras

G A Gc,G =

{(

A 0
0 0

)}

, Gc =

{(

0 B
0 0

)}

.

More generally, the enlargement of Lax spectral matrices [3]:

Ū =

(

U Ua1

0 Ua2

)

(13)

can be taken from the following semi-direct sum of Lie algebras

G A Gc,G =

{(

A 0
0 0

)}

, Gc =

{(

0 B1

0 B2

)}

,

whereA,B1 andB2 have the same sizes asU,Ua1 andUa2, respectively. Even more general matrix forms
than (12) and (13) can be taken as follows [3]

Ū =





U Ua1 Ua2

0 U Ua3

0 0 0



 ,Ū =





U Ua1 Ua2

0 U Ua3

0 0 Ua4



 . (14)

All this presents a few simple categories of Lax pairs which yield integrable couplings under the framework
of semi-direct sums of Lie algebras. Based on this idea, someintegrable couplings of integrable systems
were obtained [6–9], from which we see that there are much richer mathematical structures behind integrable
couplings than scalar integrable equations.

Tu’s trace identities have been broadly generalized to semi-direct sums of Lie algebras recently [10,11].
The generalizations form a general identity called the variational identity, which provides a powerful tool for
generating Hamiltonian structures of integrable couplings [11]. More recently, the variational identity has
been extensively studied and extended to the case of super Lie algebras, and the supertrace identity has been
established to deduce super-Hamiltonian structures of a super-AKNS soliton hierarchy and a super-Dirac
soliton hierarchy [12].

Usually, integrable equations can have different integrable couplings. For example, a known equation
or system by Eq. (1) may have two integrable couplings [13]:

ū1,t = K̄1(ū) =

(

K(u)
S(u,v)

)

, ū1 =

(

u
v

)

, (15)

ū2,t = K̄2(ū2) =

(

K(u)
T(u,v)

)

, ū2 =

(

u
w

)

. (16)

Putting (15) and (16) together forms a bigger system

ū3,t = K̄3(û) =





K(u)
S(u,v)
T(u,w)



 , û =





u
v
w



 . (17)
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If (17) is still integrable, then we call it a bi-integrable coupling of Eq. (1) [13]. Two kinds of matrix Lie
algebras consisting of square matrices of block forms were constructed to obtain different bi-integrable cou-
plings of the standard nonlinear schrödinger equation. Following this idea, two kinds of higher-dimensional
Lie algebras were presented in [14,15] to produce bi-integrable couplings of the KdV hierarchy and the
BPT hierarchy. However, the integrable couplings obtainedthis way are all linear with respect to the second
variablev in the systemvt = S(u,v), that is, the whole system is linear with respect to the variable v and its
derivatives with respect to the space variable. One of the reasons may be the fact that the Lie algebraGc is
nilpotent.

Recently based on a kind of new special non-semisimple Lie algebras, two feasible schemes for con-
structing nonlinear continuous and discrete integrable couplings were proposed in [16,17]. Variational iden-
tities [9,18] over the corresponding loop algebras were used to furnish Hamiltonian structures for the result-
ing nonlinear integrable couplings.

In the paper, enlightened by the idea adopted in [16,17], we want to establish three kinds of specific
Lie algebras and make use of them to generate nonlinear continuous integrable couplings of evolution type
for given integrable evolution equations. We take the AKNS hierarchy, the BK hierarchy and the KN hi-
erarchy as examples to illustrate the suggested approach. Nonlinear integrable couplings of the nonlinear
Schrödiner equation and the classical Boussinesq equation are presented as reductions of the computed
examples. Moreover, two linear functionals are introducedon the corresponding loop algebras and Hamil-
tonian structures of the resulting nonlinear integrable couplings are furnished by employing the associated
variational identity.

2 Three Lie Algebras: G, H and Q

Let us consider a vector space [14,15]:

L3 = {a = (a1,a2,a3)
T ,ai ∈ R}.

Denote by

K(L3) = {A =





A1

A2

A3



 ,A1,A2,A3 ∈ L3}. (18)

For∀A = (A1,A2,A3)
T ,B = (B1,B2,B3)

T ∈ K(L3), define an operation

[A,B] =





[A1,B1]
[A1,B2]+ [A2,B1]

[A1,B3]+ [A3,B1]+ [A3,B3]



 . (19)

It can be verified thatK(L3) is a Lie algebra equipped with (19). In the vector spaceL3, two different
commutative operations are given by

[a,b] =





a2b3−a3b2

2a1b2−2a2b1

2a3b1−2a1b3



 (20)

and

[a,b] =





a3b2−a2b3

a1b3−a3b1

a1b2−a2b1



 . (21)
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It can be verified thatL3 is a Lie algebra if equipped with (20) or (21), where

a = (a1,a2,a3)
T ,b = (b1,b2,b3)

T ∈ L3.

Now we extend the vector spaceL3 into a higher-dimensional one as follows:

L9 = {a = (a1, . . . ,a9)
T ,ai ∈ R}. (22)

For∀a = (a1, . . . ,a9)
T ,b = (b1, . . . ,b9)

T ∈ L9, notea = (A1,A2,A3)
T ,b = (B1,B2,B3)

T , where

A1 = (a1,a2,a3)
T ,A2 = (a4,a5,a6)

T ,A3 = (a7,a8,a9)
T ,

B1 = (b1,b2,b3)
T ,B2 = (b4,b5,b6)

T ,B3 = (b7,b8,b9)
T .

According to (20) and (21) combining with (19), we define the following two operations inL9 :

[a,b] =





[A1,B1]1
[A1,B2]1 +[A2,B1]1

[A1,B3]1 +[A3,B1]1 +[A3,B3]1



 , (23)

where

[A1,B1]1 =





a2b3−a3b2

2a1b2−2a2b1

2a3b1−2a1b3



 ,

[A1,B2]1 +[A2,B1]1 =





a2b6−a6b2 +a5b3−a3b5

2a1b5−2a5b1 +2a4b2−2a2b4

2a6b1−2a1b6 +2a3b4−2a4b3



 ,

[A1,B3]1 +[A3,B1]1 +[A3,B3]1 =





a2b9−a9b2 +a8b3−a3b8 +a8b9−a9b8

2a1b8−2a8b1 +2a7b2−2a2b7 +2a7b8−2a8b7

2a9b1−2a1b9 +2a3b7−2a7b3 +2a9b7−2a7b9



 ,

[a,b] =





[A1,B1]2
[A1,B2]2 +[A2,B1]2

[A1,B3]2 +[A3,B1]2 +[A3,B3]2



 , (24)

where

[A1,B1]2 =





a3b2−a2b3

a1b3−a3b1

a1b2−a2b1



 ,

[A1,B2]2 +[A2,B1]2 =





a3b5−a5b3 +a6b2−a2b6

a1b6−a6b1 +a4b3−a3b4

a1b5−a5b1 +a4b2−a2b4



 ,

[A1,B3]2 +[A3,B1]2 +[A3,B3]2 =





a3b8−a8b3 +a9b2−a2b9 +a9b8−a8b9

a1b9−a9b1 +a7b3−a3b7 +a7b9−a9b7

a1b8−a8b1 +a7b2−a2b7 +a7b8−a8b7



 ,
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Noting ei = (ei1, . . . ,ei9)
T ,ei j =

{

1, i = j,
0, i 6= j

, in terms of (23), we have a commutative relation as follows:

[e1,e2] = 2e2, [e1,e3] = −2e3, [e2,e3] = e1, [e1,e4] = 0, [e1,e5] = 2e5, [e1,e6] = −2e6,

[e1,e7] = 0, [e1,e8] = 2e8, [e1,e9] = −2e9, [e2,e4] = −2e5, [e2,e5] = 0, [e2,e6] = e4,

[e2,e7] = −2e8, [e2,e8] = 0, [e2,e9] = e7, [e3,e4] = 2e6, [e3,e5] = −e4, [e3,e6] = 0,

[e3,e7] = 2e9, [e3,e8] = −e7, [e3,e9] = [e4,e5] = [e4,e6] = [e4,e7] = [e4,e8] = [e4,e9] =

[e5,e6] = [e5,e7] = [e5,e8] = [e5,e9] = 0, [e6,e7] = [e6,e8] = [e6,e9] = 0,

[e7,e8] = 2e8, [e7,e9] = −2e9, [e8,e9] = e7.

Let us make a linear transformation

f1 =
1
2

e7, f2 =
1
2
(e8 +e9), f3 =

1
2
(e8−e9),

then we have a new Lie algebra
G = span{e1,e2,e3, f1, f2, f3}, (25)

where the commutative operations are the following:

[e1,e2] = 2e2, [e1,e3] = −2e3, [e2,e3] = e1, [e1, f1] = 0, [e1, f2] = 2 f3, [e1, f3] = 2 f2,

[e2, f1] = − f2− f3, [e2, f2] = f1, [e2, f3] = − f1, [e3, f1] = f2− f3, [e3, f2] = [e3, f3] = − f1,

[ f1, f2] = f3, [ f1, f3] = f2, [ f2, f3] = − f1.

Denote
G1 = span{e1,e2,e3},G2 = span{ f1, f2, f3},

and then we have
G = G1 A G2, [G1,G2] ⊂ G2,

which satisfy the sufficient condition for generating integrable couplings. We remark that hereG1 andG2

are all simple Lie algebras.
If we make another linear transformation

h1 =
√

3i f1,h2 = −
√

6i
2

f2 +
3√
2

f3,h3 = −
√

6i
2

f2−
3√
2

f3,

where
[ f1, f2] = f3, [ f1, f3] = f2, [ f2, f3] = − f1, i

2 = −1,

then we obtain that

[h1,h2] = −h2−2h3, [h1,h3] = 2h2 +h3, [h2,h3] = −3h1, [e1,h1] = 0,

[e1,h2] =
2i√
3
(h2 +2h3), [e1,h3] = − 2i√

3
(2h2 +h3), [e2,h1] =

3
√

2−
√

6i
6

h2 +
3
√

2+
√

6i
6

h3,

[e2,h2] =

√
3i −1√

2
h1, [e2,h3] = −1+

√
3i√

2
h1, [e3,h1] = − i+

√
3√

6
h2 +

i −
√

3√
6

h3, [e3,h2] =
1+

√
3i√

2
h1,

[e3,h3] =
1−

√
3i√

2
h1.
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Denoting by
H = span{e1,e2,e3,h1,h2,h3}, (26)

thenH is also a Lie algebra equipped with the above commutator. Similarly, according to (24), a basis of
the Lie algebraR9,

ei = (ei1, . . . ,ei9)
T ,ei j =

{

1, i = j,

0, i 6= j,
1≤ i, j ≤ 9,

possesses the following commutative relations

[e1,e2] = e3, [e1,e3] = e2, [e2,e3] = −e1, [e1,e4] = 0, [e1,e5] = e6, [e1,e6] = e5, [e1,e7] = 0,

[e1,e8] = e9, [e1,e9] = e8, [e2,e4] = −e6, [e2,e5] = 0, [e2,e6] = −e4, [e2,e7] = −e9,

[e2,e8] = 0, [e2,e9] = −e7, [e3,e4] = −e5, [e3,e5] = e4, [e3,e6] = 0, [e3,e7] = −e8,

[e3,e8] = e7, [e3,e9] = [e4,e5] = [e4,e6] = [e4,e7] = [e4,e8] = [e4,e9] = [e5,e6] = [e5,e7],

[e5,e8] = [e5,e9] = [e6,e7] = [e6,e8] = [e6,e9] = 0,

[e7,e8] = e9, [e7,e9] = e8, [e8,e9] = −e7.

If make a linear transformation

p1 = 2e7, p2 = 2(e8 +e9), p3 = 2(e8−e9),

then we have

[p1, p2] = 2p2, [p1, p3] = −2p3, [p2, p3] = 4p1, [e1, p1] = 0, [e1, p2] = p2, [e1, p3] = −p3,

[e2, p1] = 1
2(p3− p2), [e2, p2] = −p1, [e2, p3] = p1, [e3, p1] = −1

2(p2 + p3), [e3, p2] = p1,

[e3, p3] = p1.

Setting
Q = span{e1,e2,e3, p1, p2, p3}, (27)

thenQ forms a Lie algebra equipped with the above commutative operations.

3 Nonlinear Integrable Couplings

In the section, we shall use the loop algebras of the Lie algebrasG,H andQ to construct nonlinear integrable
couplings for the AKNS hierarchy, the BK hierarchy and the KNhierarchy, respectively. Specially, we
shall obtain nonlinear integrable couplings of the standard nonlinear Schrödinger equation and the classical
Boussinesq equation.

3.1 Two Nonlinear Integrable Couplings of the AKNS Hierarchy

Introduce a loop algebra of the Lie algebraG:

G̃ = span{e1(n),e2(n),e3(n), f1(n), f2(n), f3(n)},

where
ei(n) = eiλ n, fi(n) = fiλ n, i = 1,2,3, n∈ Z.
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The corresponding commutative operations read that

[ei(m),ej(n)] = [ei ,ej ]λ m+n, [ fi(m), f j(n)] = [ fi , f j ]λ m+n, 1≤ i, j ≤ 3, m,n∈ Z.

By using the loop algebrãG, we introduce a Lax pair of zero curvature equations






U = e1(1)+qe2(0)+ re3(0)+u1 f2(0)+u2 f3(0),

V = ∑
m≥0

3
∑

i=1
Vimei(−m)+ ∑

m≥0

6
∑
j=4

Vjm f j−3(−m).
(28)

A compatibility condition of the Lax pair (28) gives rise to arecursion relation






























V1,mx = qV3m− rV2m,
V2,mx = 2V2,m+1−2qV1m,
V3,mx = −2V3,m+1 +2rV1m,
V4,mx = (q− r +u2)V5m− (q+ r +u1)V6m+(u1 +u2)V3m+(u2−u1)V2m,
V5,mx = 2V6,m+1 +(r −q)V4m−u2(2V1m+V4m),
V6,mx = 2V5,m+1− (q+ r)V4m−u1(2V1m+V4m).

(29)

Note that

V(n)
+ = (λ nV)+ =

n

∑
m=0

3

∑
i=1

Vimei(n−m)+
n

∑
m=0

6

∑
j=4

Vjm f j−3(n−m) = λ nV −V(n)
− .

According to the Tu scheme [19,20], we need to compute the left-hand side of the following equation

−V(n)
+x +[U,V(n)

+ ] = V(n)
−x − [U,V(n)

− ].

A direct calculation gives that

−V(n)
+x +[U,V(n)

+ ] = −2V2,n+1e2(0)+2V3,n+1e3(0)−2V5,n+1 f3(0)−2V6,n+1 f2(0).

LetV(n) = V(n)
+ . Then the zero curvature equation

Ut −V(n)
x +[U,V(n)] = 0

admits a Lax integrable hierarchy

utn =









q
r
u1

u2

F









tn

=









2V2,n+1

−2V3,n+1

2V6,n+1

2V5,n+1









= L









2V2n

−2V3n

2V6n

2V5n









, (30)

whereL is a recurrence operator, i.e.,

L =



















∂
2
−q∂−1r q∂−1q 0 0

r∂−1r −∂
2

+ r∂−1q 0 0

1
2
(q− r +u2)∂−1(u1−u2) −1

2
(q− r +u2)∂−1(u1 +u2) l1 l2s

l3 l4 l5 l6



















,
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with

l1 = −1
2
(q− r +u2)∂−1(q+ r +u1), l2 =

∂
2

+
1
2
(q− r +u2)∂−1(q− r +u2),

l3 =
1
2
(q+ r −u1)∂−1(u2−u1)−u1∂−1r, l4 = u1∂−1q+

1
2
(q+ r −u1)∂−1(u1 +u2),

l5 =
∂
2
− 1

2
(q+ r −u1)∂−1(q+ r +u1), l6 =

1
2
(q+ r −u1)∂−1(q− r +u2).

It is easy to check that








2V2,n+1

−2V3,n+1

2V6,n+1

2V5,n+1









= L









2V2n

−2V3n

2V6n

2V5n









.

When setu1 = u2 = 0, the hierarchy (30) reduces to the well-known AKNS hierarchy.
SettingV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then from (29) we have

V4,0 = 0,V2,1 = αq,V3,1 = αr,V6,1 = αu2,V5,1 = αu1,V1,1 = V4,1 = 0,V2,2 =
α
2

qx,

V3,2 = −α
2

rx,V1,2 = −α
2

qr,V2,3 =
α
4

qxx−
α
2

q2r,V3,3 =
α
4

rxx−
α
2

qr2,V1,3 =
α
4

(qrx−qxr),

V6,2 =
α
2

u1x,V5,2 =
α
2

u2x,V4,2 =
α
2

(q− r)u2−
α
2

(q+ r)u1−
α
4

(u2
1−u2

2),

V5,3 =
α
4

u1xx+
α
4

(q+ r +u1)[(q− r)u2− (q+ r)u1]−
α
8

(q+ r +u1)(u
2
1−u2

2)−
α
2

qru1,

V6,3 =
α
4

u2xx+
α
4

(q− r +u2)[(q− r)u2− (q+ r)u1]−
α
8

(q− r +u2)(u
2
1−u2

2)−
α
2

qru2, . . . ,

When n = 2, the hierarchy (30) reduces to a nonlinear integrable coupling of the standard Schrödinger
equation







































qt2 =
α
2

qxx−αq2r,

rt2 = −α
2

rxx+ αqr2,

u1,t2 =
α
2

u2xx+
α
2

(q− r +u2)[(q− r)u2− (q+ r)u1]−
α
4

(q− r +u2)(u2
1−u2

2)−αqru2,

u2,t2 =
α
2

u1xx+
α
2

(q+ r +u1)[(q− r)u2− (q+ r)u1]−
α
4

(q+ r +u1)(u2
1−u2

2)−αqru1.

(31)

When takingu1 = u2 = 0, (30) reduces to the nonlinear Schrödinger equation. When taking n = 2,3, . . . ,
the hierarchy (30) all reduces to nonlinear integrable coupling equations. Hence, (30) presents a hierarchy
of nonlinear integrable coupling for the AKNS hierarchy.

In what follows, we employ the Lie algebraH to construct a second hierarchy of nonlinear integrable
couplings for the AKNS hierarchy. A loop algebra of the Lie algebraH is chosen as

H̃ = span{e1(n),e2(n),e3(n),h1(n),h2(n),h3(n)},
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where

ei(n) = eiλ n,hi(n) = hiλ n, i = 1,2,3, n∈ Z.

The corresponding commutative operations read

[ei(m),ej(n)] = [ei ,ej ]λ m+n, [hi(m),h j(n)] = [hi ,h j ]λ m+n, 1≤ i, j ≤ 3, m,n∈ Z.

By utilizing H̃, a Lax pair is introduced as follows











U = e1(1)+qe2(0)+ re3(0)+s1h2(0)+s2h3(0),

V = ∑
m≥0

(
3
∑

i=1
Vimei(−m)+

6
∑
j=4

Vjmh j−3(−m)).
(32)

The stationary zero curvature equation

[U,V ] = Vx

is equivalent to the following



























































































































































V1,mx = qV3m− rV2m,

V2,mx = 2V2,m+1−2qV1m,

V3,mx = −2V3,m+1 +2rV1m,

V4,mx =

(

1+
√

3i√
2

s2 +
1−

√
3i√

2
s1

)

V2m+

(√
3i −1√

2
s2− 1+

√
3√

2
s1

)

V3m

+

(√
3i −1√

2
q+

1+
√

3i√
2

r +3s2

)

V5m+

(

1−
√

3i√
2

r − 1+
√

3i√
2

q−3s1

)

V6m,

V5,mx =
2i√

3
V5,m+1−

4i√
3
V6,m+1 +

(

3
√

2−
√

3i
6

q− i +
√

3√
6

r +s1−2s2

)

V4m

+

(

4i√
3

s2−
2is1√

3

)

V1m,

V6,mx =
4i√

3
V5,m+1−

2i√
3
V6,m+1 +

(

3
√

2−
√

6i
6

q+
i −

√
3√

6
r +s1−s2

)

V4m

+

(

2i√
3

s2−
4i√
3

s1

)

V1m.

(33)

SettingV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then we obtain from (33)
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V4,0 = 0,V5,1 = αs1,V6,1 = αs2,V4,1 = 0,V2,1 = αq,V3,1 = αr,V2,2 =
α
2

qx,V3,2 = −α
2 rx,

V1,2 = −α
2

qr,V5,2 =
α

2
√

3i
(2s2x−s1x),V6,2 =

α
2
√

3i
(s2x−2s1x),

V4,2 =

√
3i +1

2
√

2
αqs2 +

1−
√

3i

2
√

2
αqs1 +

1−
√

3i

2
√

2
αrs2 +

1+
√

3i

2
√

2
αrs1 +

3α
2
√

3i
(s2

1 +s2
2−s1s2),

V5,3 =
α
4

s1xx+
iα
3

(

3
√

2−
√

6i

12
√

3
q+

3i −
√

3

6
√

2
r +

3s1

2
√

3

)[√
3i +1

2
√

2
qs2 +

1−
√

3i

2
√

2
qs1 +

(

1−
√

3i

2
√

2
s2

+
1+

√
3i

2
√

2
s1

)

r −
√

3i
2

(s2
1 +s2

2−s1s2)

]

− α
2

qrs1,

V6,3 =
α
4

s2xx−
α i
6

(

3
√

2−
√

6i

6
√

3
q− 3i +

√
3

2
√

2
r −

√
3s2

)[(√
3i +1

2
√

2
s2 +

1−
√

3i

2
√

2
s1

)

q

+

(

1−
√

3i

2
√

2
s2 +

1+
√

3i

2
√

2
s1

)

r −
√

3i
2

(s2
1 +s2

2−s1s2)

]

− α
2

qrs2.

Setting

V(n) =
n

∑
m=0

(

3

∑
i=1

Vimei(n−m)+
6

∑
j=4

Vjmh j−3(n−m)

)

,

a direct calculation gives rise to

−V(n)
x +[U,V(n)] = −2V2,n+1e2(0)+2V3,n+1e3(0)+

2i√
3
(2V6,n+1−V5,n+1)h2(0)

+
2i√
3
(V6,n+1−2V5,n+1)h3(0).

The equation

Utn −V(n)
x +[U,V(n)] = 0

leads to

utn =









q
r
s1

s2









tn

=



















2V2,n+1

−2V3,n+1

2i√
3
(V5,n+1−2V6,n+1)

2i√
3
(2V5,n+1−V6,n+1)



















. (34)

When settings1 = s2 = 0, (34) reduces to the AKNS hierarchy, and so it gives a hierarchy of nonlinear
integrable couplings for the AKNS hierarchy. Specially, ifwe taken = 2, the hierarchy (34) reduces to
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another nonlinear integrable coupling of the nonlinear Schrödinger equation:














































































































qt2 =
α
2

qxx−αq2r,

rt2 = −α
2

rxx+ αqr2,

s1,t2 = − iα
2
√

3
(2s2xx−s1xx)+

ıα√
3
(2s2−s1)qr +

α√
3

(√
6i −3

√
2

6
√

3
q+

i +
√

3

3
√

2
r − s1−2s2√

3

)

[(√
3i +1

2
√

2
s2 +

1−
√

3i

2
√

2
s1

)

q+

(

1−
√

3i

2
√

2
s2 +

1+
√

3i

2
√

2

)

r −
√

3i
2

(s2
1 +s2

2−s1s2)

]

,

s2,t2 = − iα
2
√

3
(s2xx−2s1xx)+

iα√
3
(s2−2s1)qr− α√

3

(

3
√

2−
√

6i

6
√

3
q+

i −
√

3

3
√

2
r +

2s1−s2√
3

)

[(√
3i +1

2
√

2
s2 +

1−
√

3i

2
√

2
s1

)

q+

(

1
√

3i

2
√

2
s2 +

1+
√

3i

2
√

2
s1

)

r −
√

3i
2

(s2
1 +s2

2−s1s2)

]

.

(35)

3.2 Three Nonlinear Integrable Couplings of the BK Hierarchy

In this sub-section, we first make use of the Lie algebraG to establish two different Lax pairs to generate the
corresponding different nonlinear integrable couplings of the BK hierarchy. As reduced cases, various non-
linear integrable couplings of the classical Boussinesq equation are obtained. Employing the Lie algebraH,
we introduce a Lax pair whose compatibility condition givesrise to the third nonlinear integrable couplings
of the BK hierarchy.

Applying the loop algebrãG of the Lie algebraG introduces a Lax pair as follows:







U = −e1(1)+ v
2e1(0)+e2(0)−we3(0)+u1 f2(0)+u2 f3(0),

V = ∑
m≥0

3
∑
j=1

Vjmej(−m)+ ∑
m≥0

6
∑

k=4
Vkm fk−3(−m).

(36)

EquationVx = [U,V ] gives that







































V1,mx = V3m+wV2m,

V2,mx = −2V2,m+1 +vV2m−2V1m,

V3,mx = 2V3,m+1−vV2m−2wV1m,

V4,mx = (1+w+u2)V5m+(−1+w−u1)V6m+(u1−u1)V2m+(u1 +u2)V3m,

V5,mx = −2V6,m+1 +vV6m+(−1+w−u2)V4m−2u2V1m,

V6,mx = −2V5,m+1 +vV5m+(−1+w−u1)V4m−2u1V1m.

(37)

Noting

V(n)
+ = (lambdanV)+ =

n

∑
m=0

(

3

∑
j=1

Vjmej(n−m)+
6

∑
k=4

Vkm fk−3(n−m)

)

= λ nV −V(n)
− ,
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then Eq.Vx = [U,V ] can be written as

−V(n)
+x +[U,V(n)

+ ] = V(n)
−x − [U,V(n)

− ].

A direct computation reads

−V(n)
+x +[U,V(n)

+ ] = 2V2,n+1e2(0)−2V3,n+1e3(0)+2V5,n+1 f3(0)+2V6,n+1 f2(0).

SettingV(n) = V(n)
+ + ∆1,∆1 = V2,n+1e1(0), we have

−V(n)
x +[U,V(n)] = −V2,n+1xe1(0)+ (−2wV2,n+1−2V3,n+1)e3(0)

+(−2u2V2,n+1 +2V6,n+1) f2(0)+ (−2u1V2,n+1 +2V5,n+1) f3(0).

Thus, the compatibility of the Lax pairU andV(n) gives rise to

utn =









v
w
u1

u2









tn

=









2V2,n+1x

−2wV2,n+1−2V3,n+1

2u2V2,n+1−2V6,n+1

2u1V2,n+1−2V5,n+1









=









2V2,n+1x

−2V1,n+1x

2u2V2,n+1−2V6,n+1

2u1V2,n+1−2V5,n+1









. (38)

Letting u1 = u2 = 0, (38) reduces to the BK hierarchy. SettingV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then
one infers from (37) that

V1,1 = 0,V2,1 = −α ,V3,1 = αw,V1,2 =
α
2

w,V2,2 = −α
2

v,V3,1 = αw,V1,3 =
α
4

wxx+
α
2

wv,

V3,2 =
α
2

(wx +wv),V2,3 =
α
4

vx−
α
4

v2− α
2

w,V3,3 =
α
4

(wx +wv)x +
α
4

v(wx +wv)+
α
2

w2,

V6,1 = 0,V6,2 =
α
2

(u1x−vu2),V5,2 =
α
2

(u2x−vu1),

V4,2 =
α
2

(

u2−u1+wu2 +
1
2

u2
2−

1
2

u2
1 +wu1

)

,

V6,3 = −α
4

(u2xx− (vu1)x)+
α
4

v(u1x−vu2)−
α
4

(1+w+u2)(u2−u1+wu1 +wu2−
1
2

u2
1−

1
2

u2
2)−

α
2

u2w,

V5,3 = −α
4

(u1xx− (vu2)x)+
α
4

v(u2x−vu1)+
α
4

(−1+w−u1)

(

u2−u1 +wu1+wu2 +
1
2

u2
2−

1
2

u2
1

)

−α
2

u1w, . . .

Letting n = 2, then (38) reduces to the following nonlinear integrable equations

vt2 =
α
2

vxx−αvvx−αwx,

wt2 = −α
2

wxx−α(wv)x,

u1,t2 =
α
2

u2vx−
α
2

u2v2−αu2w+
α
2

(u2xx− (vu1)x)−
α
2

v(u1x−vu2)+
α
2

(1+w+u2)

[

u2−u1 +w(u1+u2)−
1
2
(u2

1 +u2
2)

]

+ αu2w,

u2,t2 =
α
2

u1vx−
α
2

u1v2−αu1w− α
2

(u1xx− (vu2)x)−
α
2

(−1+w−u1)[u2−u1 +w(u1+u2)

+
1
2
(u2

2−u2
1)]+αu1w.

(39)
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Settingu1 = u2 = 0,α = −1, t2 = t, (39) reduces to the BK system















vt = −1
2

vxx+vvx +wx,

wt =

(

vw+
1
2

wx

)

x
,

(40)

which was obtained in [21]. Two basic Darboux transformations and some new solutions were obtained in
[22]. Li and Zhang [23] obtained the third Darboux transformation of the BK system (40) and produced
some multi-soliton solutions. (39) presents a nonlinear integrable coupling for the BK system (40). The Lax
integrable hierarchy (38) gives a hierarchy of nonlinear integrable couplings for the BK hierarchy.

In what follows, we deduce a nonlinear integrable coupling for the classical Boussinesq equation. By
making a linear transformation [22,23]:

v = −u,w = ξ +1+
vx

2
, (41)

the BK system (40) is transformed to the following classicalBoussinesq equation







ut +uux + ξx = 0,

ξt +((1+ ξ )u)x +
1
4

uxxx = 0,
(42)

whereξ is the elevation of the water wave,u is the surface velocity of water alongx-direction. Substituting
(41) into (39) yields a nonlinear integrable coupling of (42):















































































ut + uux + ξx = 0,

ξt + ((1+ ξ )u)x +
1
4

uxxx = 0,

u1t =
1
2

u2ux−
1
2

u2u2 +u2

(

1+ ξ +
vx

2

)

− 1
2
(u2xx+(uux)x)−

1
2
(u1x +uu2)

−1
2
(2+ ξ + vx

2 +u2)

[

u2−u1+
(

1+ ξ +
vx

2

)

(u1 +u2)−
1
2
(u2

1 +u2
2)

]

−u2(1+ ξ +
vx

2
),

u2t =
1
2

u1ux +
1
2

u1u2 +u1

(

1+ ξ +
vx

2

)

+
1
2
(u1xx+(uu2)x)

+
1
2

(

ξ +
vx

2
−u1

)

[

u2−u1+(u1 +u2)
(

1+ ξ +
vx

2

)

+
1
2
(u2

2−u2
1)

]

−u1

(

1+ ξ +
vx

2

)

,

(43)

In the following, we deduce the second nonlinear coupling ofthe BK hierarchy. We still use the loop algebra
G̃ to introduce a Lax pair:















U = −e1(1)+
v
2

e1(0)+e2(0)−we3(0)+s1 f1(0)+s2 f3(0),

V = ∑
m≥0

(

3
∑

i=1
Vimei(−m)+

6
∑
j=4

Vjm f j−3(−m)

)

.
(44)
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Similar to the above discussion, a recurrence relation reads as follows






































V1,mx = V3m+wV2m,

V2,mx = −2V2,m+1 +vV2m−2V1m,

V3,mx = 2V3,m+1−vV3m−2wV1m,

V4,mx = (w−1)V6m+(1+w+s2)V5m+s2(V2m+V3m),

V5,mx = −2V6,m+1 +(v+s1)V6m− (1+w+s2)V4m−2s2V1m+s1(V2m−V3m),

V6,mx = −2V5,m+1 +(v+s1)V5m+(−1+w)V4m+s1(V2m+V3m).

(45)

Taking some initial values such asV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then from (45) one infers that

V1,1 = V4,0 = 0,V2,1 = −α ,V3,1 = αw,V1,2 =
α
2

w,V2,2 = −α
2

v,V3,1 = αw,

V1,3 =
α
4

wxx+
α
2

wv,V3,2 =
α
2

(wx +wv),V2,3 =
α
4

vx−
α
4

v2− α
2

w,

V3,3 =
α
4

(wx +wv)x +
α
4

v(wx +wv)+
α
2

w2,V6,1 = −αs2,V5,0 = 0,V4,0 = 0,

V6,2 = −α
2

(s2v+s1s2 +s1+s1w),V5,2 =
α
2

(s2x−s1 +s1w),

V4,2 =
α
2

(

s2 +s2w+
1
2

s2
2

)

,

V6,3 = −α
4

(s2xx−s1x +(s1w)x)−
α
4

(v+s1)(s2v+s1s2 +s1+s1w)− α
4

(1+w+s2)

(

s2 +s2w+
1
2

s2
2

)

−α
2

s2w− α
2

(s1v+s1wx +s1wv),

V5,3 =
α
4

(s2v+s1s2 +s1 +s1w)x +
α
4

(v+s1)(s2x−s1 +s1w)+
α
4

(w−1)

(

s2 +s2w+
1
2

s2
2

)

−α
4

(s1v−s1wx−s1wv), . . .

Setting

V(n)
+ =

n

∑
m=0

(

3

∑
i=1

Vimei(n−m)+
6

∑
j=4

Vjm f j−3(n−m)

)

,

we obtain that

−V(n)
+x +[U,V(n)

+ ] = 2V2,n+1e2(0)−2V3,n+1e3(0)+2V5,n+1 f3(0)+2V6,n+1 f2(0).

Noting

V(n) = V(n)
+ + ∆2,∆2 = V2,n+1e1(0)+

2V6,n+1−2s2V2,n+1

1+w+s2
f1(0),

then we have

−V(n)
x +[U,V(n)] = −V2,n+1xe1(0)−2V1,n+1xe3(0)−

(

2V6,n+1−2s2V2,n+1

1+w+s2

)

x
f1(0)+ (2V5,n+1

+
w−1

1+w+s2
(2V6,n+1−2s2V2,n+1)) f3(0).
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The compatibility condition of the Lax pairU andV(n) leads to

utn =









v
w
s1

s2









tn

=





















2V2,n+1x

−2V1,n+1x
(

2V6,n+1−2s2V2,n+1

1+w+s2

)

x

−2V5,n+1 +
1−w

1+w+s2
(2V6,n+1−2s2V2,n+1)





















. (46)

Whens1 = s2 = 0, (46) reduces to the BK hierarchy. When takingn = 2,α = −1, t2 = t, (46) reduces to a
nonlinear integrable coupling of the BK system (40):















































































































vt = −1
2

vxx+vvx +wx,

wt =

(

vw+
1
2

wx

)

x
,

s1t =

(

1
1+w+s2

[

1
2
(s2xx−s1x +(s1w)x)+

1
2
(v+s1)(s2v+s1s2 +s1 +s1w)

+
1
2
(1+w+s2)

(

s2 +s2w+
1
2

s2
2

)

+s1v+s1wx +s1wv+
1
2
(s2vx−s2v2)

])

x
,

s2t =
1
2
(s2v+s1s2 +s1 +s1w)x +

1
2
(v+s1)(s2x−s1+s1w)+

1
2
(w−1)

(

s2 +s2w+
1
2

s2
2

)

−1
2
(s1v−s1wx−s1wv)+

1−w
2(1+w+s2)

[

s2xx−s1x +(s1w)x +(v+s1)(s2v+s1s2 +s1 +s1w)

+ (1+w+s2)

(

s2 +s2w+
1
2

s2
2

)

+2s1v+2s1wx +2s1wv+s2vx−s2v2)

]

.

(47)
Obviously, (47) is different from (39). They are all nonlinear integrable couplings of the BK system. When
making the linear transformation, it is easy to transform the hierarchy (47) into a hierarchy of nonlinear
integrable couplings for the classical Boussinesq equation. Here we omit it due to complicatedness.

Next, we construct the third nonlinear integrable couplingof the BK hierarchy by using a loop algebra
H̃ of the Lie algebraH.
Setting















U = −e1(1)+ v
2e1(0)+e2(0)−we3(0)+w1h2(0)+w2h3(0),

V = ∑
m≥0

(

3
∑

i=1
Vimei(−m)+

6
∑
j=4

Vjmh j−3(−m)

)

,
(48)

Eq. [U,V] = Vx leads to
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V1,mx = V3m+wV2m,

V2,mx = −2V2,m+1 +vV2m−2V1m,

V3,mx = 2V3,m+1−vV3m−wV1m,

V4,mx =

(√
3i −1√

2
− 1+

√
3i√

2
w+3w2

)

V5m−
(

1+
√

3i√
2

+
1−

√
3i√

2
w+3w1

)

V6m+

(

1−
√

3i√
2

w1 + 1+
√

3i√
2

w2

)

V2m,

V5,mx = − 2i√
3
V5,m+1 +

4i√
3
V6,m+1 +

i√
3

vV5m− 2i√
3

vV6m+

(

3
√

2−
√

6i
6

+
i +

√
3√

6
w+w1+2w2

)

V4m

+

(

2i√
3

w1 +
4i√

3

)

V1m,

V6,mx = − 4i√
3
V5,m+1 +

2i√
3
V6,m+1 +

2i√
3

vV5m− i√
3

vV6m+

(

3
√

2+
√

6i
6

+
i −

√
3√

6
w+2w1+w2

)

V4m

+

(

− 4i√
3

w1+ 2i√
3
w2

)

V1m.

(49)
SettingV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then from (49) we have

V4,0 = 0,V5,1 = −αw1,V6,1 = −αw2,V4,1 = 0,V6,2 =
iα√

3
w1x−

iα
2
√

3
w2x +

α
3

(

2vw1−
5
2

vw2

)

,

V5,2 =
iα

2
√

3
w1x−

iα√
3

w2x +
α
3

(

5
2

vw1−2vw2

)

,

V4,2 =

√
3−3i

2
√

6
αw1+

3i +
√

3

2
√

6
αw2−

1+
√

3i

2
√

2
αww1+

√
3i −1

2
√

2
αww2−

√
3i
2

αw2
1−

√
3i
2

w2
2+

√
3i
2

αw1w2,

Vin(1≤ i, j ≤ 3) are the same with the previous those in (45).
Defining

V(n)
+ =

n

∑
m=0

(

3

∑
i=1

Vimei(n−m)+
6

∑
j=4

Vjmh j−3(n−m)

)

= λ nV −V(n)
− ,

we obtain that

−V(n)
+x +[U,V(n)

+ ] = 2V2,n+1e2(0)−2V3,n+1e3(0)+
2i√
3
(−V5,n+1 +2V6,n+1)h2(0)

+
2i√
3
(−2V5,n+1 +V6,n+1)h3(0).

If settingV(n) = V(n)
+ +V2,n+1e1(0), we have

−V(n)
x +[U,V(n)] = −V2,n+1xe1(0)− (2wV2,n+1 +2V3,n+1)e3(0)+

2i√
3
[−V5,n+1 +2V6,n+1

+(2w2−w1)V2,n+1]h2(0)+
2i√

3
[−2V5,n+1 +V6,n+1 +(w2−2w1)V2,n+1]h3(0).
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Hence, we get a nonlinear integrable coupling of the BK hierarchy from the zero curvature equation:

utn =









v
w
w1

w2









tn

=























2V2,n+1x

−2V1,n+1x

− 2i√
3
[−V5,n+1 +2V6,n+1 +(2w2−w1)V2,n+1]

− 2i√
3
[−2V5,n+1 +V6,n+1 +(w2−2w1)V2,n+1]























. (50)

When settingw1 = w2 = 0, (50) reduces to the BK hierarchy. When takingn = 2,α = −1, t2 = t, we get a
nonlinear integrable coupling of the BK system (40):























































































































































vt = −1
2

vxx+vvx +wx,

wt =

(

vw+
1
2

wx

)

x
,

w1t = − 2i√
3

[

− 1
4

w1xx+
1
2

w2xx+
i

2
√

3

(

5
2

vw1−2vw2

)

x
− 1

4
√

3
w1x +

1

2
√

3
w2x−

i
3

vw2

+

(

5i
12

− i√
3

)

vw1 +
i

2
√

3
vw2x−

1
3

(

2vw1−
5
2

vw2

)

+

√
3i
2

(

3
√

2−
√

6i
6

+
i+

√
3√

6
w+w1+2w2

)

V4,2|α=−1−
1
2

w((w1−2w2)]

+(2w2−w1)

(

−1
4

vx +
1
4

v2 +
1
2

w

)

,

w2t = − 2i√
3

[

−1
2

w1xx+
1
4

w2xx+
i

2
√

3

(

2vw1−
5
2

vwx

)

x
+

i

2
√

3
vw1x−

3i

4
√

3
vw2x +

1
2

v2w1

−1
4

v2w2−
√

3i
2

(

3
√

2+
√

6i
6

+
i −

√
3√

6
w+2w1+w2

)

V4,2|α=−1+
1
2

w(w2−2w1)

]

+(w2−2w1)

(

−1
4

vx+
1
4

v2 +
1
2

w

)

.

(51)

3.3 A Nonlinear Integrable Coupling of the KN Hierarchy

In the section, we shall use a loop algebra of the Lie algebraQ to introduce a Lax pair, from which a
nonlinear integrable coupling of the KN hierarchy is obtained. Set

Q̃ = span{e1(n),e2(n),e3(n), p1(n), p2(n), p3(n)},

where

e1(n) = e1λ 2n,e2(n) = e2λ 2n+1,e3(n) = e3λ 2n+1,

p1(n) = p1λ 2n, p2(n) = p2λ 2n+1, p3(n) = p3λ 2n+1,n∈ Z.
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It is easy to verify that the following commutative relations hold:

[e1(m),e2(n)] = e3(m+n), [e1(m),e3(n)] = e2(m+n), [e2(m),e3(n)] = −e1(m+n+1),

[p1(m), p2(n)] = 2p2(m+n), [p1(m), p3(n)] = −2p3(m+n), [p2(m), p3(n)] = 4p1(m+n),

[e1(m), p1(n)] = 0, [e1(m), p2(n)] = p2(m+n), [e1(m), p3(n)] = −p3(m+n),

[e2(m), p1(n)] =
1
2
(p3(m+n)− p2(m+n)), [e2(m), p2(n)] = −p1(m+n+1),

[e2(m), p3(n)] = p1(m+n+1), [e3(m), p1(n)] = −1
2
(p2(m+n)+ p3(m+n)),

[e3(m), p2(n)] = p1(m+n+1), [e3(m), p3(n)] = p1(m+n+1),m,n∈ Z.

By employing the loop algebrãQ, we consider a Lax pair














U = e1(1)+qe2(0)+ re3(0)+u1p2(0)+u2p3(0),

V = ∑
m≥0

(

3

∑
i=1

Vimei(−m)+
6

∑
j=4

Vjmp j−3(−m)

)

.
(52)

The stationary zero curvature equation of the compatibility condition of (52) leads to the following


















































































V1,mx = −qV3,m+1 + rV2,m+1 = −qV2,mx+ rV3,mx,

V2,mx = V3,m+1− rV1m,

V3,mx = V2,m+1−qV1m,

V4,mx = (q+ r +4u1)V6,m+1 +(−q+ r −4u2)V5,m+1 +(u1−u2)V2,m+1− (u1 +u2)V3,m+1

= −(q+ r +4u1)V6,mx+(−q+ r −4u2)V5,mx+(u1−u2)V3,mx− (u1 +u2)V2,mx,

V5,mx = V5,m+1−
(

1
2

q+
1
2

r +2u1

)

V4m−u1V1m,

V6,mx = −V6,m+1 +

(

1
2

q− 1
2r +2u2

)

V4m+u2V1m.

(53)

Setting

V(n)
+ =

n

∑
m=0

(
3

∑
i=1

Vimei(−m)+
6

∑
j=4

Vjmp j−3(−m))λ 2n = λ 2nV −V(n)
− ,

then we obtain that

−V(n)
+x +[U,V(n)

+ ] = (−rV2,n+1 +qV3,n+1)e1(0)−V3,n+1e2(0)−V2,n+1e3(0)−V5,n+1p2(0)+V6,n+1p3(0)

+[(q− r +4u2)V5,n+1− (q+ r +4u1)V6,n+1 +(u2−u1)V2,n+1 +(u1 +u2)V3,n+1]p1(0)

= −V1,nxe1(0)−V3,n+1e2(0)−V2,n+1e3(0)−V5,n+1p2(0)+V6,n+1p3(0)−V4,nxp1(0).

Choosing a modified term ofV(n)
+ as thatV(n) = V(n)

+ −V1,ne1(0)−V4,np1(0), a direct calculation yields that

−V(n)
x +[U,V(n)] = (−V3,n+1 + rV1n)e2(0)+ (−V2,n+1 +qV1n)e3(0)+

(

−V5,n+1 +
1
2

qV4n +
1
2

rV4n +u1V1n

+2u1V4n

)

p2(0)+

(

V6,n+1 +

(

−1
2

q+
1
2

r −2u2

)

V4n−u2V1n

)

p3(0)

= −V2,nxe2(0)−V3,nxe3(0)−V5,nxp2(0)−V6,nxp3(0).
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Therefore, the zero curvature equation

Ut −V(n)
x +[U,V(n)] = 0

admits a hierarchy of equations of evolution type

utn =













q

r

u1

u2













tn

=













V2,nx

V3,nx

V5,nx

V6,nx













. (54)

A recurrence operator of (54) is

L =













−q∂−1q∂ ∂ +q∂−1r∂ 0 0

∂ − r∂−1q∂ r∂−1r∂ 0 0

A1 A2 A3 A4

B1 B2 B3 B4













,

which satisfies that












V2,n+1

V3,n+1

V5,n+1

V6,n+1













= L













V2,n

V3,n

V5,n

V6,n













,

where

A1 = −u∂−1q∂ − 1
2
(q+ r +4u1)∂−1(u1 +u2)∂ ,

A2 = u1∂−1r∂ +
1
2
(q+ r +4u1)∂−1(u1−u2)∂ ,

A3 = ∂ − 1
2
(q+ r +4u1)∂−1(q+ r −4u2)∂ ,

A4 = −1
2
(q+ r +4u1)∂−1(q+ r +4u1)∂ ,

B1 = −u2∂−1q∂ − 1
2
(q− r +4u2)∂−1(u1 +u2)∂ ,

B2 = u2∂−1r∂ +
1
2
(q− r +4u2)∂−1(u1−u2)∂ ,

B3 = −1
2
(q− r +4u2)∂−1(q+ r −4u2)∂ ,

B4 = −∂ − 1
2
(q− r +4u2)∂−1(q+ r +4u1)∂ ..
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LettingV1,0 = α ,V2,0 = V3,0 = V5,0 = V6,0 = 0, then we have from (53)

V3,1 = αr,V2,1 = αq,V1,0 = 0,V5,1 = αu1,V6,1 = αu2,V4,0 = 0,V1,1 =
α
2

(r2−q2),

V4,1 = α(−qu2−qu1 + ru1− ru2−4u1u2),V2,2 = αrx +
α
2

q(r2−q2),

V3,2 = αqx +
α
2

r(r2−q2),

V5,2 = αu1x +
α
2

(q+ r +4u1)(−qu2−qu1 + ru1− ru2−4u1u2)+
1
2

u1(r
2−q2),

V6,2 = −αu2x +
α
2

(q− r +4u2)(−qu2−qu1 + ru1− ru2−4u1u2)+
α
2

u2(r
2−q2), . . .

When takingn = 2, the hierarchy (54) reduces to a nonlinear evolution equation














































qt2 = αrxx+
α
2

(qr2−q3)x,

rt2 = αqxx+
1
2
(r3− rq2)x,

u1,t2 = αu1xx+
α
2

[(q+ r +4u1)(r(u1−u2)−q(u1 +u2)−4u1u2)]x +
α
2

(u1(r2−q2))x,

u2,t2 = −αu2xx+
α
2

((q− r +4u2)(−q(u1 +u2)+ r(u1−u2)−4u1u2))x +
α
2

(u2(r2−q2))x.

(55)

Settingu1 = u2 = 0, (55) reduces to a nonlinear coupled KN equation










qt2 = αrxx+
α
2

(qr2−q3)x,

rt2 = αqxx+
1
2
(r3− rq2)x.

(56)

Obviously, (55) is a nonlinear integrable coupling of (56).Thus, (54) is a hierarchy of nonlinear integrable
couplings of the KN hierarchy.

4 Vector representations of the Lie algebras G and Q as well as some Hamiltonian structures of non-
linear integrable couplings

We find that it is difficult to express the Lie algebrasG andQ as square matric representations. There-
fore, we consider their vector representations so that we can deduce Hamiltonian structures of the obtained
nonlinear integrable couplings by using the variational identities [11,18]. For∀a,b ∈ G, we can express
them as

a =
3

∑
i=1

aiei +
6

∑
j=4

a j f j−3,b =
3

∑
i=1

biei +
6

∑
j=4

b j f j−3 ∈ G,

and we have

[a,b] = (a2b3−a3b2)e1 +(2a1b2−2a2b1)e2 +(2a3b1−2a1b3)e3

+(a2b5−a5b2 +a5b3−a3b5 +a6b2−a2b6 +a6b3−a3b6 +a6b5−a5b6) f1
+(2a1b6−2a6b1 +a4b6−a6b4 +a3b4−a4b3 +a4b2−a2b4) f2
+(2a1b5−2a5b1 +a4b5−a5b4 +a4b2−a2b4 +a4b3−a3b4) f3. (57)
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If noting a = (a1, . . . ,a6)
T ,b = (b1, . . . ,b6)

T , then we can write (57) as

[a,b] =

(

[A1,B1]1

[a,b]1

)

, (58)

where

[a,b]1 =







a2b5−a5b2 +a5b3−a3b5 +a6b2−a2b6 +a6b3−a3b6 +a6b5−a5b6

2a1b6−2a6b1 +a4b6−a6b4 +a3b4−a4b3 +a4b2−a2b4

2a1b5−2a5b1 +a4b5−a5b4 +a4b2−a2b4 +a4b3−a3b4






.

It can be verified that the vector spaceR6 = {a = (a1, . . . ,a6)
T} is a Lie algebra if equipped with (58).

Hence, the Lie algebraG is isomorphic to the Lie algebraR6. In order to apply the variational identity
to deduce Hamiltonian structures of nonlinear integrable couplings, we need to get a constant symmetric
matrix F which satisfies the matrix equation

R(b)F = −(R(b)F)T ,FT = F, (59)

whereR(b) comes from rewriting (58) as the following form

[a,b] = aTR1(b). (60)

It is easy to see that

R1(b) =























0 2b2 −2b3 0 2b6 2b5

b3 −2b1 0 b5−b6 −b4 −b4

−b2 0 2b1 −b5−b6 b4 −b4

0 0 0 0 b6−b3 +b2 b5 +b2 +b3

0 0 0 −b2 +b3−b6 0 −2b1−b4

0 0 0 b2 +b3 +b5 −2b1−b4 0























.

Solving (59) yields

F1 =























2 0 0 2 0 0

0 0 1 0 1 −1

0 1 0 0 1 1

2 0 0 1 0 0

0 1 1 0 1 0

0 −1 1 0 0 −1























. (61)

Similarly, for

a =
3

∑
i=1

aiei +
6

∑
j=4

a j p j−3,b =
3

∑
i=1

biei +
6

∑
j=4

b j p j−3 ∈ Q,

define that

[a,b] =

(

[A1,B1]2

[a,b]2

)

= aTR2(b), (62)
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where

[a,b]2 =

















a2b6−a6b2 +a3b6−a6b3 +a5b2−a2b5 +4a5b6−4a6b5 +a3b5−a5b3

a1b5−a5b1 +
1
2

a4b3−
1
2

a3b4 +
1
2

a4b2−
1
2

a2b4 +2a4b5−2a5b4

a6b1−a1b6 +
1
2

a2b4−
1
2

a4b2 +
1
2

a4b3−
1
2

a3b4 +2a6b4−2a4b6

















.

Solving Eq.(59) forF gives

F2 =























1 0 0 1 0 0

0 1 0 0 1 1

0 0 −1 0 −1 1

1 0 0 2 0 0

0 1 −1 0 0 4

0 1 1 0 4 0























. (63)

In what follows, we construct Hamiltonian structures of thenonlinear integrable couplings of (30) and
(54) by using the variational identity [11,18]. At first, we make use ofF1 and F2 to define two linear
functionals.
For∀a = (a1, . . . ,a6)

T ,b = (b1, . . . ,b6)
T ∈ R6, usingF1 we define

{a,b} = 2a1b1 +2a4b1 +2a1b4 +a3b2 +a2b3 +a5b2

+a2b5 +a5b3 +a3b5 +a6b3 +a3b6−a2b6−a6b2

+a4b4 +a5b5−a6b6. (64)

UsingF2, we define that

{a,b} = a1b1 +a4b1 +a1b4 +a2b2 +a5b2 +a2b5 +a6b2 +a2b6

−a3b3−a5b3−a3b5 +a6b3 +a3b6 +2a4b4 +4a6b5 +4a5b6. (65)

Rewrite the Lax pair (28) as follows

U = (λ ,q, r,0,u1,u2)
T ,V = (V1, . . . ,V6)

T ,

whereV1 = ∑
m≥0

V1mλ−m, . . . Using (64), we obtain

{

V,
∂U
∂q

}

= V3 +V5−V6,

{

V,
∂U
∂ r

}

= V2 +V5 +V6,

{

V,
∂U
∂u1

}

= V2 +V3 +V5,

{

V,
∂U
∂u2

}

= −V2 +V3−V6,

{

V,
∂U
∂λ

}

= 2V1 +2V4.

Substituting the above into the variational identity givesrise to

δ
δ

ˆ x

(2V1 +2V4)dx= λ−γ ∂
∂λ

λ γ













V3 +V5−V6

V2 +V5+V6

V2 +V3+V5

−V2 +V3−V6













. (66)
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Comparing the coefficients ofλ−n−2 on both sides in (66) yields

δ
δu

ˆ x

(2V1,n+2 +2V4,n+2)dx= (−n−1+ γ)













V3,n+1 +V5,n+1−V6,n+1

V2,n+1 +V5,n+1 +V6,n+1

V2,n+1 +V3,n+1 +V5,n+1

−V2,n+1 +V3,n+1−V6,n+1













.

It is easy to verify thatγ = 0. Thus, we have













V3,n+1 +V5,n+1−V6,n+1

V2,n+1 +V5,n+1 +V6,n+1

V2,n+1 +V3,n+1 +V5,n+1

−V2,n+1 +V3,n+1−V6,n+1













=
δ

δu

(

−
´ x

(2V1,n+2 +2V4,n+2)dx
n+1

)

=:
δHn+1

δu
,

where

Hn+1 = −

ˆ x

(2V1,n+2 +2V4,n+2)dx

n+1
.

Therefore, (30) can be written as a Hamiltonian form

utn =













q

r

u1

u2













tn

=













0 −2 2 −2

2 0 −2 −2

−2 2 0 2

2 2 −2 0

























V3,n+1 +V5,n+1−V6,n+1

V2,n+1 +V5,n+1 +V6,n+1

V2,n+1 +V3,n+1 +V5,n+1

−V2,n+1 +V3,n+1−V6,n+1













= J
δHn+1

δu
, (67)

whereJ is obviously Hamiltonian. From (29), we can obtainV1,4 andV4,4. Thus, we can obtain the Hamilto-
nian structure of the nonlinear integrable coupling (31) ofthe nonlinear Schrödinger equation if substituting
V1,4,V4,4 into (67).

In the following, we deduce the Hamiltonian structure of (54). Rewrite the Lax pair (52) as

{

U = (λ 2,qλ , rλ ,0,u1λ ,u2λ )T ,

V = (V1,V2λ ,V3λ ,V4,V5λ ,V6λ )T ,
(68)

whereV1 = ∑
m≥0

V1mλ−2m, . . . Using the linear functional (65) along with (68), we have

{

V,
∂U
∂q

}

= (V2 +V5+V6)λ 2,{V,
∂U
∂ r

} = (−V3−V5+V6)λ 2,

{

V,
∂U
∂u1

}

= (V2−V3 +4V6)λ 2,

{

V,
∂U
∂u2

}

= (V2 +V3+4V5)λ 2,

{

V,
∂U
∂λ

}

= [2V1 +(q+u1+u2)V2 +(−r −u1+u2)V3 +2V4 +(−r +4u2+q)V5 +(q+ r +4u1)V6]λ .
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Substituting them into the variational identity gives

δ
δu

ˆ x

{(2V1+(q+u1+u2)V2+(−r −u1+u2)V3+2V4

+(−r+4u2+q)V5+(q+r+4u1)V6)}λdx

= λ−γ ∂
∂λ

λ γ













(V2 +V5+V6)λ 2

(−V3−V5 +V6)λ 2

(V2−V3+4V6)λ 2

(V2 +v3+4V5)λ 2













. (69)

Comparing the coefficients ofλ−2n+1 on both sides of (69) yields

δ
δu

ˆ x

(2V1n +(q+u1+u2)V2n)dx= (−r −u1 +u2)V3n +2V4n

+(−r +4u2+q)V5n +(q+ r +4u1)V6ndx= (−2n+2+ γ)













V2n +V5n +V6n

−V3n−V5n+V6n

V2n−V3n +4V6n

V2n +V3n +4V5n













.

Utilizing the initial values in (53), we haveγ = 2. Hence, (54) can be written as the Hamiltonian form

utn =













q

r

u1

u2













tn

=



























2∂ 0 −∂
2

−∂
2

0 −2∂
∂
2

− ∂
2

−∂
2

∂
2

0
∂
2

−∂
2

−∂
2

∂
2

0







































V2n +V5n +V6n

−V3n−V5n +V6n

V2n−V3n +4V6n

V2n +V3n +4V5n













= J
δHn

δu
, (70)

where

Hn =
1

4−2n

ˆ x

(2V1n +(q+u1u2)V2n +(−r −u1+u2)V3n +2V4n +(q− r +4u2)V5n +(q+ r +4u1)V6n)dx,

andJ is a Hamiltonian operator. As for Hamiltonian structures ofthe other obtained nonlinear integrable
couplings, we can make a similar analysis but we omit here.

5 Discussions

We have constructed three Lie algebras of semi-direct sum form: Ḡ= GA Gc, whereG andGc are all simple
Lie sub-algebras and satisfy that

[G,G] ⊂ G, [Gc,Gc] ⊂ Gc, [G,Gc] ⊂ Gc. (71)
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We require that the commutator ofG is different from that ofGc to generate non-trivial nonlinear inte-
grable couplings. Various nonlinear integrable couplingsof the AKNS hierarchy and the BK hierarchy were
obtained from different loop algebras. We also remark that the problem of how to apply the approach in
[13-15] to nonlinear bi-integrable couplings of the AKNS hierarchy and the BK hierarchy deserves future
investigation.

In order to generate more interesting nonlinear integrablecouplings, it should be good to study different
isospectral matrix spectral problems. Ablowitz et al. [24]proposed a simple expression of the self-dual
Yang-Mills equation by the following isospectral problem

{

∂σ + ξ ∂τ̃ψ = (Aσ + ξ Aτ̃)ψ ,

(∂τ −ξ ∂σ̃)ψ = (Aτ −ξ Aσ̃)ψ ,
(72)

whereσ , σ̃ ,τ , τ̃ are all null coordinates, andA= Aµdµ = Aσ dσ +Aσ̃dσ̃ +Aτdτ +Aτ̃dτ̃ . The compatibility
condition of (72) leads to











Aστ −Aτσ +AσAτ −AτAσ = 0,

Aττ̃ −Aσ̃σ +Aσσ̃ −Aτ̃τ +[Aτ ,Aτ̃ ]+ [Aσ ,Aσ̃ ] = 0,

Aσ̃ τ̃ −Aτ̃σ̃ +[Aσ̃ ,Aτ̃ ] = 0.

(73)

From this, some reduced cases can be presented as follows:
(1) Assume thatAX, X = σ ,τ , σ̃ , τ̃ , are functions ofx= σ̃ andt = τ̃ only. SetAσ = 0,Aτ = P,Aσ̃ = Q,Aτ̃ =
R. Then we have

{

Pt +[P,R] = 0,

Qt −Rx+[Q,R] = 0.
(74)

(2) Letx = σ + σ̃ ,y = τ , t = τ̃ ,Aσ̃ = 0,Aσ = P,Aτ = R,Aτ̃ = Q. Then we obtain











Py−Rx+[P,R] = 0,

Rt +Px−Py+[R,Q] = 0,

Qx = 0.

(75)

(3) If Aσ is a function ofx andt only, x = τ + τ̃, t = σ̃ ,Aτ = 0,P = Aσ ,Q = Aτ̃ ,R= Aσ̃ , then we get [24]











Px = 0,

Pt −Qx+[P,R] = 0,

Rx−Qt +R,Q] = 0.

(76)

(4) If AX, X = σ ,τ , σ̃ , τ̃ , are functions ofx = σ andt = τ only, takingAσ = U + B∂y,Aτ = V +C∂y,ψ =
Ge−ξy, leads to [24]

{

∂xG = (U +B∂y)G,

∂tG = (V +C∂y)G.
(77)

This gives rise to
{

∂tU −∂xV +[U,V]−C∂yU +B∂yV = 0,

[B,V] = [C,U ].
(78)
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We can generate new nonlinear integrable couplings of both (1+1)-dimension and (2+1)-dimension, by using
our general construction procedure and combining the abovegeneralized zero curvature equations. It is also
interesting for us to see if the resulting integrable couplings possess the linear superposition principle for
exponential waves, or more generally, to see if there are linear subspaces of their solution spaces (see [25]
for details). These will be one of our future research topics.
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