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Abstract We derive a counterpart hierarchy of the Dirac soliton hierarchy from zero curva-
ture equations associated with a matrix spectral problem from so(3,R). Inspired by a special
class of non-semisimple loop algebras, we construct a hierarchy of bi-integrable couplings
for the counterpart soliton hierarchy. By applying the variational identities which cope with
the enlarged Lax pairs, we generate the corresponding Hamiltonian structure for the hierar-
chy of the resulting bi-integrable couplings. To show Liouville integrability, infinitely many
commuting symmetries and conserved densities are presented for the counterpart soliton
hierarchy and its hierarchy of bi-integrable couplings.

Keywords Hamiltonian structure · Bi-integrable couplings · Symmetry · Conservation
law · Matrix loop algebra

1 Introduction

The theory of integrable couplings [1] presents various perspectives for future investigations
on integrable systems, providing fresh insights into existing areas of soliton theory and
building up many new soliton hierarchies based on enlarged Lax pairs or zero curvature
equations.

Integrable couplings generalize the symmetry problem [2] as well as provide clues
towards complete classification of integrable systems [3, 4]. The perturbation equations are
specific examples of integrable couplings generalizing the symmetry problem, exhibiting
diverse integrable structures that the multiplicity of integrable systems possess [1, 5]. The
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KdV case was extensively studied by perturbation in [6], indeed, which shows the exis-
tence of local bi-Hamiltonian structures in 2 + 1 dimensions. One of other realizations of
integrable couplings is the theory of related Virasoro symmetry algebras or τ -symmetry
algebras of integrable systems in soliton theory [3, 4].

Recalling that an arbitrary Lie algebra has a semidirect sum structure of a solvable
Lie algebra and a semisimple Lie algebra [7], integrable coupling are associated with
semi-direct sums of loop algebras, and therefore, they represent general integrable sys-
tems, providing algebraic approaches for classifying multi-component integrable systems.
A series of research works have shown different connections between semi-direct sums of
Lie algebras and integrable couplings, both discrete and continuous [8–10]. Hamiltonian
structures of integrable couplings are normally furnished by the variational identity [4, 11].
The main idea is to search for non-degenerate, symmetric and ad-invariant bilinear forms
on the underlying non-semisimple loop algebras.

An integrable coupling of a given system ut = K(u) is a triangular integrable system of
the following form [1]:

{
ut = K(u),

vt = S(u, v),
(1.1)

where v is a new column vector of dependent variables. An integrable coupling contains the
given system as a sub-system, and the vt part corresponds a solvable Lie algebra. Integrable
couplings are triangular systems, which are associated with non-semisimple Lie algebras
and keep various integrable properties [12] of the original systems. An integrable system of
the form ⎧⎨

⎩
ut = K(u),

v1,t = S1(u, v1),

v2,t = S2(u, v1, v2),

(1.2)

is called a bi-integrable coupling of the given system [13].
We shall use the simisimple real Lie algebra of the special orthogonal group, so(3,R),

the Lie algebra of 3 × 3 trace-free, skew-symmetric real matrices. It has the basis

e1 =

⎡
⎢⎢⎣

0 0 1

0 0 0

−1 0 0

⎤
⎥⎥⎦ , e2 =

⎡
⎢⎢⎣

0 0 0

0 0 −1

0 1 0

⎤
⎥⎥⎦ , e3 =

⎡
⎢⎢⎣

0 1 0

−1 0 0

0 0 0

⎤
⎥⎥⎦ , (1.3)

with which, the structure equations of so(3,R) read

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

Based on so(3,R), we shall introduce a new matrix spectral problem and generate a
counterpart of the Dirac soliton hierarchy. Moreover, we shall use a class of non-semisimple
loop algebras, presented in [14], to generate bi-integrable couplings for the counterpart
soliton hierarchy.

This paper proceeds as follows. In Section 2, we would like to present an so(3,R)
counterpart of the Dirac soliton hierarchy. In Section 3, we shall construct Hamiltonian bi-
integrable couplings through semi-direct sums of Lie algebras. Hamiltonian structures of the
resulting bi-integrable couplings will be furnished by applying the variational identity. The
last section is devoted to a few concluding remarks, where we pose a few open questions as
well.
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2 An so(3,R) Counterpart of the Dirac Soliton Hierarchy

2.1 The Dirac Soliton Hierarchy

The sl(2, R) matrix spectral problem of the Dirac soliton hierarchy reads

φx = Uφ, φ =
[
φ1

φ2

]
, U = U(u, λ) =

[
p λ+ q

−λ+ q −p

]
, u =

[
p

q

]
, (2.1)

where λ is the spectral parameter. Suppose that a solution to the stationary zero curvature
equation Wx = [U,W ] can be written as

W =
[

c a + b

a − b −c

]
=

∞∑
i=0

W0,iλ
−i =

∞∑
i=0

[
ci ai + bi

ai − bi −ci

]
λ−i , (2.2)

where the initial values are taken as

a0 = 0, b0 = −1, c0 = 0, (2.3)

and ⎧⎨
⎩
ai+1 = qbi + ci,x,

ci+1 = pbi − ai,x,

bi+1 = 2pai+1 − 2qci+1,

i ≥ 0. (2.4)

Introduce a sequence of Lax operators

V [m] = (λmW)+ =
m∑
i=0

W0,iλ
m−i , m ≥ 0, (2.5)

and then, the zero curvature equations (see also [15]):

Utm − V [m]
x + [U, V [m]] = 0, (2.6)

leads to the isospectral (λtm = 0) Dirac soliton hierarchy:

utm = Km =
[

2am+1

−2cm+1

]
= �mK0 = J

δHm

δu
, K0 =

[
2q
−2p

]
, m ≥ 0, (2.7)

where the Hamiltonian operator J , the hereditary recursion operator � and the Hamiltonian
functionals Hm are defined by

J =
[

0 −1
1 0

]
, � =

[
2q∂−1p − 1

2∂ + 2q∂−1q
1
2∂ − 2p∂−1p −2p∂−1q

]
, Hm =

∫ (
−2bm+2

m+ 1

)
dx. (2.8)

The inverse scattering problem, the binary nonlinearization of Lax pairs and the τ -
symmetry algebra were studied for the Dirac soliton hierarchy (2.7) in [16–18], respectively.

2.2 A Counterpart Associated with so(3, R)

To drive a counterpart of the Dirac soliton hierarchy (2.1), we introduce a spatial spectral
problem associated with so(3,R):

φx = Uφ = U(u, λ)φ, φ =
⎡
⎣ φ1

φ2

φ3

⎤
⎦ , u =

[
p

q

]
, (2.9a)
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where the spectral matrix U is chosen as the same linear combination of basis vectors as in
the sl(2, R) case:

U=U(u, λ) = pe1+ (λ+ q)e2 + (−λ+ q)e3 =
⎡
⎣ 0 λ− q −p

−λ+ q 0 −λ− q

p λ+ q 0

⎤
⎦ . (2.10)

As normal, we can take a solution

W = W(u, λ) =
∞∑
i=0

W0,iλ
−i , W0,i ∈ so(3,R), i ≥ 0, (2.11)

to the stationary zero curvature equation

Wx = [U,W ] . (2.12)

If we choose a special form of W as

W = ce1 + (a + b)e2 + (a − b)e3 =
⎡
⎣ 0 −a + b −c

a − b 0 −a − b

c a + b 0

⎤
⎦ , (2.13)

direct calculations show that (2.12) is equivalent to⎧⎨
⎩

ax = pb − λc,

bx = −pa + qc,

cx = 2λa − 2qb.
(2.14)

Further letting

a =
∞∑
i=0

aiλ
−i , b =

∞∑
i=0

biλ
−i , c =

∞∑
i=0

ciλ
−i , (2.15)

we find that the system (2.14) leads equivalently to⎧⎨
⎩
ai+1 = 1

2ci,x + qbi,

ci+1 = −ai,x + pbi,

bi+1,x = qci+1 − pai+1,

i ≥ 0, (2.16)

upon taking the initial values

a0 = 0, b0 = −1, c0 = 0. (2.17)

Therefore, with the constants of integration being chosen as zero, a series of differential
polynomial functions in u with respect to x can be uniquely computed as follows:

a1 = −q, c1 = −p, b1 = 0;
a2 = − 1

2px, c2 = qx, b2 = 1
2q

2 + 1
4p

2;
a3 = 1

2qxx + 1
2q

3 + 1
4p

2q, c3 = 1
2pxx + 1

4p
3 + 1

2pq
2, b3 = 1

2pxq − 1
2pqx;

a4 = 1
4pxxx + 3

8p
2px + 3

4q
2px, c4 = − 1

2qxxx − 3
4p

2qx − 3
2q

2qx,

b4 = − 1
4pxxp + 1

8p
2
x − 3

32p
4 − 3

8p
2q2 − 1

2qxxq + 1
4q

2
x − 3

8q
4.

Similarly, consider a sequence of zero curvature equations:

Utm − V [m]
x + [U, V [m]] = 0, V [m] = (λmW)+ =

m∑
i=0

W0,iλ
m−i , m ≥ 0. (2.18)
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By virtue of (2.16), we see that all zero curvature equations in (2.18) engender a hierarchy
of evolution equations:

utm = Km =
[

2am+1

−cm+1

]
, m ≥ 0. (2.19)

Through

Km+1 = �Km, m ≥ 0, (2.20)

the recursion relation (2.16) determines that the recursion operator � (see, e.g., [19] for
details on recursion operators):

� =
[ −q∂−1p −∂ − 2q∂−1q

1
2∂ + 1

2p∂
−1p p∂−1q

]
. (2.21)

In what follows, we shall construct Hamiltonian structures for the counterpart solion
hierarchy (2.19) by the trace identity:

δ

δu

∫
tr

(
∂U

∂λ
W

)
dx = λ−γ ∂

∂λ
λγ tr

(
∂U

∂u
W

)
, γ = −λ

2

d

dλ
ln

∣∣∣tr (
W 2

)∣∣∣ . (2.22)

In this so(3, R) case, we can easily work out

tr

(
W

∂U

∂λ

)
= −4b, tr

(
W

∂U

∂p

)
= −2c, tr

(
W

∂U

∂q

)
= −4a.

Balancing coefficients of all powers of λ in the corresponding trace identity presents

δ

δu

∫
2bm+1dx = (γ −m)

[
cm

2am

]
, m ≥ 0. (2.23)

Checking the case with m = 1 yields γ = 0, and thus, we obtain the Hamiltonian structures
for the counterpart soliton hierarchy (2.19):

utm =
[
p

q

]
tm

= Km =
[

2am+1
−cm+1

]
= J

δHm

δu
, m ≥ 0, (2.24)

with the Hamilton operator

J =
[

0 1
−1 0

]
, (2.25)

and the Hamiltonian functionals

Hm =
∫ (

−2bm+2

m+ 1

)
dx, m ≥ 0. (2.26)

3 Hamiltonian Bi-Integrable Couplings

3.1 Bi-Integrable Couplings

We would here like to generate a class of bi-integrable couplings (see, e.g., [3, 10] for
details) for the counterpart hierarchy (2.19) of the Dirac soliton hierarchy. We shall use a
class of non-semisimple Lie algebras presented in [14], which can be written as semi-direct
sums of two Lie subalgebras:

g(λ) = g � gc. (3.1)
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That class of matrix Lie algebras, consisting of 3 × 3 block matrices, reads

M (A1, A2, A3) =
⎡
⎣ A1 A2 A3

0 A1 αA2
0 0 A1

⎤
⎦ , (3.2)

where A1, A2 and A3 are square matrices of the same size and α is a fixed real constant,
and it can be written as

Let us particularly introduce a new spectral matrix from ḡ(λ):

Ū = Ū (ū, λ) = M (U,U1, U2) , ū = (p, q, r, s, v, w)T , (3.4)

where U is defined by (2.10) and U1 and U2 are determined by

U1 = U1(u1) =
⎡
⎣ 0 −s −r

s 0 −s

r s 0

⎤
⎦ ∈ so(3,R), u1 =

[
r

s

]
, (3.5)

and

U2 = U2(u2) =
⎡
⎣ 0 −w −v

w 0 −w

v w 0

⎤
⎦ ∈ so(3,R), u2 =

[
v

w

]
. (3.6)

As usual, to solve the enlarged stationary zero curvature equation

W̄x = [Ū , W̄ ], (3.7)

we try a solution of the following type

W̄ = W̄ (ū, λ) = M(W,W1,W2) =
∞∑
i=0

W̄iλ
−i , (3.8)

where W is defined by (2.13) and W1 and W2 are assumed to be

W1 = W1(u, u1, λ) =
⎡
⎣ 0 e − f −g

−e + f 0 −e − f

g e + f 0

⎤
⎦ ∈ so(3,R),

W2 = W2(u, u1, u2, λ) =
⎡
⎣ 0 e′ − f ′ −g′
−e′ + f ′ 0 −e′ − f ′

g′ e′ + f ′ 0

⎤
⎦ ∈ so(3,R).

(3.9)

The enlarged stationary zero curvature equation (3.8) requires the original zero curvature
equation (2.12) and

W1,x = [U,W1] + [U1,W ],
W2,x = [U,W2] + [U2,W ] + α[U1,W1]. (3.10)

The above equations generate⎧⎪⎨
⎪⎩

ex = pf − gλ+ rb,

fx = −pe + gq − ra + sc,

gx = 2λe − 2qf − 2sb,

(3.11)

g(λ) = g � gc, g = {M(A1, 0, 0)}, gc = {M(0, A2, A3)}. (3.3)
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and ⎧⎪⎨
⎪⎩

e′x = pf ′ − g′λ+ vb + αrf,

f ′
x = −pe′ + g′q − va +wc − αer + αsg,

g′x = 2λe′ − 2qf ′ − 2wb − 2αsf.

(3.12)

Upon setting ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e =
∞∑
i=0

eiλ
−i , f =

∞∑
i=0

fiλ
−i , g =

∞∑
i=0

giλ
−i ,

e′ =
∞∑
i=0

e′iλ−i , f ′ =
∞∑
i=0

f ′
i λ

−i , g′ =
∞∑
i=0

g′iλ−i ,

(3.13)

we have the recursion relations to define W1 and W2:⎧⎪⎪⎨
⎪⎪⎩
ei+1=1

2
gi,x + qfi + sbi,

gi+1 = −ei,x + pfi + rbi,

fi+1,x = −pei+1 + qgi+1 − rai+1 + sci+1,

i ≥ 0, (3.14)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e′i+1=
1

2
g′i,x + qfi

′ + wbi + αsfi ,

g′i+1 = −e′i,x + pfi
′ + vbi + αrfi ,

f ′
i+1,x = −pe′i+1 + qg′i+1 − vai+1 + wci+1 − αrei+1 + αsgi+1,

i ≥ 0, (3.15)

if we take the initial data as follows:

f0 = −1, e0 = g0 = 0; f ′
0 = −1, e′0 = g′0 = 0. (3.16)

From the above recursion relations and taking the constants of integration as zero, one
therefore can compute

e1 = −q − s, g1 = −p − r, f1 = 0; (3.17)

e2 = −1

2
(rx + px), g2 = qx + sx, f2 = 1

4
(p2 + 2q2)+ 1

2
(pr + 2sq); (3.18)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

e3 = 1

2
(qxx + sxx)+ 1

4
(p2 + 2q2)(q + s)+ 1

2
(pr + sq)q,

g3 = 1

2
(pxx + rxx)+ 1

4
(p2 + 2q2)(p + r)+ 1

2
(pr + sq)p,

f3 = −1

2
(pqx + psx − pxq − pxs − qrx + qxr);

(3.19)

and

e′1 = −q −w − αs, g′1 = −p − v − αr, f ′
1 = 0; (3.20)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e′2 = −1

2
(vx + px)− 1

2
αrx,

g′2 = qx + wx + αsx,

f ′
2 = 1

4
(p2 + 2q2)+ α

4
(r2 + 2s2)+ 1

2
(αr + v)p + (αs + w)q;

(3.21)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e′3 =1

2
(qxx + αsxx +wxx)+ 1

4
(q +w + αs)(p2 + q2)

+ 1

4
α(r2 + s2)q + 1

2
(qw + pv)q + 1

2
α(pr + qs)(q + s),

g′3 =1

2
(pxx + αvxx + rxx)+ 1

4
(p + v + αr)(p2 + q2)

+ 1

4
α(r2 + s2)p + 1

2
(qw + pv)p + 1

2
α(pr + qs)(p+ r),

f ′
3 =1

2
[(q + αs + w)px − (p + αr + v)qx

+ α(q + s)rx − α(p + r)sx + qvx − pwx ].

(3.22)

Now the enlarged zero curvature equations

Ūtm − V̄ [m]
x + [Ū , V̄ [m]] = 0, V̄ [m] = (λmW̄)+ =

m∑
i=0

W̄iλ
m−i , m ≥ 0, (3.23)

generate a hierarchy of bi-integrable couplings for the counterpart soliton hierarchy (2.19):

ūtm =

⎡
⎢⎢⎢⎢⎢⎢⎣

p

q

r

s

v

w

⎤
⎥⎥⎥⎥⎥⎥⎦
tm

= K̄m(u) =

⎡
⎢⎢⎢⎢⎢⎢⎣

2am+1
−cm+1

2em+1
−gm+1

2e′m+1
−g′m+1

⎤
⎥⎥⎥⎥⎥⎥⎦
, m ≥ 0. (3.24)

3.2 Hamiltonian Structures

In order to generate Hamiltonian structures for the bi-integrable couplings (3.24), we apply
the variational identity (see [3, 11] for details):

δ

δu

∫
〈W,Uλ〉dx = λ−γ ∂

∂λ
λγ 〈W,Uu〉 , γ = −λ

2

d

dλ
ln |〈W,W 〉| , (3.25)

where 〈·, ·〉 is a non-degenerate, symmetric and ad-invariant bilinear form on the underlying
loop algebra ḡ(λ). For the brevity, we define a mapping as follows:

σ : ḡ(λ) → R
9, A 	→ a = (a1, a2, · · · , a9)

T , (3.26)

where

A = M (A1, A2, A3) , Ai =
⎡
⎣ 0 a3i−1 − a3i−2 −a3i
a3i−2 − a3i−1 0 −a3i−2 − a3i−1

a3i a3i−2 + a3i−1 0

⎤
⎦ , (3.27)

where 1 ≤ i ≤ 3. As usual (see, e.g., [4, 14]), we compute the corresponding Lie bracket
[ · , · ] on R

9.
From the defining equation

[a, b]T = aT R(b), (3.28)

we can get

R(b) = M(R1, R2, R3), Ri =
⎡
⎣ 0 b3i −2b3i−1

−b3i 0 2b3i−2

b3i−1 −b3i−2 0

⎤
⎦ , 1 ≤ i ≤ 3. (3.29)
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A bilinear form defined by

〈a, b〉 = aT Fb (3.30)

which requires in (3.25), needs to satisfy

F(R(b))T = −R(b)F, (3.31)

together with
FT = F, det(F ) �= 0. (3.32)

We can therefore obtain

F =
⎡
⎣ η1 η2 η3

η2 αη3 0
η3 0 0

⎤
⎦ ⊗

⎡
⎣ 2 0 0

0 2 0
0 0 1

⎤
⎦ , (3.33)

where ηi , 1 ≤ i ≤ 3, are arbitrary constants. The non-degenerate condition requires

det (F ) = −64η9
3α

3 �= 0. (3.34)

So, the bilinear form on the semi-direct sum ḡ(λ) is given by

〈A,B〉 = (a1, · · · , a9) F (b1, · · · , b9)
T

= (2a1b1 + 2a2b2 + a3b3) η1 + (2a4b1 + 2a5b2 + a6b3 + 2a1b4 + 2a2b5 + a3b6) η2

+ (2a7b1+2a8b2+a9b3+2a1b7+2a2b8+ a3b9+2αa4b4+2αa5b5+ αa6b6) η3. (3.35)

Presently, as mentioned above, we can compute〈
W̄ , Ūλ

〉 = 2bη1 + 2f η2 + 2f ′η3, (3.36)

and

〈
W̄ , Ūū

〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cη1 + gη2 + g′η3
2aη1 + 2eη2 + 2e′η3

αgη3 + cη2
2αeη3 + 2aη2

cη3
2aη3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (3.37)

Moreover, we can easily see that γ = 0, and so, the corresponding variational identity reads

δ

δu

∫ (
−2bm+1η1 + 2fm+1η2 + 2f ′

m+1η3

m

)
dx=

⎡
⎢⎢⎢⎢⎢⎢⎣

cmη1 + gmη2 + g′mη3

2amη1 + 2emη2 + 2e′mη3

αgmη3 + cmη2

2αemη3 + 2amη2

cmη3

2amη3

⎤
⎥⎥⎥⎥⎥⎥⎦
,m ≥ 1. (3.38)

Consequently, we have the following Hamiltonian structures for the hierarchy (3.24) of
bi-integrable couplings:

ūtm = J̄
δH̄m

δū
, m ≥ 0, (3.39)

with the Hamiltonian functions

H̄m =
∫ (

−2bm+2η1 + 2fm+2η2 + 2f ′
m+2η3

m+ 1

)
dx (3.40)
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with the Hamiltonian operator

J̄ =
⎡
⎣ η1 η2 η3
η2 αη3 0
η3 0 0

⎤
⎦
−1

⊗ J, (3.41)

where J is defined by (2.25).

3.3 Symmetries and Conserved Functionals

Let us now check the recursion relation

K̄m+1 = �̄K̄m, m ≥ 0. (3.42)

This determines the recursion operator �̄:

�̄ = (M(�,�1,�2))
T , (3.43)

where � is given by (2.21) and

�1 =
[ −q∂−1r − s∂−1p 2q∂−1s + 2s∂−1q

1
2p∂

−1r + 1
2 r∂

−1p p∂−1s + r∂−1q

]
, (3.44)

�2 =
[ −q∂−1v − w∂−1p − s∂−1r −2q∂−1w −w∂−1q − 2αs∂−1s

1
2p∂

−1v + 1
2v∂

−1p + 1
2αr∂

−1r p∂−1w + v∂−1q + αr∂−1s

]
. (3.45)

It is direct to check that

�̄′ (ū)
[
�̄T̄1

]
T̄2 − �̄�̄′ (ū)

[
T̄1

]
T̄2 (3.46)

is symmetric with respect to T̄1 and T̄2, which satisfies

�̄′ (ū)
[
�̄T̄1

]
T̄2 − �̄�̄′ (ū)

[
T̄1

]
T̄2 = �′(u)[�T̄2]T̄1 −��′(u)[T̄2]T̄1, (3.47)

and the two operators, J̄ and M̄ = �̄J̄ , constitute a Hamiltonian pair. i.e. any linear
combination N of J and M satisfies∫

KT N ′(u)[NS]T dx +
∫

ST N ′(u)[NT ]K dx +
∫

T T N ′(u)[NK]S dx = 0, (3.48)

for all vector fields K,S and T . The condition (3.48) is equivalent to

L�̄K�̄ = �̄LK�̄, (3.49)

where K is an arbitrary vector field. The Lie derivative LK�̄ is defined by

(LK�̄)S = �̄[K, S] − [K, �̄S],
where [·, ·] is the Lie bracket of vector fields. Note that an autonomous operator �̄ =
�̄(ū, ūx, · · · ) is a recursion operator of a given evolution equation ūt = K = K(ū) if and
only if �̄ satisfies

LK�̄ = 0. (3.50)

The operator �̄ satisfies

LK0�̄ = 0, K0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−2q
p

−2q − 2s
p + s

−2q − 2w − 2αs
p + r + αr

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.51)
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and thus

LKm�̄ = L�̄Km−1
�̄ = �̄LKm−1�̄ = . . . = �̄LK0�̄ = 0, m ≥ 1. (3.52)

Therefore, all bi-integrable couplings (3.24) of the counterpart hierarchy possess a bi-
Hamiltonian structure, and so, they are Liouville integrable.

The bi-Hamiltonian theory also tells the two commuting algebras of infinitely many
symmetries and conserved functionals:

[Kk,Kl] = K ′
k(u)[Kl] −K ′

l (u)[Kk] = 0, k, l ≥ 0, (3.53)

{Hk,Hl}J =
∫ (

δHk

δū

)T

J
δHl

δū
dx = 0, k, l ≥ 0, (3.54)

and

{Hk,Hl}M =
∫ (

δHk

δū

)T

M
δHl

δū
dx = 0, k, l ≥ 0. (3.55)

4 Concluding Remarks

By introducing a matrix spectral problem associated with so(3,R), we generates a coun-
terpart soliton hierarchy of the Dirac soliton hierarchy associated with sl(2,R). From a
special class of non-semisimple loop algebras, Hamiltonian bi-integrable couplings of the
counterpart soliton hierarchy were worked out. The Hamiltonian structures of the result-
ing bi-integrable couplings were established by applying the variational identity over the
underlying the non-semisimple loop algebra.

The hierarchy of bi-integrable couplings shows us the diversity of commuting flows
defined by evolution equations. It is helpful to see more soliton hierarchies of integrable
couplings while classifying multi-component integrable systems. It is normally difficult to
construct soliton hierarchies from higher order matrix spectral problems, and we hope that
more different examples of integrable couplings can be exploited to know the structures of
integrable systems.

We can also study different types of so(3, R) matrix spectral problems which generalize
our spectral problem (2.10). Two examples are the Kaup-Newell type and the WKI type of
so(3, R) matrix spectral problems:

U =
⎡
⎣ 0 λ2 − λq −λp

−λ2 + λq 0 −λ2 − λq

λp λ2 + λq 0

⎤
⎦ ,

and

U =
⎡
⎣ 0 λ− λq −λp

−λ+ λq 0 −λ− λq

λp λ+ λq 0

⎤
⎦ .

Another generalization of the WKI type reads

U =
⎡
⎣ 0 λ2 − λ2q −λ2p

−λ2 + λ2q 0 −λ2 − λ2q

λ2p λ2 + λ2q 0

⎤
⎦ .
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Also there remain some open questions. Are there any integrable couplings of the
Dirac systems in (2.7) with five dependent variables? How can one construct Hamiltonian
integrable couplings for general cases? For example, is there any Hamiltonian structure for⎧⎪⎨

⎪⎩
ut = K (u) ,

vt = K ′ [u] (v) ,

wt = K ′ [u] (w)?
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