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In this paper, we investigate the linear superposition principle of exponential travel-
ing waves to construct a sub-class of N-wave solutions of Hirota bilinear equations. A
necessary and sufficient condition for Hirota bilinear equations possessing this specific
sub-class of N-wave solutions is presented. We apply this result to find N-wave solutions
to the (2 4 1)-dimensional KP equation, a (3 + 1)-dimensional generalized Kadomtsev—
Petviashvili (KP) equation, a (3 + 1)-dimensional generalized BKP equation and the
(24 1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilin-
ear equations possessing N-wave solutions, is considered and a refined 3-step algorithm is
proposed. As examples, we construct two very general kinds of Hirota bilinear equations
of order 4 possessing N-wave solutions among which one satisfies dispersion relation and
another does not satisfy dispersion relation.
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of exponential functions; KP equation; BKP equation.
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1. Introduction

It is well known that because of the validity of the linear superposition principle,
it is relatively easy to investigate the structure of the solution sets or even exact
solutions of linear equations, whether they are linear algebraic equations or dif-
ferential equations. Of course the linear superposition principle is not valid in the
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nonlinear world and that a lot of researchers are still researching in this area to
have a breakthrough. When studying nonlinear differential equations, the first idea
that comes to our mind is to transform the nonlinear differential equations to linear
ones. Some differential equations which could be transformed into linear differential
equations through a change of dependent variable are shown in Ref. 1. Once a non-
linear differential equation has been linearized, it is relatively easy to investigate
the structure of its solution set and find its exact solutions. Unfortunately, only a
few special classes of nonlinear differential equations can be linearized. To relax this
constraint and to find exact solutions for a slightly wider class of nonlinear differ-
ential equations, Hirotal introduced a type of bilinear differential equations, often
called the Hirota form, for which one can find exact solutions by the perturbation
method.

By using some independent variable transformations, various nonlinear differ-
ential equations of mathematical physics can be transformed into Hirota bilinear
equations’? which possess some specific properties and are used to study the
solution sets of nonlinear differential equations. Recently, some programs were
designed!216 and some algorithms!'™!® were proposed on searching for integrable
bilinear equations. Based on the Hirota bilinear form, soliton solutions of certain
nonlinear differential equations were obtained by the Hirota perturbation tech-
nique,* the multiple exp-function algorithm, and various other methods.4 10:18-21

Hirota’s bilinear technique provides a powerful method to investigate and con-
struct the solutions of nonlinear differential equations.222%2! In Refs. 6 and 7, a
linear superposition principle of exponential traveling waves is analyzed for Hirota
bilinear equations and a sub-class of N-wave solutions are constructed by linear
combinations of exponential traveling waves. This means the solution sets of some
bilinear equations have linear subspaces. The inverse question, that is about gen-
erating Hirota bilinear equations possessing the indicated N-wave solutions, is also
discussed and an algorithm using weights is also proposed at the same time. Even

8-10.17 gome similar properties

for some generalized bilinear differential equations,
were found and thus N-wave solutions subspace was constructed in the same way.

In this paper, we aim to further investigate the properties of Hirota bilinear
differential equations and use them to construct the exponential wave solution sets
which are subspaces of the solution sets to Hirota bilinear equation. Additionally,
a refined algorithm to generate Hirota bilinear equations possessing the indicated
N-wave solutions is presented, which results in compensating the theory that was

proposed in Refs. 6 and 7.

2. Linear Superposition Principle for Hirota Bilinear Equations

Suppose P(z1,2a,...,2Zn) is a multivariate polynomial satisfying
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and
P(D$17DI27"'7DwM)f'f:O (22)

is a Hirota bilinear equation, where D,,,1 <14 < M, are Hirota differential operators
which are defined by

Dyf(y)-9(y) = 9y — 0y )" F(¥) 9 )ly=y = 0y f(y +9)9(y = ¥)ly=0, p>1.
(2.3)
Let kl = {kl’i,kg,i,...,kM’i}T, X = {.’El,xg,‘..,t’EM}T and i = kl - X, 1 S
i < N, where 7; denote the N-wave variables and f; and 1 < i < N denote N
exponential wavefunctions given by

fi=e" = ekl,i$l+k2,i$2+"'+k1\4,iw1\/l7 1<i<N. (2’4)

Here k;;,1 <i < N,1 < j < M are some constants which will be determined later.
Denote P(x1,xa,...,2p) by P(x). According to the properties of Hirota bilinear
operators,l’2

(a) For any Hirota bilinear operator, we have

one can easily conclude that:

DEiDke .. phu g f = (—1) =Sk phipks Dy L f (2.5)

(b) For any Hirota bilinear operator P(D,,,Dy,,...,D,,,) and any two N
exponential wavefunctions e and e,

P(Dyy,Dyyy. oy Dyyy)e e = P(k; — kj)e (2.6)
For any n-degree multivariate polynomial, we have
n
P(:z:l,xz,...,xM):ZPk(rl,xQ,...,xM), (2.7)
k=1
where Py(21,2,...,2p),1 < k < N, are homogeneous multivariate polynomial of

degree k. From (2.5), we conclude that Py(Dy,,Dyy,... . Dyp ) f - f =01if k is an
odd number, which means that any Hirota bilinear operator can be written as

n
P(Da,, Dy, Dayy) =Y Pou(Dyyy Dayy oo Diyy ) - (2.8)

’ T M ) M
k=1

Let f be a linear combination of the above N exponential wavefunctions such
that f = Ef\il eifi = Zf\; g;e™, where ¢;,1 < i < N, are arbitrary constants.
From the analysis above, we obtain

P(Day, Doy, Day ) f - f =2 Y eig;Pki — k)5 (2.9)
1<j<i<N
It follows directly that any linear combination of N exponential wavefunctions
e ,1 < i < N solves Hirota bilinear equation (1.2) if and only if P(k; —k;) =0
holds for any 1 < j < i < N (see Theorem 2.1 in Ref. 6). For the convenience of
readers, we recall this theorem.
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Theorem 1 (Linear Superposition Principle Ref. 6). Let P(z1,x2,...,2Zp)
be a multivariate polynomial of degree 2n satisfying (2.1) and the wave variables
7, = k; -x, 1 < i < N. Then span{e™,...,e™ } is a subset of the solution set of
the Hirota bilinear equation (2.1), if and only if

Pk; —k;) =0 (2.10)
forany 1 <j<i¢<N.

This theorem presents a necessary and sufficient condition when Hirota bilinear
differential equation (2.1) possesses the linear superposition principle for exponen-
tial traveling waves. However, it is usually not easy to determine the coefficients
k;i,1 <i<N,1<j<M,since (2.10) is a system N (N — 1)/2 coupled algebraic
equations. Fortunately, there is only one algebraic equation to determine the 2-wave
solutions, so it might be easy to obtain the linear subspace of 2-wave solution set of
the Hirota bilinear equation (2.2) by using (2.10). In addition, some techniques to
simplify the calculations to obtain some N-wave subspace of (2.2) have been found.
In Ref. 7, by observing some concrete soliton equations, Ma and Fan proposed an
algorithm to find some special solutions to these equations which have the relation

kii=ak™, 1<I<M, 1<i<N, (2.11)

where k;,1 < ¢ < N, are arbitrary constants, n;,1 < [ < M, are some integers,
a;,1 <1 < M, are constants and n;,a;,1 <1 < M, are determined by the polyno-
mial P. From (2.11), we obtain

P(ky; — ki, ko —kojy.o o ki — karj)
= Paa (K — K, an(KP — K0), . ang (KM — KDY, (212)

In fact, n;,1 < | < M are usually obtained by balancing the powers of the
left-hand side of (2.12) and a;,1 < I < M are chosen to make the polynomial
Plai(ki" — k"), az(k;” — k%), ... an (K™ — k7)) = 0 for any values of k; and
k;. To obtain possible n;s,a;, 1 <1 < M, the soliton equations are usually required
to be higher dimensional equations which may provide more chance to have the
subspaces span{e™,...,e"™ } as the subsets of their solution sets. The merit of the
algorithm proposed in Ref. 7 is that the N (/N —1)/2 coupled algebraic equations are
reduced into algebraic equations of a;, 1 <1 < M, which simplify the computations
a lot and can also be applied to consider the opposite question, namely constructing
the Hirota bilinear equations possessing N-wave solutions for arbitrary integer N.

Theorem 2. For Hirota bilinear equation (2.2), there exist some integers n;, 1 <
I < M, and some constants a;,1 <1 < M, such that

Plap(z™ —y™), az(z"™ —y"?),...,ap (™ —y"M)) =0 (2.13)
for any x and y if and only if for arbitrary integer N, l;;1 < i < M, and
any nonzero constants m;,t = 1,2,...,N, with m; # m; for any i # 7,
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span{e’0~M .. eM~IN e} gnd span{e, et . eMFINY qre two subspaces
of the solution set of the Hirota bilinear equation (2.2), where ng = ZJM:I Lixj and

M
m:Zajm?jxj, i=1,2,...,N. (2.14)
Jj=1

From the above theorem, we deduce that the Hirota bilinear equation (2.2)
has an abundant of N-wave solutions for any integer N if there exist integers
ny, 1 <1< M, and constants a;,1 <1 < M, such that (2.13) holds for any z and y.
Notice that the left-hand side of (2.13) is a polynomial of the variables z and y, so
(2.13) holds for any x and y if and only if every coefficient of this polynomial is zero.
By this observation, we may obtain the undetermined integers n;,1 <1 < M, and
constants a;, 1 <1 < M. In Refs. 6 and 7, some Hirota bilinear equations such as the
(34 1)-dimensional Kadomtsev—Petviashvili (KP) equation, the (34 1)-dimensional
Jimbo-Miwa equation and the (3 + 1)-dimensional BKP equation were studied and
some of their N-wave solutions were obtained. By this algorithm, for any arbitrary
N, another subspace of solution set of the (3+1)-dimensional Jimbo-Miwa equation
was found in Ref. 20. Next, we present some examples to illustrate this algorithm.

3. Applications to Some Hirota Bilinear Equations

3.1. The (2 + 1)-dimensional KP equation
The (2 + 1)-dimensional KP equation is given by?5:19
(Ugza + OuUy + ut)y + SdQuyy =0, (3.1)
which can be transformed into the Hirota bilinear equation
(DY + D.D; + 3d2D§)f - f
Iz -
through the dependent variable transformation v = 2(In f).,. Then the solutions

of the Hirota bilinear equation

(D} + Dy Dy + 3d*D2)f - f =0 (3.3)

(3.2)

are in the solution set of (3.2). Solving (3.3), one obtains the solutions to KP
equation (3.1).

According to Theorem 2.2, we search for a;,7 = 1,2,3, and n;,i = 1,2, 3, such
that

ad(@™ — ™)+ aas(@™ — ™)@ — ™) + 3dad(a™ — g2 = 0. (3.4)
By precise analysis of (3.4), we can possibly obtain a;,i = 1,2,3, if (n1,ng,n3)

is chosen to be (1,2,3). For (n1,n2,n3) = (1,2,3), comparing the coeflicients of
(2.20), one obtains the equations of a;,i = 1,2,3, as

{ at + ajaz + 3d*a3 =0,

3.5
—2a} + ajaz + 6d%a3 = 0. (3:5)
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Solving (3.5), we obtain ay = +a?/d, a3 = —4a$ and a; is a free parameter. Conse-
quently, letting a; = 1, one obtains a group of N-wave solution sets of the (2 + 1)-
dimensional KP equation (3.1) as

N 2
ki
w=2(Infag, f=Y erehitoduakit (3.6)
=1

where 6 € {—1,1}, N is an arbitrary integer, k; and €;,i = 1,..., N, are arbitrary
constants.

3.2. A (3 + 1)-dimensional generalized KP equation

In this subsection, we study the multi-wave solutions of (3 + 1)-dimensional gener-
alized KP equation?

Ugzzy + 3(ua:uy);ﬂ + Uty + Uty — Uzz = Oa (37)
which can be transformed into the Hirota bilinear equation
(DiDy"’Dth‘f'DyDt_Dg)f'f:O <3~8)

through the dependent variable transformation u = 2(In f),.
According to Theorem 2.2, we search for a;,7 = 1,2,3,4, and n;,7 = 1,2, 3,4,
such that

a%az(mm _ yn1)3(xn2 _ yng) + a1a4(xn1 _ ynl)(mn4 _ yn4)
tagay(z™ —y™2)(z™ — y™) — ai(2™ —y™)2 = 0. (3.9)

From (3.9), we can possibly obtain a;,7 = 1,2, 3,4, if (n1,n2,n3,n4) is chosen
as (1,1,2,3). Thus, comparing the coefficients of (3.9), one obtains the following
equations of a;,i =1,2,3,4:

ajas + (a1 + az)ay — a2 =0,
' ° (3.10)
—2a3as + (a1 + az)ay — 2a3 =0.
Solving (3.10), we obtain a3 = —3ajas,ay = —4a3/(a1 + az), where a; and as

satisfy ajas < 0 with a; + ag # 0. Consequently, letting a; = 1, one obtains a
group of N-wave solution sets of the (2 4 1)-dimensional KP equation (3.7) as

N
. . — _ _4a
w=2Inf)y, [y el RIS G (3.11)

i=1

where 6 € {—1,1}, N is an arbitrary integer, k; and €;,i = 1,..., N, are arbitrary
constants.
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3.3. A (3 + 1)-dimensional generalized BKP equation and the
(2 + 1)-dimensional BKP equation

A generalized form of BKP equation was proposed and studied in Ref. 7 which is
given by

Uzt — Uggzy — 3(UsUy )z + 3Uzz = 0. (3.12)
When z =y, (3.12) is reduced to the BKP equation
Uyt — Upzzy — 3(UglUy)e + gz = 0. (3.13)

Through the dependent variable transformation v = 2(In f)., Eqgs. (3.12) and
(3.13) can be transformed into the Hirota bilinear equations

(D,D; — D3D, +3D2)f-f=0 (3.14)
and
(DyD; — DD, +3D3)f - f=0, (3.15)
respectively.
For Eq. (3.14), we search for a;,7 = 1,2,3,4, and n;,7 = 1,2,3, 4, such that
a3a4(xn3 7yn3)(1,n4 _ y’ﬂ4)7a?a2(l,n1 7yn1)3(1,n2 7yn2)+3a%(xn1 7yn1)2 E0 .
(3.16)
From the above equation, one can possibly obtain a;,i = 1,2,3,4, if
(n1,n92,n3,n4) is chosen as (1,—-1,—1,3) or (1,—1,3,-1).

For the case when (nq,ne,ns,ns) = (1, —1,—1, 3), comparing the coefficients of
(3.16), one obtains the following equations of a;,i = 1,2, 3,4:

(3.17)

—asay + ai{’ag =0,
—asay — 2(1?(12 + Baf =0.

Solving (3.17), we obtain as = 1/aj,as = a?/a3, where a; and a3 are arbitrary
nonzero constants. Consequently, letting a; = 1, a set of N-wave solution sets for
the (3 + 1)-dimensional generalized BKP equation (3.12) is obtained as

2(In f)a, f= Zel Kotk ybask Tt gpklt (3.18)

where N is an arbitrary integer, k; and ¢;,4 = 1,..., N, are arbitrary constants,
which was obtained in Ref. 5.

However, for the case (n1,ng,ng,ng) = (1,—1,3,—1), by similar analysis or the
symmetry of the variables z and ¢, another set of solutions can be derived as

2(In f), Zez kiz+k; 'y+ask; t+%kf’z. (3.19)

1640029-7
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Now for the Hirota bilinear equation (3.15), we search for a;,i = 1,2,3, and
n;, 1 = 1,2,3, such that
agag(x"2 _ynz)(xma _yns)_ai)az(mnl —ym)3(m"2 —y”z)-l—?)a%(x”l _yn1)2 =0.

(3.20)

We choose (ni,n2,n3) = (1,—1,3) for possible solutions of a;,i = 1,2,3 and
comparing the coefficients of (3.20), one obtains the equations for a;,i = 1,2,3,
given by

asas —alas =0,
{ 2 (3.21)

azaz + 2ajas — 3a3 = 0.
Solving (3.21), by letting a; = 1, one obtains as = 1,a3 = 1. Consequently, we

obtain a group of N-wave solution sets of the (2 + 1)-dimensional BKP equation
(3.13) as

N
w=2nfly, [ el (3:22)
i=1
where N is an arbitrary integer, k; and ¢;,7 = 1,..., N, are arbitrary constants.

4. Construction of Hirota Bilinear Equations Possessing IN-wave
Solutions

In this section, we apply Theorem 2.2 of Sec. 2 to systematize the algorithm pro-
posed in Refs. 6 and 7 for constructing Hirota bilinear equations that possess N-
wave solutions that could be formed by linear combinations of exponential waves.
In Ref. 6, Ma and Fan used (1,ns,...,na) as weights to construct multivariate
polynomial P(xz1,zs,...,2a) of degree 2n to obtain the Hirota bilinear equations
possessing N-wave solutions. Their main idea was to construct each term whose
degree could be a combination of 1,ns,...,ny . For example, by weight (1,1,2,3),
the terms of weight 4 can be z]" x5z 2", where my, mo, ms, my are nonnega-
tive integers and mq +mq 4 2mg3 + 3my = 4. Stimulated by their work, and by using
Theorem 2.2, we now systematize the algorithm to construct the Hirota bilinear
equations of order 2n possessing N-wave solutions.

4.1. A systematic algorithm to construct Hirota bilinear equations

We perform the following three steps to construct Hirota bilinear equations (2.2)
of order 2n possessing N-wave solutions which are any linear combinations of

e, ..., e"™ where

ni:a1k’?1x1 +a2k?2x2+---+aMszM$M, 1<i<N, (41)
ni,Na,...,Nyr, are integers possessing no nontrivial common factor and k;s,1 <
1 < N, can be arbitrary constants. Here ni,ns,...,nas are supposed to be positive

1640029-8
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in order to obtain the Hirota bilinear equations (2.2) which satisfy the dispersion
relation. Without loss of generality, we suppose that ny < ns < --- < nyy.

Step 1: Suppose that the multivariate polynomials of weight W are given by

ng(xl,xg,...,xM)

_ E w mi . ma ma
- Cyymg-mpr 1 T2~ Ty s (42)
n1m1+n2m2+---+anM:W
m1+mot-+myy=2i(1<i<n)
where anVZImz,__mM are undetermined constants, nymi +nomo +---+nymy = W,
mi4+mo—+---4+my =201 <i<nand 2 < W < 2nmyy.
Step 2: Determine a”

mima:-Mmar

for each possible weight W.

As we discussed in Sec. 2, the multivariate polynomials Py (x1,22,...,2ar),
corresponding to Hirota bilinear equations (2.2) possess N-wave solutions which
are any linear combinations of e, ..., e™  if and only if

P;X(al(k;’l — ki), ao(k;? — k%), .. an (KM — kM) = 0. (4.3)

It is easy to see that the left-hand side of (4.3) is a homogeneous polynomial of
k; and k; of order W. Comparing the coefficients of (4.3), we obtain the equations

aglmQ,,,mM, nimi+nomo+---+nympy =W, mi+mo+---+mpy = 24,1 <1i < n,
from which a/¥ are determined.

mim-~Mpr
Step 3: Make linear combination of all the P}¥. Let
Pgn(l'l,l'27...,$]\/[) = ZEWPQVZ(-Ttha---;mM); (44)
w

then we obtain the Hirota bilinear equations (2.2) of order 2n defined by the
polynomial P, (z1,22,...,Tnm).

4.2. Hirota bilinear equations of degree 4 and weights (1,2,2,3)

As an example of our refined algorithm, we follow these three steps to construct
Hirota bilinear equations of degree 4 and weights (1,2,2,3) in this subsection.

(1) By simple analysis, one knows that the possible weight W should be in the
set {W :3 < W < 11, W is integer }. Next, we study each possible case of the weight
W one by one. To compare with the results of Example 2 in Ref. 7, we study the
case of weight 4 first.

(1.1) The case of weight 4
The general form of the polynomial P}(z1, s, 3, 24) of degree 4 and weight 4 is
given by

P} = c1x] + camixy + 533 + comoxs + cra . (4.5)
Then
Play(ki — kj), az(k? —k3), as(k} —k}), as(k} — k%)) =0. (4.6)

1640029-9
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Comparing the coefficients of the same orders of k; ; and k; ; on the left-hand side
of (3.5) and letting a; = 1, one obtains

cqa4 +4c1 =0,
{44 1 (@7)

Cceoa3 + C5a§ + cm% =3c,

which are equal to the first and third equations of (4.21) in Ref. 7 with ¢co = ¢35 = 0.
Consequently, any linear combinations of e, ..., e™ solves

(c1Dy, + 4Dy, Dy, + csD2, + c6Dyy Dy, + D2 ) f - f =0 (4.8)
if as, as, aq,c1,ca, cs5, co, c7 satisty (3.6), where
n, = kixl + agk?fﬂz + agkgdig + a4k§’z4, 1 S ) S N. (49)

Here N is any integer and k;,1 < i < N, are any arbitrary numbers (any two of them
are usually chosen to be different). Note that (4.7) are linear algebraic equations of
c1, ¢4, C5, Cg, C7, and have nonzero solutions for any as, as and a4. This means that
for any given as, a3 and a4, we can construct the Hirota bilinear equations having
the subset span{e™,...,e"™ } in their N-wave solution sets.

On the other hand, for any given ci,c4,c5,c6 and c7, i.e., for a given Hi-
rota bilinear equation (4.8), if there exist ag,as and a4 which solve (3.6), then
span{e™ ... e™} is a subset of the solution set of (4.8). By careful analysis of the
algebraic equation (4.7), we obtain the sufficient conditions for ¢;, ¢4, cs5, ¢ and c7
to make sure that there exist real as, as and a4 which solve (4.7). Thus, one obtains
some sufficient conditions for Hirota bilinear equation having N-wave solutions. For
details, see Ref. 7.

Here, we point out that the two terms z?y and 2%z are not included in (4.5)
because the degrees of these terms are odd numbers, that is to say that only the
case cg = c3 = 0 of the Example 2 in Ref. 7 is meaningful. For the Example 3 in
Ref. 7, following the same analysis as above, the two terms z?z and y%z need not
be considered, that is, only the case cg = ¢; = 0 of the Example 3 in Ref. 7 is
meaningful.

(1.2) The case of weight 3
For the weights (1,2,2,3) the general form of the polynomial P} (1,22, 23,74) of
weight 3 is given by

Pf’ = dgg)mlxg + dég).%'l.’l,'g . (4.10)

By the same analysis as above, we obtain

dVas +dy)as =0, (4.11)
that is, any linear combination of e, ... e solves
(P Dy, Dy +dS Dy D) f - f =0 (4.12)

1640029-10
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if dgg) and dég) satisfy (4.11), where 7;s,1 <1 < N, are defined by (4.9). Obviously,
(4.11) is a linear equation in dg?’) and dg)’), so for any given as and as, d§3) and déB)
can be obtained from (4.11).

(1.3) The case of weight 5
For the weights (1,2,2,3) the general form of the polynomial P} (1,22, 23,%4) of
weight 5 is given by

Py = (dgs)xg + dgs)xg)(kgs)m + kéS)x:{,) . (4.13)
By the same analysis as above, we obtain
d(s)ag +dsasz = (4.14)
with kg‘%) and k§5) being real numbers.

(1.4) The case of weight 6
The general form of the polynomial P(x, 2,3, 14) of weight 6 is given by

P = (dgﬁ)a:g + dy (6) 2 3+ d(G)xga:g)xl , (4.15)
where dl(ﬁ),i = 1,2, 3, are determined by the equation
d9a2 + da2 + d¥ azas = 0. (4.16)

(1.5) The case of weight 7
The general form of the polynomial P](z1, 22,23, 14) of weight 7 is given by

P} = (d(7 Zo + d xg)x1x4 (dm dm d(7 r3x3 + d( )m2x3)x1 ,

(4.17)
where d57),i =1,...,6, are determined by the equations
dVay +dVag =0, (418)
dmag’ + dm d(7)a2a3 + d( )a2a3 =0. .

(1.6) The case of weight 8
The general form of the polynomial PJ(z1, 22,3, 14) of weight 8 is given by

Pf — (d(s) 2 + d(g) 24 d( )$2$3>$1.’E4 + d(s) 4 i+ d(g) 4 iy d(8)$2$3
+d 233 + df) 2pa3, (4.19)
where dl(s),i =1,...,6, are determined by the equations

d(8) 2+d(8)a2—|—d(8)a a :O
{ LT 6 248 (4.20)

dff‘)ag + dés) d(s)aga + d(8)a2a3 d(8)a2a3 =0.

1640029-11
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(1.7) The case of weight 9
The general form of the polynomial P (z1,z2, 73, 14) of weight 9 is given by

P) = (d(9 To + d xg)x1x4 + (d(g) 5 d(9 x5 + d(9 r373 + d( )x2m3)1:4,

(4.21)
where d,l(g),i =1,...,6, are determined by the equations
d(lg)ag + dég)ag = O, 4.99
(9) 3 (9) 3 (9) 2 9, 2 _ (4.22)
dy’ay +dy a3 +ds azaz + dg 'azaz = 0.

(1.8) The case of weight 10
The general form of the polynomial P}0(z1, 2o, 3, 24) of weight 10 is given by

plo— (d(m) 2 +d(10) 2 —|—d(w)x2x3) 22, (4.23)

(10)

where d,”,i = 1,2, 3, are determined by the equation

d"a2 4+ d'a2 + d"¥azas = 0. (4.24)

(1.9) The case of weight 11
The general form of the polynomial P}!(z1, 2,23, 24) of weight 11 is given by

P = (d"May + dSVas)ad (4.25)

(11)

where d,” 7,7 = 1,2, are determined by the equation

di"ay +dMag =0. (4.26)

(2) Make linear combination of all the P}V, W =3,...,11
Let
11
Py(x1,20,23,24) = Z ew P}V (w1, 72, 23, 24) , (4.27)
w=3

where P}V, W = 3,...,11, are defined by (4.10), (4.5), (4.13), (4.15), (4.23) and
(4.25) respectively and ey, W = 3,...,11, are any arbitrary constants. Then
we obtain a very general Hirota bilinear equations (2.2) of order 4 defined by
the polynomial (4.27), which is a Hirota bilinear equation of order 4 possessing
span{e™, ... e} as a subset of its solution set.

4.3. Hirota bilinear equations not satisfying dispersion relation

The Hirota bilinear equations constructed in Sec. 4.2 satisfy the dispersion relation.
In fact, this algorithm is also applied in constructing Hirota bilinear equations not
satisfying dispersion relation. As an example, we construct Hirota bilinear equa-
tions of degree 4 with weights (1,—1, —1,3). Here, to save space, we just show the
construction of the Hirota bilinear equations of order 4 with weight 4.

1640029-12



Classifying bilinear differential equations by linear superposition principle
The general form of the polynomial P} (z1, 2o, 73, z4) of degree 4 and weight 4
is given by
Z 2 2 2 2 4
Py = [c1x1 4 (come + czx3)xf|xy + (caxy + c5a5 + coxoxs)ry + crry. (4.28)

Then for any given a; # 0,1 < i < M,n;,1 < i < N, by the same analysis as in
Sec. 4.2, we obtain

as[erar (ks — kj) + (c2a + czag)af(k; "t —kj 1) (ki — kj)*) (k] — K3)

+ (cqa3 + c5a§ + cﬁazag)ai(ki_l — k;l)z(kf — k;’)2 + crat(k; — kj)4 =0.

(4.29)
Clearly, (4.29) holds for any arbitrary k; and k; if and only if
(c4a3 + 503 + ceazaz)al =0,
crat =0,
™ (4.30)

(coa2 + csaz)as =0,

ascia; = 0.

From (4.30), we conclude that for ¢; = ¢; = 0 and any ¢;,2 < i < 6 satisfying

{ c4a§ + c5a§ + cgagasz =0, (4.31)

coao + czaz =0,
the polynomial P} defined by (4.28), i.e.,

(c2D2 Dy,Dy,+c3D2 Dy, Dy +caD2 D2 +c5D2 D2 +cgDyy Dy D2 ) f - f=0
(4.32)

determines a Hirota bilinear equation possessing N-wave subspace. For other cases,
one can obtain the Hirota bilinear equations possessing N-wave subspace by the
same process. We omit these here.

5. Conclusions

In this paper, we have shown that the linear superposition principle which does
not generally apply to nonlinear equations might apply to some kind of exponential
wave solutions of Hirota bilinear equation. The necessary and sufficient conditions
that guarantee the existence of the exponential wave solution subspaces were pre-
sented. Based on the necessary and sufficient conditions, an algorithm to construct
the Hirota bilinear equations possessing exponential wave solution subspaces were
obtained.

A natural question is whether there are any other kinds of nonlinear equations
to which the linear superposition principle applies. In fact, Ma® has given a posi-
tive answer by presenting a generalized Hirota bilinear equations. According to the
results obtained in this paper and the conclusions in Refs. 6-10, it is reasonable to
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believe that there are classes of nonlinear equations that the linear superposition
principle can apply to the subsets of their wave solutions which may be other kinds
of solutions besides exponential wave solutions. However, it remains an open ques-
tion what are the characteristics of these bilinear equations possessing subspaces.
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