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In this paper, we investigate the linear superposition principle of exponential travel-
ing waves to construct a sub-class of N -wave solutions of Hirota bilinear equations. A

necessary and sufficient condition for Hirota bilinear equations possessing this specific

sub-class of N -wave solutions is presented. We apply this result to find N -wave solutions
to the (2 + 1)-dimensional KP equation, a (3 + 1)-dimensional generalized Kadomtsev–

Petviashvili (KP) equation, a (3 + 1)-dimensional generalized BKP equation and the

(2 + 1)-dimensional BKP equation. The inverse question, i.e., constructing Hirota Bilin-
ear equations possessing N -wave solutions, is considered and a refined 3-step algorithm is

proposed. As examples, we construct two very general kinds of Hirota bilinear equations

of order 4 possessing N -wave solutions among which one satisfies dispersion relation and
another does not satisfy dispersion relation.

Keywords: Hirota bilinear equations; multi-wave solutions; linear superposition principle

of exponential functions; KP equation; BKP equation.
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1. Introduction

It is well known that because of the validity of the linear superposition principle,

it is relatively easy to investigate the structure of the solution sets or even exact

solutions of linear equations, whether they are linear algebraic equations or dif-

ferential equations. Of course the linear superposition principle is not valid in the
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nonlinear world and that a lot of researchers are still researching in this area to

have a breakthrough. When studying nonlinear differential equations, the first idea

that comes to our mind is to transform the nonlinear differential equations to linear

ones. Some differential equations which could be transformed into linear differential

equations through a change of dependent variable are shown in Ref. 1. Once a non-

linear differential equation has been linearized, it is relatively easy to investigate

the structure of its solution set and find its exact solutions. Unfortunately, only a

few special classes of nonlinear differential equations can be linearized. To relax this

constraint and to find exact solutions for a slightly wider class of nonlinear differ-

ential equations, Hirota1 introduced a type of bilinear differential equations, often

called the Hirota form, for which one can find exact solutions by the perturbation

method.

By using some independent variable transformations, various nonlinear differ-

ential equations of mathematical physics can be transformed into Hirota bilinear

equations1,2 which possess some specific properties and are used to study the

solution sets of nonlinear differential equations. Recently, some programs were

designed12–16 and some algorithms11,19 were proposed on searching for integrable

bilinear equations. Based on the Hirota bilinear form, soliton solutions of certain

nonlinear differential equations were obtained by the Hirota perturbation tech-

nique,1 the multiple exp-function algorithm, and various other methods.4–10,18–21

Hirota’s bilinear technique provides a powerful method to investigate and con-

struct the solutions of nonlinear differential equations.2–9,20,21 In Refs. 6 and 7, a

linear superposition principle of exponential traveling waves is analyzed for Hirota

bilinear equations and a sub-class of N -wave solutions are constructed by linear

combinations of exponential traveling waves. This means the solution sets of some

bilinear equations have linear subspaces. The inverse question, that is about gen-

erating Hirota bilinear equations possessing the indicated N -wave solutions, is also

discussed and an algorithm using weights is also proposed at the same time. Even

for some generalized bilinear differential equations,8–10,17 some similar properties

were found and thus N -wave solutions subspace was constructed in the same way.

In this paper, we aim to further investigate the properties of Hirota bilinear

differential equations and use them to construct the exponential wave solution sets

which are subspaces of the solution sets to Hirota bilinear equation. Additionally,

a refined algorithm to generate Hirota bilinear equations possessing the indicated

N -wave solutions is presented, which results in compensating the theory that was

proposed in Refs. 6 and 7.

2. Linear Superposition Principle for Hirota Bilinear Equations

Suppose P (x1, x2, . . . , xM ) is a multivariate polynomial satisfying

P (0, 0, . . . , 0) = 0 (2.1)
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and

P (Dx1
, Dx2

, . . . , DxM
)f · f = 0 (2.2)

is a Hirota bilinear equation, whereDxi
, 1 ≤ i ≤M , are Hirota differential operators

which are defined by

Dp
yf(y) · g(y) = (∂y − ∂y′)pf(y)g(y′)|y′=y = ∂py′f(y + y′)g(y − y′)|y′=0, p ≥ 1 .

(2.3)

Let ki = {k1,i, k2,i, . . . , kM,i}T , x = {x1, x2, . . . , xM}T and ηi = ki · x, 1 ≤
i ≤ N , where ηi denote the N -wave variables and fi and 1 ≤ i ≤ N denote N

exponential wavefunctions given by

fi = eηi = ek1,ix1+k2,ix2+···+kM,ixM , 1 ≤ i ≤ N . (2.4)

Here kj,i, 1 ≤ i ≤ N, 1 ≤ j ≤M are some constants which will be determined later.

Denote P (x1, x2, . . . , xM ) by P (x). According to the properties of Hirota bilinear

operators,1,2 one can easily conclude that:

(a) For any Hirota bilinear operator, we have

Dk1
x1
Dk2
x2
· · ·DkM

xM
f · f = (−1)

∑M
i=1 kiDk1

x1
Dk2
x2
· · ·DkM

xM
f · f . (2.5)

(b) For any Hirota bilinear operator P (Dx1
, Dx2

, . . . , DxM
) and any two N

exponential wavefunctions eηi and eηj ,

P (Dx1
, Dx2

, . . . , DxM
)eηi · eηj = P (ki − kj)e

ηi+ηj . (2.6)

For any n-degree multivariate polynomial, we have

P (x1, x2, . . . , xM ) =

n∑
k=1

Pk(x1, x2, . . . , xM ) , (2.7)

where Pk(x1, x2, . . . , xM ), 1 ≤ k ≤ N , are homogeneous multivariate polynomial of

degree k. From (2.5), we conclude that Pk(Dx1
, Dx2

, . . . , DxM
)f · f ≡ 0 if k is an

odd number, which means that any Hirota bilinear operator can be written as

P (Dx1
, Dx2

, . . . , DxM
) =

n∑
k=1

P2k(Dx1
, Dx2

, . . . , DxM
) . (2.8)

Let f be a linear combination of the above N exponential wavefunctions such

that f =
∑N
i=1 εifi =

∑N
i=1 εie

ηi , where εi, 1 ≤ i ≤ N , are arbitrary constants.

From the analysis above, we obtain

P (Dx1
, Dx2

, . . . , DxM
)f · f = 2

∑
1≤j<i≤N

εiεjP (ki − kj)e
ηi+ηj . (2.9)

It follows directly that any linear combination of N exponential wavefunctions

eηi , 1 ≤ i ≤ N solves Hirota bilinear equation (1.2) if and only if P (ki − kj) = 0

holds for any 1 ≤ j < i ≤ N (see Theorem 2.1 in Ref. 6). For the convenience of

readers, we recall this theorem.
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Theorem 1 (Linear Superposition Principle Ref. 6). Let P (x1, x2, . . . , xM )

be a multivariate polynomial of degree 2n satisfying (2.1) and the wave variables

ηi = ki · x, 1 ≤ i ≤ N . Then span{eη1 , . . . , eηN } is a subset of the solution set of

the Hirota bilinear equation (2.1), if and only if

P (ki − kj) = 0 (2.10)

for any 1 ≤ j < i ≤ N .

This theorem presents a necessary and sufficient condition when Hirota bilinear

differential equation (2.1) possesses the linear superposition principle for exponen-

tial traveling waves. However, it is usually not easy to determine the coefficients

kj,i, 1 ≤ i ≤ N, 1 ≤ j ≤ M , since (2.10) is a system N(N − 1)/2 coupled algebraic

equations. Fortunately, there is only one algebraic equation to determine the 2-wave

solutions, so it might be easy to obtain the linear subspace of 2-wave solution set of

the Hirota bilinear equation (2.2) by using (2.10). In addition, some techniques to

simplify the calculations to obtain some N -wave subspace of (2.2) have been found.

In Ref. 7, by observing some concrete soliton equations, Ma and Fan proposed an

algorithm to find some special solutions to these equations which have the relation

kl,i = alk
nl
i , 1 ≤ l ≤M, 1 ≤ i ≤ N , (2.11)

where ki, 1 ≤ i ≤ N , are arbitrary constants, nl, 1 ≤ l ≤ M , are some integers,

al, 1 ≤ l ≤ M , are constants and nl, al, 1 ≤ l ≤ M , are determined by the polyno-

mial P . From (2.11), we obtain

P (k1,i − k1,j , k2,i − k2,j , . . . , kM,i − kM,j)

= P (a1(kn1
i − k

n1
j ), a2(kn2

i − k
n2
j ), . . . , aM (knM

i − knM
j )) . (2.12)

In fact, nl, 1 ≤ l ≤ M are usually obtained by balancing the powers of the

left-hand side of (2.12) and al, 1 ≤ l ≤ M are chosen to make the polynomial

P (a1(kn1
i − k

n1
j ), a2(kn2

i − k
n2
j ), . . . , aM (knM

i − knM
j )) ≡ 0 for any values of ki and

kj . To obtain possible nls, al, 1 ≤ l ≤M , the soliton equations are usually required

to be higher dimensional equations which may provide more chance to have the

subspaces span{eη1 , . . . , eηN } as the subsets of their solution sets. The merit of the

algorithm proposed in Ref. 7 is that the N(N−1)/2 coupled algebraic equations are

reduced into algebraic equations of al, 1 ≤ l ≤M , which simplify the computations

a lot and can also be applied to consider the opposite question, namely constructing

the Hirota bilinear equations possessing N -wave solutions for arbitrary integer N .

Theorem 2. For Hirota bilinear equation (2.2), there exist some integers nl, 1 ≤
l ≤M , and some constants al, 1 ≤ l ≤M , such that

P (a1(xn1 − yn1), a2(xn2 − yn2), . . . , aM (xnM − ynM )) ≡ 0 (2.13)

for any x and y if and only if for arbitrary integer N , li, 1 ≤ i ≤ M, and

any nonzero constants mi, i = 1, 2, . . . , N , with mi 6= mj for any i 6= j,
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span{eη0−η1 , . . . , eη0−ηN , eη0} and span{eη0 , eη0+η1 , . . . , eη0+ηN } are two subspaces

of the solution set of the Hirota bilinear equation (2.2), where η0 =
∑M
j=1 lixj and

ηi =

M∑
j=1

ajm
nj

i xj , i = 1, 2, . . . , N . (2.14)

From the above theorem, we deduce that the Hirota bilinear equation (2.2)

has an abundant of N -wave solutions for any integer N if there exist integers

nl, 1 ≤ l ≤M, and constants al, 1 ≤ l ≤M, such that (2.13) holds for any x and y.

Notice that the left-hand side of (2.13) is a polynomial of the variables x and y, so

(2.13) holds for any x and y if and only if every coefficient of this polynomial is zero.

By this observation, we may obtain the undetermined integers nl, 1 ≤ l ≤ M, and

constants al, 1 ≤ l ≤M . In Refs. 6 and 7, some Hirota bilinear equations such as the

(3+1)-dimensional Kadomtsev–Petviashvili (KP) equation, the (3+1)-dimensional

Jimbo–Miwa equation and the (3 + 1)-dimensional BKP equation were studied and

some of their N -wave solutions were obtained. By this algorithm, for any arbitrary

N , another subspace of solution set of the (3+1)-dimensional Jimbo–Miwa equation

was found in Ref. 20. Next, we present some examples to illustrate this algorithm.

3. Applications to Some Hirota Bilinear Equations

3.1. The (2 + 1)-dimensional KP equation

The (2 + 1)-dimensional KP equation is given by4,5,19

(uxxx + 6uux + ut)x + 3d2uyy = 0 , (3.1)

which can be transformed into the Hirota bilinear equation(
(D4

x +DxDt + 3d2D2
y)f · f

f2

)
xx

= 0 (3.2)

through the dependent variable transformation u = 2(ln f)xx. Then the solutions

of the Hirota bilinear equation

(D4
x +DxDt + 3d2D2

y)f · f = 0 (3.3)

are in the solution set of (3.2). Solving (3.3), one obtains the solutions to KP

equation (3.1).

According to Theorem 2.2, we search for ai, i = 1, 2, 3, and ni, i = 1, 2, 3, such

that

a41(xn1 − yn1)4 + a1a3(xn1 − yn1)(xn3 − yn3) + 3d2a22(xn2 − yn2)2 ≡ 0 . (3.4)

By precise analysis of (3.4), we can possibly obtain ai, i = 1, 2, 3, if (n1, n2, n3)

is chosen to be (1, 2, 3). For (n1, n2, n3) = (1, 2, 3), comparing the coefficients of

(2.20), one obtains the equations of ai, i = 1, 2, 3, as{
a41 + a1a3 + 3d2a22 = 0 ,

−2a41 + a1a3 + 6d2a22 = 0 .
(3.5)
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Solving (3.5), we obtain a2 = ±a21/d, a3 = −4a31 and a1 is a free parameter. Conse-

quently, letting a1 = 1, one obtains a group of N -wave solution sets of the (2 + 1)-

dimensional KP equation (3.1) as

u = 2(ln f)xx, f =

N∑
i=1

εie
kix+δ

k2
i
d y−4k

3
i t , (3.6)

where δ ∈ {−1, 1}, N is an arbitrary integer, ki and εi, i = 1, . . . , N , are arbitrary

constants.

3.2. A (3 + 1)-dimensional generalized KP equation

In this subsection, we study the multi-wave solutions of (3 + 1)-dimensional gener-

alized KP equation9

uxxxy + 3(uxuy)x + utx + uty − uzz = 0 , (3.7)

which can be transformed into the Hirota bilinear equation

(D3
xDy +DxDt +DyDt −D2

z)f · f = 0 (3.8)

through the dependent variable transformation u = 2(ln f)x.

According to Theorem 2.2, we search for ai, i = 1, 2, 3, 4, and ni, i = 1, 2, 3, 4,

such that

a31a2(xn1 − yn1)3(xn2 − yn2) + a1a4(xn1 − yn1)(xn4 − yn4)

+a2a4(xn2 − yn2)(xn4 − yn4)− a23(xn3 − yn3)2 ≡ 0 . (3.9)

From (3.9), we can possibly obtain ai, i = 1, 2, 3, 4, if (n1, n2, n3, n4) is chosen

as (1, 1, 2, 3). Thus, comparing the coefficients of (3.9), one obtains the following

equations of ai, i = 1, 2, 3, 4 :{
a31a2 + (a1 + a2)a4 − a23 = 0 ,

−2a31a2 + (a1 + a2)a4 − 2a23 = 0 .
(3.10)

Solving (3.10), we obtain a23 = −3a31a2, a4 = −4a31/(a1 + a2), where a1 and a2
satisfy a1a2 < 0 with a1 + a2 6= 0. Consequently, letting a1 = 1, one obtains a

group of N -wave solution sets of the (2 + 1)-dimensional KP equation (3.7) as

u = 2(ln f)x, f =

N∑
i=1

εie
kix+a2kiy+δ

√
−3a2k2i z−

4a2
1+a2

k3i t , (3.11)

where δ ∈ {−1, 1}, N is an arbitrary integer, ki and εi, i = 1, . . . , N , are arbitrary

constants.

1640029-6
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3.3. A (3 + 1)-dimensional generalized BKP equation and the

(2 + 1)-dimensional BKP equation

A generalized form of BKP equation was proposed and studied in Ref. 7 which is

given by

uzt − uxxxy − 3(uxuy)x + 3uxx = 0 . (3.12)

When z = y, (3.12) is reduced to the BKP equation

uyt − uxxxy − 3(uxuy)x + 3uxx = 0 . (3.13)

Through the dependent variable transformation u = 2(ln f)x, Eqs. (3.12) and

(3.13) can be transformed into the Hirota bilinear equations

(DzDt −D3
xDy + 3D2

x)f · f = 0 (3.14)

and

(DyDt −D3
xDy + 3D2

x)f · f = 0 , (3.15)

respectively.

For Eq. (3.14), we search for ai, i = 1, 2, 3, 4, and ni, i = 1, 2, 3, 4, such that

a3a4(xn3−yn3)(xn4 − yn4)−a31a2(xn1−yn1)3(xn2−yn2)+3a21(xn1−yn1)2≡0 .

(3.16)

From the above equation, one can possibly obtain ai, i = 1, 2, 3, 4, if

(n1, n2, n3, n4) is chosen as (1,−1,−1, 3) or (1,−1, 3,−1).

For the case when (n1, n2, n3, n4) = (1,−1,−1, 3), comparing the coefficients of

(3.16), one obtains the following equations of ai, i = 1, 2, 3, 4:{
−a3a4 + a31a2 = 0 ,

−a3a4 − 2a31a2 + 3a21 = 0 .
(3.17)

Solving (3.17), we obtain a2 = 1/a1, a4 = a21/a3, where a1 and a3 are arbitrary

nonzero constants. Consequently, letting a1 = 1, a set of N -wave solution sets for

the (3 + 1)-dimensional generalized BKP equation (3.12) is obtained as

u = 2(ln f)x, f =

N∑
i=1

εie
kix+k

−1
i y+a3k

−1
i z+ 1

a3
k3i t, (3.18)

where N is an arbitrary integer, ki and εi, i = 1, . . . , N, are arbitrary constants,

which was obtained in Ref. 5.

However, for the case (n1, n2, n3, n4) = (1,−1, 3,−1), by similar analysis or the

symmetry of the variables z and t, another set of solutions can be derived as

u = 2(ln f)x, f =

N∑
i=1

εie
kix+k

−1
i y+a3k

−1
i t+ 1

a3
k3i z. (3.19)

1640029-7
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Now for the Hirota bilinear equation (3.15), we search for ai, i = 1, 2, 3, and

ni, i = 1, 2, 3, such that

a2a3(xn2−yn2)(xn3−yn3)−a31a2(xn1−yn1)3(xn2−yn2)+3a21(xn1−yn1)2≡0.

(3.20)

We choose (n1, n2, n3) = (1,−1, 3) for possible solutions of ai, i = 1, 2, 3 and

comparing the coefficients of (3.20), one obtains the equations for ai, i = 1, 2, 3,

given by {
a2a3 − a31a2 = 0 ,

a2a3 + 2a31a2 − 3a21 = 0 .
(3.21)

Solving (3.21), by letting a1 = 1, one obtains a2 = 1, a3 = 1. Consequently, we

obtain a group of N -wave solution sets of the (2 + 1)-dimensional BKP equation

(3.13) as

u = 2(ln f)x, f =

N∑
i=1

εie
kix+k

−1
i y+k3i t , (3.22)

where N is an arbitrary integer, ki and εi, i = 1, . . . , N, are arbitrary constants.

4. Construction of Hirota Bilinear Equations Possessing N-wave

Solutions

In this section, we apply Theorem 2.2 of Sec. 2 to systematize the algorithm pro-

posed in Refs. 6 and 7 for constructing Hirota bilinear equations that possess N -

wave solutions that could be formed by linear combinations of exponential waves.

In Ref. 6, Ma and Fan used (1, n2, . . . , nM ) as weights to construct multivariate

polynomial P (x1, x2, . . . , xM ) of degree 2n to obtain the Hirota bilinear equations

possessing N -wave solutions. Their main idea was to construct each term whose

degree could be a combination of 1, n2, . . . , nM . For example, by weight (1, 1, 2, 3),

the terms of weight 4 can be xm1
1 xm2

2 xm3
3 xm4

4 , where m1,m2,m3,m4 are nonnega-

tive integers and m1 +m2 +2m3 +3m4 = 4. Stimulated by their work, and by using

Theorem 2.2, we now systematize the algorithm to construct the Hirota bilinear

equations of order 2n possessing N -wave solutions.

4.1. A systematic algorithm to construct Hirota bilinear equations

We perform the following three steps to construct Hirota bilinear equations (2.2)

of order 2n possessing N -wave solutions which are any linear combinations of

eη1 , . . . , eηN , where

ηi = a1k
n1
i x1 + a2k

n2
i x2 + · · ·+ aMk

nM
i xM , 1 ≤ i ≤ N , (4.1)

n1, n2, . . . , nM , are integers possessing no nontrivial common factor and kis, 1 ≤
i ≤ N , can be arbitrary constants. Here n1, n2, . . . , nM are supposed to be positive

1640029-8



October 10, 2016 10:28 IJMPB S0217979216400294 page 9

Classifying bilinear differential equations by linear superposition principle

in order to obtain the Hirota bilinear equations (2.2) which satisfy the dispersion

relation. Without loss of generality, we suppose that n1 ≤ n2 ≤ · · · ≤ nM .

Step 1: Suppose that the multivariate polynomials of weight W are given by

PW2n (x1, x2, . . . , xM )

=
∑

n1m1+n2m2+···+nMmM=W
m1+m2+···+mM=2i(1≤i≤n)

aWm1m2···mM
xm1
1 xm2

2 · · ·x
mM

M , (4.2)

where aWm1m2···mM
are undetermined constants, n1m1 +n2m2 + · · ·+nMmM = W ,

m1 +m2 + · · ·+mM = 2i, 1 ≤ i ≤ n and 2 ≤W ≤ 2nmM .

Step 2: Determine aWm1m2···mM
for each possible weight W .

As we discussed in Sec. 2, the multivariate polynomials PW2n (x1, x2, . . . , xM ),

corresponding to Hirota bilinear equations (2.2) possess N -wave solutions which

are any linear combinations of eη1 , . . . , eηN , if and only if

PW2n (a1(kn1
i − k

n1
j ), a2(kn2

i − k
n2
j ), . . . , aM (knM

i − knM
j )) = 0 . (4.3)

It is easy to see that the left-hand side of (4.3) is a homogeneous polynomial of

ki and kj of order W . Comparing the coefficients of (4.3), we obtain the equations

aWm1m2···mM
, n1m1+n2m2+ · · ·+nMmM = W, m1+m2+ · · ·+mM = 2i, 1 ≤ i ≤ n,

from which aWm1m2···mM
are determined.

Step 3: Make linear combination of all the PW2n . Let

P2n(x1, x2, . . . , xM ) =
∑
W

εWP
W
2n (x1, x2, . . . , xM ) , (4.4)

then we obtain the Hirota bilinear equations (2.2) of order 2n defined by the

polynomial P2n(x1, x2, . . . , xM ).

4.2. Hirota bilinear equations of degree 4 and weights (1, 2, 2, 3)

As an example of our refined algorithm, we follow these three steps to construct

Hirota bilinear equations of degree 4 and weights (1, 2, 2, 3) in this subsection.

(1) By simple analysis, one knows that the possible weight W should be in the

set {W : 3 ≤W ≤ 11,W is integer}. Next, we study each possible case of the weight

W one by one. To compare with the results of Example 2 in Ref. 7, we study the

case of weight 4 first.

(1.1) The case of weight 4

The general form of the polynomial P 4
4 (x1, x2, x3, x4) of degree 4 and weight 4 is

given by

P 4
4 = c1x

4
1 + c4x1x4 + c5x

2
2 + c6x2x3 + c7x

2
3 . (4.5)

Then

P 4
4 (a1(ki − kj), a2(k2i − k2j ), a3(k2i − k2j ), a4(k3i − k3j )) = 0 . (4.6)

1640029-9
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Comparing the coefficients of the same orders of k1,i and k1,j on the left-hand side

of (3.5) and letting a1 = 1, one obtains{
c4a4 + 4c1 = 0 ,

c6a2a3 + c5a
2
2 + c7a

2
3 = 3c1 ,

(4.7)

which are equal to the first and third equations of (4.21) in Ref. 7 with c2 = c3 = 0.

Consequently, any linear combinations of eη1 , . . . , eηN solves

(c1D
4
x1

+ c4Dx1
Dx4

+ c5D
2
x2

+ c6Dx2
Dx3

+ c7D
2
x3

)f · f = 0 (4.8)

if a2, a3, a4, c1, c4, c5, c6, c7 satisfy (3.6), where

ηi = kix1 + a2k
2
i x2 + a3k

2
i x3 + a4k

3
i x4, 1 ≤ i ≤ N . (4.9)

HereN is any integer and ki, 1 ≤ i ≤ N , are any arbitrary numbers (any two of them

are usually chosen to be different). Note that (4.7) are linear algebraic equations of

c1, c4, c5, c6, c7, and have nonzero solutions for any a2, a3 and a4. This means that

for any given a2, a3 and a4, we can construct the Hirota bilinear equations having

the subset span{eη1 , . . . , eηN } in their N -wave solution sets.

On the other hand, for any given c1, c4, c5, c6 and c7, i.e., for a given Hi-

rota bilinear equation (4.8), if there exist a2, a3 and a4 which solve (3.6), then

span{eη1 , . . . , eηN } is a subset of the solution set of (4.8). By careful analysis of the

algebraic equation (4.7), we obtain the sufficient conditions for c1, c4, c5, c6 and c7
to make sure that there exist real a2, a3 and a4 which solve (4.7). Thus, one obtains

some sufficient conditions for Hirota bilinear equation having N -wave solutions. For

details, see Ref. 7.

Here, we point out that the two terms x2y and x2z are not included in (4.5)

because the degrees of these terms are odd numbers, that is to say that only the

case c2 = c3 = 0 of the Example 2 in Ref. 7 is meaningful. For the Example 3 in

Ref. 7, following the same analysis as above, the two terms x2z and y2z need not

be considered, that is, only the case c6 = c7 = 0 of the Example 3 in Ref. 7 is

meaningful.

(1.2) The case of weight 3

For the weights (1, 2, 2, 3) the general form of the polynomial P 3
4 (x1, x2, x3, x4) of

weight 3 is given by

P 3
4 = d

(3)
1 x1x2 + d

(3)
2 x1x3 . (4.10)

By the same analysis as above, we obtain

d
(3)
1 a2 + d

(3)
2 a3 = 0 , (4.11)

that is, any linear combination of eη1 , . . . , eηN solves

(d
(3)
1 Dx1Dx2 + d

(3)
2 Dx1Dx3)f · f = 0 (4.12)
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if d
(3)
1 and d

(3)
2 satisfy (4.11), where ηis, 1 ≤ i ≤ N , are defined by (4.9). Obviously,

(4.11) is a linear equation in d
(3)
1 and d

(3)
2 , so for any given a2 and a3, d

(3)
1 and d

(3)
2

can be obtained from (4.11).

(1.3) The case of weight 5

For the weights (1, 2, 2, 3) the general form of the polynomial P 5
4 (x1, x2, x3, x4) of

weight 5 is given by

P 5
4 = (d

(5)
1 x2 + d

(5)
2 x3)(k

(5)
1 x4 + k

(5)
2 x31) . (4.13)

By the same analysis as above, we obtain

d
(5)
1 a2 + d52a3 = 0 (4.14)

with k
(5)
1 and k

(5)
2 being real numbers.

(1.4) The case of weight 6

The general form of the polynomial P 6
4 (x1, x2, x3, x4) of weight 6 is given by

P 6
4 = (d

(6)
1 x22 + d

(6)
2 x23 + d

(6)
3 x2x3)x21 , (4.15)

where d
(6)
i , i = 1, 2, 3, are determined by the equation

d
(6)
1 a22 + d

(6)
2 a23 + d

(6)
3 a2a3 = 0. (4.16)

(1.5) The case of weight 7

The general form of the polynomial P 7
4 (x1, x2, x3, x4) of weight 7 is given by

P 7
4 = (d

(7)
1 x2 + d

(7)
2 x3)x21x4 + (d

(7)
3 x32 + d

(7)
4 x33 + d

(7)
5 x22x3 + d

(7)
6 x2x

2
3)x1 ,

(4.17)

where d
(7)
i , i = 1, . . . , 6, are determined by the equations{

d
(7)
1 a2 + d

(7)
2 a3 = 0 ,

d
(7)
3 a32 + d

(7)
4 a33 + d

(7)
5 a22a3 + d

(7)
6 a2a

2
3 = 0 .

(4.18)

(1.6) The case of weight 8

The general form of the polynomial P 8
4 (x1, x2, x3, x4) of weight 8 is given by

P 8
4 = (d

(8)
1 x22 + d

(8)
2 x23 + d

(8)
3 x2x3)x1x4 + d

(8)
4 x42 + d

(8)
5 x43 + d

(8)
6 x32x3

+ d
(8)
7 x22x

2
3 + d

(8)
8 x2x

3
3 , (4.19)

where d
(8)
i , i = 1, . . . , 6, are determined by the equations{

d
(8)
1 a22 + d

(8)
2 a23 + d

(8)
3 a2a3 = 0 ,

d
(8)
4 a42 + d

(8)
5 a43 + d

(8)
6 a32a3 + d

(8)
7 a22a

2
3 + d

(8)
8 a2a

3
3 = 0 .

(4.20)
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(1.7) The case of weight 9

The general form of the polynomial P 9
4 (x1, x2, x3, x4) of weight 9 is given by

P 9
4 = (d

(9)
1 x2 + d

(9)
2 x3)x1x

2
4 + (d

(9)
3 x32 + d

(9)
4 x33 + d

(9)
5 x22x3 + d

(9)
6 x2x

2
3)x4 ,

(4.21)

where d
(9)
i , i = 1, . . . , 6, are determined by the equations{

d
(9)
1 a2 + d

(9)
2 a3 = 0 ,

d
(9)
3 a32 + d

(9)
4 a33 + d

(9)
5 a22a3 + d

(9)
6 a2a

2
3 = 0 .

(4.22)

(1.8) The case of weight 10

The general form of the polynomial P 10
4 (x1, x2, x3, x4) of weight 10 is given by

P 10
4 = (d

(10)
1 x22 + d

(10)
2 x23 + d

(10)
3 x2x3)x24 , (4.23)

where d
(10)
i , i = 1, 2, 3, are determined by the equation

d
(10)
1 a22 + d

(10)
2 a23 + d

(10)
3 a2a3 = 0 . (4.24)

(1.9) The case of weight 11

The general form of the polynomial P 11
4 (x1, x2, x3, x4) of weight 11 is given by

P 11
4 = (d

(11)
1 x2 + d

(11)
2 x3)x34 , (4.25)

where d
(11)
i , i = 1, 2, are determined by the equation

d
(11)
1 a2 + d

(11)
2 a3 = 0 . (4.26)

(2) Make linear combination of all the PW
4 ,W = 3, . . . , 11

Let

P4(x1, x2, x3, x4) =

11∑
W=3

εWP
W
4 (x1, x2, x3, x4) , (4.27)

where PW4 ,W = 3, . . . , 11, are defined by (4.10), (4.5), (4.13), (4.15), (4.23) and

(4.25) respectively and εW ,W = 3, . . . , 11, are any arbitrary constants. Then

we obtain a very general Hirota bilinear equations (2.2) of order 4 defined by

the polynomial (4.27), which is a Hirota bilinear equation of order 4 possessing

span{eη1 , . . . , eηN } as a subset of its solution set.

4.3. Hirota bilinear equations not satisfying dispersion relation

The Hirota bilinear equations constructed in Sec. 4.2 satisfy the dispersion relation.

In fact, this algorithm is also applied in constructing Hirota bilinear equations not

satisfying dispersion relation. As an example, we construct Hirota bilinear equa-

tions of degree 4 with weights (1,−1,−1, 3). Here, to save space, we just show the

construction of the Hirota bilinear equations of order 4 with weight 4.

1640029-12
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The general form of the polynomial P 4
4 (x1, x2, x3, x4) of degree 4 and weight 4

is given by

P 4
4 = [c1x1 + (c2x2 + c3x3)x21]x4 + (c4x

2
2 + c5x

2
3 + c6x2x3)x24 + c7x

4
1 . (4.28)

Then for any given ai 6= 0, 1 ≤ i ≤ M,ηi, 1 ≤ i ≤ N , by the same analysis as in

Sec. 4.2, we obtain

a4[c1a1(ki − kj) + (c2a2 + c3a3)a21(k−1i − k
−1
j )(ki − kj)2](k3i − k3j )

+ (c4a
2
2 + c5a

2
3 + c6a2a3)a24(k−1i − k

−1
j )2(k3i − k3j )2 + c7a

4
1(ki − kj)4 = 0 .

(4.29)

Clearly, (4.29) holds for any arbitrary ki and kj if and only if
(c4a

2
2 + c5a

2
3 + c6a2a3)a24 = 0 ,

c7a
4
1 = 0 ,

(c2a2 + c3a3)a4 = 0 ,

a4c1a1 = 0 .

(4.30)

From (4.30), we conclude that for c1 = c7 = 0 and any ci, 2 ≤ i ≤ 6 satisfying{
c4a

2
2 + c5a

2
3 + c6a2a3 = 0 ,

c2a2 + c3a3 = 0 ,
(4.31)

the polynomial P 4
4 defined by (4.28), i.e.,

(c2D
2
x1
Dx2Dx4 +c3D

2
x1
Dx3Dx4 +c4D

2
x2
D2
x4

+c5D
2
x3
D2
x4

+c6Dx2Dx3D
2
x4

)f · f=0

(4.32)

determines a Hirota bilinear equation possessing N -wave subspace. For other cases,

one can obtain the Hirota bilinear equations possessing N -wave subspace by the

same process. We omit these here.

5. Conclusions

In this paper, we have shown that the linear superposition principle which does

not generally apply to nonlinear equations might apply to some kind of exponential

wave solutions of Hirota bilinear equation. The necessary and sufficient conditions

that guarantee the existence of the exponential wave solution subspaces were pre-

sented. Based on the necessary and sufficient conditions, an algorithm to construct

the Hirota bilinear equations possessing exponential wave solution subspaces were

obtained.

A natural question is whether there are any other kinds of nonlinear equations

to which the linear superposition principle applies. In fact, Ma8 has given a posi-

tive answer by presenting a generalized Hirota bilinear equations. According to the

results obtained in this paper and the conclusions in Refs. 6–10, it is reasonable to
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believe that there are classes of nonlinear equations that the linear superposition

principle can apply to the subsets of their wave solutions which may be other kinds

of solutions besides exponential wave solutions. However, it remains an open ques-

tion what are the characteristics of these bilinear equations possessing subspaces.
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