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By the Lagrangian multiplier and constraint variational derivative, a rela-
tionship between conserved quantities and multi-Hamiltonian structures is
built. Using the relation, a method is founded to prove the infinite-
dimensional Liouville integrability of evolution equations with continuous
variables. As the application, the conservation laws of the Kundu equation are
first obtained. Its conserved quantities are deduced for comparing by Fokas'
method different from the method used in the existed literature. The integrabil-
ity of the equation is proved through taking the conservation laws as a starting
point.

KEYWORDS

conservation law, constraint variational derivative, Lagrangian multiplier, multi-Hamiltonian
structure

MSC CLASSIFICATION

35Q58; 37K35; 35Q51

1 INTRODUCTION

It is well known that the research of the infinite dimensional integrable system is based on the finite dimensional com-
plete one presented by V.I. Arnold and J. Moser. According to the classical Liouville completely integrability theory on
a finite dimensional symplectic manifold, if a 2N-dimensional Hamiltonian structure possesses N involutive indepen-
dent conserved integrals, it is completely integrable. On soliton equations, there are two different type ways to prove their
integrability.

The first one is nonlinearization of Lax pairs.1,2 From Lax pairs of soliton equations, a class of finite-dimensional
Hamiltonian systems is obtained under a constraint between the potential and the eigenfunctions. But for some spec-
tral problems, it is not easy to find these constrains. To solve this problem, the constraints called binary nonlinearization
were presented from spectral problems and their conjugate ones.3,4 To solve the resulting Hamiltonian structure, Zhou
introduced algebraic geometric method5 and found finite-band solutions of these systems. Through the given constraint,
solutions of the corresponding soliton equation can be obtained, too. Recent research shows that the solutions of these
Hamiltonian systems can also be obtained by the bilinear direct method and the Wronskian technique.6–8
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Another method presented by Fokas et al. is through generalizing the concept of finite dimensional integrability to
infinite dimensional integrability to prove the integrality of soliton hierarchies.9–13 In this method, recursion operators
of soliton hierarchies play a central role. Usually, these operators must be a hereditary and strong symmetrical. This
property ensure that each equation in the isospectral hierarchy is Liouville integrable. When we prove integrability of
soliton equations, recursion operators often are factorized into an implectic operator and a symplectic operator. Finally,
by the properties of the operator and evolution equations the Hamiltonian structures can be set up. At the same time,
the corresponding infinite conserved quantities named Hamiltonian functionals are obtained from the resulting Hamil-
tonian structures. But it is not very easy to obtain the infinite conserved quantities by this method. Tu presented the trace
identities to obtain conserved quantities more easily base on the constraint variational principle.14,15

There are many approaches to find their conservation laws (CLs), such as the approach in the non-semisimple Lie
algebras framework to find generating functions for conserved densities16,17 by the variational identities, through adjoint
symmetries18–20 and the expansion technique of ratios of eigenfunctions of spectral problems.21,22 Among them, the most
popular one is generating the CLs from Lax pairs.21–23

Notice that the conserved quantities obtained from the Hamiltonian structures are similar to the conserved densities
of the CLs. In this paper, we will find a relationship between CLs and Hamiltonian structures and build a method to
prove the infinite-dimensional Liouville integrability of soliton equations with continuous variables. First, from a Riccati
equation that a ratio of two eigenfunctions need to satisfy we will derive out the CLs of the Kundu equation. But its
conserved quantities have already been obtained through the Tu scheme.24 For comparison, we will re-derive them by the
Fokas' method. Finally, the general method will be constructed to prove the integrability of evolution equations from its
conserved densities of the CLs. As its application, the Kundu equation will be considered. We show that the integrability
of soliton hierarchy can be proved by either getting the infinite conserved quantities from Hamiltonian structures or
establishing the Hamiltonian structures from conserved quantities.

We organize the paper as follows. In Section 2, we will recall some basic notions and notations. In Section 3, we will
re-derive the Kundu hierarchy and present its CLs. In Section 4, conserved quantities will be given by the Fokes' method.
In Section 5, a method to prove the integrability of evolution equations will be constructed and the Kundu equation will
be taken as an example. We conclude the paper in Section 6.

2 BASIC NOTIONS

In this section, we recall some notions, notations and propositions used in this paper9 (see also previous works12,13).
Let u be a manifold variable and M = M(u) is a suitable manifold, where u is a column vector. Denote the tangent

bundles and cotangent bundles on M by T(M) and T∗(M), respectively. C∞(M) expresses the spaces of smooth functions
on M.

Now let us introduce the conception of the Gateaux derivative for it is a powerful tool to study all kinds of tensor fields.
The Gateaux derivative of a tangent field X ∈ T(M) at direction S ∈ T(M) is defined as

X ′(u)[S] = 𝜕X(u + 𝜀S)
𝜕𝜀

|𝜀=0

which is usually written as X ′[S] or X ′S for short when there is no confusion. X ′ is actually a linear operator of 𝜕 and 𝜕−1.
If X is a tensor functions of variables x, t, 𝜕−lu, … ,u, … 𝜕mu, then X ′ can be calculated as follows

X ′ =
m∑

𝑗=−l

𝜕X
𝜕(𝜕𝑗u)

𝜕𝑗,

where l and m are positive integers. The Gateaux derivatives of operators can be defined similarly or with the aid of their
tensor fields. Let K, S ∈ T(M), then

[K, S] = K′[S] − S′[K], adKS = [K, S]

represent the commutator of them and the adjoint map adK . According to the duality between cotangent and tangent
vectors we can work out the conjugate operator of an operator. For example, through

< Φ∗𝛼,K >=< 𝛼,ΦK >, 𝛼 ∈ T∗(M), K ∈ T(M),

ZHANG ET AL. 9007
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we can compute the conjugate operator Φ∗ ∶ T∗(M) → T∗(M) of an operator Φ ∶ T(M) → T(M). An operator J ∶
T∗(M) → T(M) (or 𝜃 ∶ T(M) → T∗(M)) is called skew-symmetric, if it equals its negative conjugate operator.

Definition 1. 𝛾 ∈ T∗(M) is called a gradient field or the variational derivative if there exists H ∈ C∞(M), so that

H′[K] =< 𝛾,K >, 𝑓or all K ∈ T(M).

It is often denoted by 𝛾 = 𝛿H∕𝛿u.

As one can easily confirm, a cotangent vector field 𝛾 ∈ T∗(M) is a gradient field if and only if 𝛾 ′ = 𝛾 ′
∗. Its corresponding

potential H ∈ C∞(M) can be calculated as follows

H(u) =

1

∫
0

< 𝛾(𝜆u),u > d𝜆. (1)

Setting

ut = K(u), K ∈ T(M), (2)

be an evolution equation, then

𝜏t = K′𝜏, 𝜏 ∈ T(M), (3)

𝛾t = −K′∗𝛾, 𝛾 ∈ T∗(M), (4)

are its linearized and adjoint linearized equation, respectively. As mentioned, K′ expresses the Gateaux derivative operator
of K(u) with respect to u, K′∗ is its adjoint operator and 𝑓t is the total derivative of 𝑓 on the variable t.

Definition 2. Supposing that a linear operator Φ ∶ T(M) → T(M) satisfies

𝜕Φ
𝜕t

+ Φ′[K] − [K,Φ] = 0,

then it is a strong symmetry operator of Equation (2).

Evidently a strong symmetry operator Φ ∶ T(M) → T(M) maps symmetries into new symmetries of Equation (2).

Definition 3. If a linear operator Φ ∶ T(M) → T(M) meet

Φ′[Φ𝑓 ]g − Φ′[Φg]𝑓 = Φ(Φ′[𝑓 ]g − Φ′[g]𝑓 )

for all vector fields 𝑓, g ∈ T(M), it is a hereditary symmetry operator.

Obviously, ifΦ is a strong and hereditary symmetry operator of Equation (2),Φ is also the strong operator of ut = ΦK(u);
that is, Φ is a strong operator of ut = ΦnK(u), where n is a natural number.

Definition 4. A tangent vector 𝜏 ∈ T(M) is a symmetry of Equation (2) if it solves Equation (3) when u is a solution
of Equation (2). A cotangent vector 𝛾 ∈ T∗(M) is called an adjoint symmetry of Equation (2), if it solves Equation (4)
when u satisfies (2).

Through the following proposition, we can see that symmetries and adjoint symmetries are related closely to each
other.9

Proposition 1. (Ma18,19) Let 𝜏(x,u) be a symmetry of Equation (2) while 𝛾(x,u) be an adjoint symmetry, then I =<
𝜏(x,u), 𝛾(x,u) > is a conserved quantity of Equation (2).

ZHANG ET AL.9008
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Proof. The total derivative of I can be computed as follows:

dI
dt

=< d𝜏
dt

, 𝛾 > + < 𝜏,
d𝛾
dt

>

=< K′[𝜏], 𝛾 > + < 𝜏,−K′∗[𝛾] >

=< K′[𝜏], 𝛾 > + < K′[𝜏],−𝛾 >

= 0.

Definition 5. A linear operator Ω ∶ T∗(M) → T(M) satisfies

Ω′[K] − ΩK′∗ − K′Ω = 0,

then Ω is a Noether operator of Equation (2).
A linear inverse Noether operator Λ ∶ T(M) → T∗(M) of Equation (2) satisfies

Λ′[K] + K′∗Λ + ΛK′ = 0.

By simple calculation, we find that the Noether operator maps adjoint symmetries of (2) to its symmetries. Accordingly,
the inverse of the Noether operator (if exists) maps symmetries of (2) to its adjoint symmetries.

Let Φ = ΩΛ be a strong symmetry operator of Equation (2) and Ω be its Noether operator, it is easy to verify that Λ is
an inverse Noether operator of Equation (2) if the inverse operator of Ω exists.

Definition 6. If 𝜃 ∶ T∗(M) → T(M) is a linear skew-symmetric operator and satisfies the Jacobi identity

< 𝑓, 𝜃′[𝜃g]h > +cycle( 𝑓, g, h) = 0, ∀𝑓, g, h ∈ T∗(M),

𝜃 is an implectic operator (also known as Hamiltonian operator or Poisson tensor (see Ma and Fuchssteiner9 and
Fuchssteiner13). The Poisson bracket can be defined as

{H1,H2}𝜃 =<
𝛿H1

𝛿u
, 𝜃

𝛿H2

𝛿u
>, H1,H2 ∈ C∞(M).

If {H1,H2}𝜃 = 0, they are considered as involutive with respect to 𝜃, where H1,H2 ∈ C∞(M).

Definition 7. If J ∶ T(M) → T∗(M) is a linear skew-symmetric operator and satisfies the Jacobi identity

< 𝑓, J′[g]h > +cycle( 𝑓, g, h) = 0, ∀𝑓, g, h ∈ T(M),

J is a symplectic operator.

It is easy to verify that the inverse of a symplectic operator is implectic if it exists and vice versa.

Definition 8. Equation (2) is named a Hamiltonian equation if it can be rewritten as

ut = K(u) = 𝜃
𝛿H
𝛿u

,

where H ∈ C∞(M) and 𝜃 is an implectic operator. Furthermore, if Equation (2) has following format

ut = K(u) = 𝜃
𝛿H1

𝛿u
= 𝜗

𝛿H2

𝛿u
,

it is called bi-Hamiltonian equation, where H1,H2 ∈ C∞(M), 𝜃, 𝜗 ∶ T∗(M) → T(M) are Hamiltonian operators and
form a Hamiltonian pair.

ZHANG ET AL. 9009
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Proposition 2. (Ma18 and Ma and Zhou20) Let I(u) = I(x,u) be a functional, then I(u) is a conserved quantity of
Equation (2) if and only if its variational derivative 𝛿I(u)

𝛿u
is an adjoint symmetry, where I(u) does not depend explicitly on

time t.

Proof. Let 𝛾 be the variational derivative of I(u), that is, I(u)′[g] =< 𝛾, g > for any g ∈ T(M), we have

𝜕t < 𝛾, g >=𝜕t(I(u)′[g])

=(𝜕tI(u))′[g] + I(u)′[𝜕tg]

=(𝜕tI(u))′[g]+ < 𝛾, 𝜕tg > .

It gives rise to

(𝜕tI(u))′[g] =< 𝜕t𝛾, g > .

For u satisfying Equation (2) and noting that

dI(u)
dt

= 𝜕tI(u) + I(u)′[ut] = 𝜕tI(u) + I(u)′[K] = 𝜕tI(u)+ < 𝛾,K >,

we have (
dI(u)

dt

)′

[g] = (𝜕tI(u))′[g]+ < 𝛾,K>′[g]

=< 𝜕t𝛾, g > + < 𝛾 ′[g],K > + < 𝛾,K′[g] >

=< 𝜕t𝛾, g > + < 𝛾 ′
∗K, g > + < K′∗𝛾, g >

=< 𝜕t𝛾 + 𝛾 ′K + K′∗𝛾, g >,

where 𝛾 ′ = 𝛾 ′
∗ has been used. Obviously, I(u) is a conserved quantity of Equation (2) if and only if 𝛾 is an adjoint

symmetry of (2).

Hamiltonian structures, gradient fields and Noether operators are related as follows.

Proposition 3. (Fuchssteiner and Oevel12) Let 𝜃 = 𝜃(u) ∶ T∗(M) → TM is an implectic operator and Equation (2) is
rewritten as

ut = K(u) = 𝜃𝛾, 𝛾 ∈ T∗(M). (5)

Then 𝜃 is a Noether operator of Equation (2) iff 𝛾 is a gradient field, in other words, (5) is a Hamiltonian structure.

Proof. For arbitrary 𝑓, g ∈ T∗(M), we have

<𝑓, (𝜃′[K] − K′𝜃 − 𝜃K′∗)g >

= < 𝛾, 𝜃′[𝜃𝑓 ]g > + < 𝑓, 𝜃′[𝜃g]𝛾 > + < g, 𝜃′[𝜃𝛾]𝑓 > + < 𝜃𝑓, (𝛾 ′ − 𝛾 ′
∗)[𝜃g] > .

From the above equation, it is easy to see that 𝜃 is a Noether operator iff 𝛾′ = 𝛾 ′∗, i.e., 𝛾 is a gradient field for 𝜃 is an
implectic operator.

Now let us consider an evolution equation

ut = Kn(u) = ΦnK(u), (6)

where K ∈ T(M) and Φ is a hereditary and strong symmetry operator.

ZHANG ET AL.9010
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Proposition 4. (Fuchssteiner and Oevel12) Suppose that the recursion operator Φ of Equation (6) can be factorized
into the product of an implectic operator 𝜃 and a symplectic operator J and the first equation in (6) has a Hamiltonian
structure

ut = K(u) = 𝜃𝑓 , (7)

then every equation in (6) is Hamiltonian equation

ut = 𝜃Φ∗n𝑓 = 𝜃
𝛿Hn

𝛿u
(n = 0, 1, 2, … ),

where the inverse operator of 𝜃 exists, Φ∗ is the conjugate operator of Φ and Φ𝜃 = 𝜃Φ∗. Furthermore, the functional Hn
can be expressed as

Hn =

1

∫
0

< (Φ∗n𝑓 )(𝜆u),u > d𝜆.

Proof. Since (7) is a Hamiltonian equation, we know that 𝜃 is a Noether operator of Equation (7) by Proposition 3.
Next we will prove that 𝜃 is also a Noether operator of Equation (6) in the case of n = 1.

If Φ is a strong symmetry operator and 𝜃 is a Noether operator of Equation (7), then J is an inverse Noether operator
since the inverse operator of 𝜃 exists. By the definition of inverse Noether operator, we have

< 𝜃h, ( J′[K] + K′∗ + JK′)𝜃g >= 0 h, g ∈ T(M).

On the other hand, we have

< g, 𝜃′[𝜃JK]h > +cycle(g, JK, h) = 0

for 𝜃(u) is an implectic operator. Noticing that J(u) is a symplectic operator, we easily obtain

< g, {𝜃′[ΦK] − (ΦK)′𝜃 − 𝜃(ΦK)′∗}h >=< 𝜃g, J′[𝜃h]K > +cycle(𝜃g, 𝜃h,K) = 0.

That is to say, 𝜃 is a Noether operator for Equation (6) in the case of n = 1. According to Proposition 3, this equation
is a Hamiltonian equation and its Hamiltonian functional is

H1 =

1

∫
0

< (Φ∗𝑓 )(𝜆u),u > d𝜆

by (1).
Similarly, we can prove this proposition for the case of n ≥ 2, based on the case of n − 1. This completes the proof

by the mathematical induction.

3 THE ISOSPECTRAL KUNDU HIERARCHY AND ITS CONSERVATION
LAWS

In this section, we briefly recall the hierarchy of the isospectral Kundu equation and obtain its CLs by expanding the ratios
of the corresponding eigenfunctions into Laurent series.

Let

𝜎 =
(
−1 0
0 1

)
, 𝛿 =

(
0 1
1 0

)
, e =

(
1 0
0 1

)

ZHANG ET AL. 9011
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and assume that T denotes the transpose of a matrix. Let us consider the following spectral problem24,25

𝜙x = M𝜙, M =

(
− 1

2
(𝜂2 − 𝛽qr) 𝜂q
𝜂r 1

2
(𝜂2 − 𝛽qr)

)
, 𝜙 =

(
𝜙1
𝜙2

)
, (8)

and its time evolution

𝜙t = N𝜙, N =
(

A B
C −A

)
,

where q = q(t, x), r = r(t, x) are the smooth functions and 𝜂 is a spectral parameter. Supposing that the derivatives of any
order with respect to x of q and r vanish rapidly as x → ∞, the compatibility condition reads

Mt − Nx + [M,N] = 0,

which yields

𝜂ût = L1L2

(
B
−C

)
+ 𝜂2L3

(
B
−C

)
− 2𝜂A0𝜎û − 𝜂tL1û + 2𝜂2𝜂txû, (9)

where û = (q, r)T and

L1 = e − 𝛽𝜎û𝜕−1ûT𝛿, L2 = −(𝜎𝜕 + 𝛽qre), L3 = e + (2 − 𝛽)𝜎û𝜕−1(r, q).

Expanding (B,C)T in (9) as (
B
C

)
=

n∑
𝑗=1

(−1)n−𝑗
(

b𝑗

c𝑗

)
𝜂2(n−𝑗)+1,

and comparing the coefficients of the same power of 𝜂, we can obtain the related hierarchy of isospectral flow(
𝜂t = 0,A0 = 1

2
(−1)n𝜂2n

)
ût = K̂n = Φ̂nK̂0 = −Φ̂n𝜎û, (10)

where n is a positive integer and

Φ̂ =L1L2L−1
3

= − 𝜎𝜕 + 1
2
𝛽ûT𝛿ûe + (2 − 𝛽)ûx𝜕

−1ûT𝛿 + 𝛽𝜎û𝜕−1ûT
x 𝜎𝛿 + 2(1 − 𝛽)ûûT𝛿

+ 𝛽(𝛽 − 1)𝜎û𝜕−1ûT𝛿ûT𝛿û.

From Zhang et al,26 we know that the operator Φ̂ is hereditary and strong symmetrical and the isospectral hierarchy and
nonisopectral hierarchy form an infinite-dimensional 𝜏-symmetry Lie algebra. Furthermore, the hierarchy (10) includes
the Kaup-Newell equation,27 the Chen-Lee-Liu equation,28 the Gerdjikov-Ivanov equation,29,30 the modified Korteweg-de
Vries equation, the Sharma-Tasso-Olever equation,31 and a new equation as special reductions.

Now, let us work out the CLs from the Lax pairs. Considering the ratio of the two eigenfunctions

𝜔(x, 𝜂) = 𝜂
𝜙2(x, 𝜂)
𝜙1(x, 𝜂)

,

obviously the ratio 𝜔(x, 𝜂) satisfies the Riccati equation

q𝜔x(x, 𝜂) = −q2𝜔2(x, 𝜂) + (𝜂2 − 𝛽qr)q𝜔(x, 𝜂) + 𝜂2qr. (11)

ZHANG ET AL.9012
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By the spectral problem (8), the following CLs relation holds

[
−1

2
(𝜂2 − 𝛽qr) + q𝜔(x, 𝜂)

]
t
=
(

A + B𝜔(x, 𝜂)
𝜂

)
x
. (12)

Expanding q𝜔(x, 𝜂) into a Laurent series

q𝜔(x, 𝜂) =
∞∑

n=0
𝜔n(x)𝜂−2n,

we get a recursion relation for defining 𝜔n:

𝜔0(x) = −qr, 𝜔1(x) = −qrx + (1 − 𝛽)q2r2,

𝜔n+1(x) = q
(
𝜔n(x)

q

)
x
+

n∑
𝑗=0

𝜔𝑗(x)𝜔n−𝑗(x) + 𝛽qr𝜔n(x), (n = 0, 1, 2, … ),

from the above Riccati equation (11).
Therefore, for example, letting26

{
A = 1

2
𝜂4 − qr𝜂2 + 1

2
𝛽(3 − 2𝛽)q2r2 + 1

2
𝛽(rqx − qrx),

B = −q𝜂3 + qx𝜂 + (2 − 𝛽)q2r𝜂,

we have [
1
2
𝛽(qr) +

∞∑
n=0

𝜔n(x)
𝜂2n

]
t

=

[
1
2
𝜂4 − qr𝜂2 + 1

2
𝛽(3 − 2𝛽)q2r2 + 1

2
𝛽(rqx − qrx)

−
∞∑

n=0

𝜔n(x)
𝜂2n−2 +

qx

q

∞∑
n=0

𝜔n(x)
𝜂2n + (2 − 𝛽)qr

∞∑
n=0

𝜔n(x)
𝜂2n

]
x

.

(13)

The first several conservation laws in (13) are listed as follows:

(qr)t = [(3 − 2𝛽)q2r2 + qxr − qrx]x, (14a)

[qrx − (1 − 𝛽)q2r2]t = [2(3 − 2𝛽)q2rrx + qxrx − qrxx − 2(1 − 𝛽)(2 − 𝛽)q3r3]x, (14b)

[−qrxx + (1 − 𝛽)qqxr2 + (4 − 3𝛽)q2rrx − (𝛽 − 1)(𝛽 − 2)q3r3]t = [qrxxx − qxrxx

− (1 − 𝛽)qqxxr2 − (5 − 3𝛽)q2r2
x + (1 − 𝛽)q2

xr2 − 2(1 − 𝛽)qqxrrx + (5𝛽 − 8)q2rrxx

+ 3(1 − 𝛽)(2 − 𝛽)q2qxr3 + (9𝛽2 − 31𝛽 + 24)q3r2rx + (1 − 𝛽)(3 − 𝛽)(2𝛽 − 3)q4r4]x.

(14c)

4 THE CONSERVED QUANTITIES OF THE KUNDU HIERARCHY

In this section, we will get the conserved quantities to prove the Liouville integrability of the Kundu hierarchy by estab-
lishing the Hamiltonian structure from the recursion relation (10). Actually, the conserved quantities have already been
derived out through the Tu scheme.24 To illuminate the relationship between Hamiltonian structures and conservation
laws, we re-derive them by the Fokas' method again.

Let us rewrite the system (10) as
ût = −Φ̂n𝜎û = 𝜃̂(𝜃̂−1Φ̂𝜃̂)n𝛿û, (15)

where

𝜃̂ = 𝛿𝜎 + 2(1 − 𝛽)𝜎û𝜕−1ûT𝜎.
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To show that the Equation (15) is a Hamiltonian equation, we first prove that 𝜃̂ is an implectic operator. It is easy to verify
that

𝜃̂∗ = −𝜃̂, 𝜃̂−1Φ̂𝜃̂ = Φ̂∗,

thus 𝜃̂ is skew-symmetric operator and Φ̂∗ is similar to the operator Φ̂, where Φ̂∗ is the conjugate operator of the recursion
operator Φ̂.

Lemma 1. 𝜃̂ is an implectic operator.

Proof. For arbitrary three cotangent vectors 𝑓, g, h ∈ T∗(M), we have

(𝑓, 𝜃̂′[𝜃̂g]h) + (g, 𝜃̂′[𝜃̂h]𝑓 ) + (h, 𝜃̂′[𝜃̂𝑓 ]g),

=2(1 − 𝛽)[( 𝑓, 𝜎𝛿𝜎g𝜕−1ûT𝜎h + 𝜎û𝜕−1gT𝜎𝛿𝜎h)] + (g, 𝜎𝛿𝜎h𝜕−1ûT𝜎𝑓 + 𝜎û𝜕−1hT𝜎𝛿𝜎𝑓 )

+ (h, 𝜎𝛿𝜎𝑓𝜕−1ûT𝜎g + 𝜎û𝜕−1𝑓T𝜎𝛿𝜎g)] + 4(1 − 𝛽)2[(𝑓, û𝜕−1ûT𝜎g𝜕−1ûT𝜎h)

+ ( 𝑓, 𝜎û𝜕−1ûTh𝜕−1ûT𝜎g) + (g, û𝜕−1ûT𝜎h𝜕−1ûT𝜎𝑓 ) + (g, 𝜎û𝜕−1ûT𝑓𝜕−1ûT𝜎h)

+ (h, û𝜕−1ûT𝜎𝑓𝜕−1ûT𝜎g) + (h, 𝜎û𝜕−1ûTg𝜕−1ûT𝜎𝑓 ).

It is easy to verify the following relations

g̃T𝜎𝛿𝜎𝑓 = 𝑓T𝜎𝛿𝜎g̃,

(𝑓, 𝜎𝛿𝜎g̃𝜕−1ûT𝜎h̃) = −(𝜕−1g̃T𝜎𝛿𝜎𝑓 , ûT𝜎h̃),

(𝑓, 𝜎û𝜕−1g̃T𝜎𝛿𝜎h̃) = (ûT𝜎𝑓 , 𝜕−1g̃T𝜎𝛿𝜎h̃)

hold for arbitrary cotangent vectors 𝑓, g̃, h̃ ∈ T∗(M). Thus, we have

(𝑓, 𝜃̂′[𝜃̂g]h) + (g, 𝜃̂′[𝜃̂h]𝑓 ) + (h, 𝜃̂′[𝜃̂𝑓 ]g) = 0.

Since the operator 𝜃̂ is an implectic operator, it is possible to rewrite the Equation (10) into a Hamiltonian equation.
Now let us find the corresponding symplectic operator. Upon setting

Ĵ =Φ̂∗𝜃̂−1

=𝛿𝜕 + (𝛽 − 2)𝛿û𝜕−1ûT
x 𝜎𝛿 +

(
2 − 3

2
𝛽

)
ûT𝛿û𝜎𝛿 + (2 − 𝛽)𝜎𝛿ûx𝜕

−1ûT𝛿+

(1 − 𝛽)(2 − 𝛽)𝛿ûûT𝛿û𝜕−1ûT𝛿 + (1 − 𝛽)(2 − 𝛽)𝛿û𝜕−1ûT𝛿ûûT𝛿,

then the operator Φ̂ is factorized into the product of the operator 𝜃̂ and Ĵ. Obviously, Ĵ is a skew-symmetric operator. Next,
we prove that it is a symplectic operator.

Lemma 2. Ĵ is a symplectic operator.

Proof. For arbitrary three tangent vectors 𝑓, g, h ∈ T(M), let

w1 = (𝑓, gT𝛿û𝜎𝛿h) + c𝑦cle( 𝑓, g, h),

w2 = (𝑓, 𝛿û𝜕−1gT
x 𝜎𝛿h − 𝜎𝛿gx𝜕

−1ûT𝛿h) + c𝑦cle( 𝑓, g, h),

w3 = (𝑓, 𝛿g𝜕−1ûT
x 𝜎𝛿h − 𝜎𝛿ûx𝜕

−1gT𝛿h) + c𝑦cle( 𝑓, g, h),

w4 = (𝑓, 𝛿g𝜕−1ûT𝛿ûûT𝛿h + 𝛿ûûT𝛿û𝜕−1gT𝛿h) + c𝑦cle( 𝑓, g, h),

w5 = (𝑓, 𝛿û𝜕−1ûT𝛿ûgT𝛿h + 𝛿gûT𝛿û𝜕−1ûT𝛿h) + c𝑦cle( 𝑓, g, h),

w6 = (𝑓, 𝛿û𝜕−1gT𝛿ûûT𝛿h + 𝛿ûûT𝛿g𝜕−1ûT𝛿h) + c𝑦cle( 𝑓, g, h),

and then we have wi = 0, i ∈ {1, 2, 3, 4, 5, 6}.
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Here, we only prove w2 = 0 and w3 = 0, and the others can be proved similarly.
It is easy to see that

( 𝑓, 𝛿g𝜕−1ûT
x 𝜎𝛿h) = (h, 𝜎𝛿ûx𝜕

−1gT𝛿𝑓 ),

and thus, w3 = 0.
Trough simple calculation, we find that

𝛿û𝜕−1gT
x 𝜎𝛿h + 𝛿û𝜕−1gT𝜎𝛿hx = 𝛿ûgT𝜎𝛿h,

( 𝑓, 𝛿û𝜕−1gT𝜎𝛿hx) = −(g, 𝜎𝛿hx𝜕
−1ûT𝛿𝑓 ),

and

( 𝑓, 𝛿ûgT𝜎𝛿h) + cycle( 𝑓, g, h) = 0,

which leads to w2 = 0.
Now let us prove the operator Ĵ is a symplectic operator. With massive complex computations, we have

(𝑓, Ĵ′[g]h) + (g, Ĵ′[h]𝑓 ) + (h, Ĵ′[𝑓 ]g)

=(4 − 3𝛽)w1 + (𝛽 − 2)(w2 + w3) + (1 − 𝛽)(2 − 𝛽)(w4 + w5 + 2w6)

=0.

So, Ĵ is a symplectic operator.

We have shown that the recursion operator Φ̂ can be factorized into the product of the implectic operator 𝜃̂ and the
symplectic operator Ĵ. Now, let us obtain the conserved quantities and complete the proof of the integrability according
to Proposition 4.

Theorem 1. Every equation in the Kundu hierarchy (10) possesses infinite conserved quantities and is integrable in
Liouville sense.

Proof. For Φ̂ is a hereditary and strong symmetry operator and it can be decomposed into the product of the implectic
operator 𝜃̂ and the symplectic operator Ĵ, every equation in (10) has a Hamiltonian structure

ût = 𝜃̂(Φ̂∗)n𝑓 (t, x, û) = 𝜃̂
𝛿Ĥn

𝛿û
, (n = 0, 1, 2, … ),

where 𝑓 (t, x, û) = −𝜃̂𝜎û and the conserved quantity Ĥn is expressed as

Ĥn =

1

∫
0

< (Φ̂∗n𝑓 )(𝜆û), û > d𝜆.

The first three conserved quantities are

Ĥ0 =

∞

∫
−∞

qrdx

Ĥ1 =

∞

∫
−∞

(1
2

qxr − 1
2

rxq + (1 − 𝛽)q2r2
)

dx,

Ĥ2 =

∞

∫
−∞

(1
2

qxxr + 1
2

rxxq + (1 − 𝛽)(2 − 𝛽)q3r3 +
(3

2
− 𝛽

)
qxqr2 −

(3
2
− 𝛽

)
q2rrx

)
dx.
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According to classical Liouville integrable theory, an equation is integrable if it possesses a Hamiltonian structure and
sufficiently many conserved quantities, i.e., Hamiltonian functionals which are involutive. In theorem 1, we have derived
out infinite conserved quantities of the Kundu equation. From the first few conserved quantities, we can see that these
conserved quantities of the Kundu equations are similar to the conserved densities of its CLs.

5 CONSTRUCTING HAMILTONIAN STRUCTURES FROM THE CLS

In Section 3, we have already obtained infinite CLs of the Kundu equation. In this section, we will develop a method to
prove the integrability of evolution equations. Thus, the Kundu equation can also be proved to be integrable in Liouville
sense through a way different from the one in Section 4.

From Equation (12), we know

⎡⎢⎢⎣
∞

∫
−∞

(1
2
𝛽qr + q𝜔

)
dx

⎤⎥⎥⎦t

= 0, (17)

for q, r and their derivatives of any order with respect to x vanish rapidly as x → ∞. So the left side of the CLs (12) is
conserved densities of Equation (10), and it can be written in the following integral type functional form

Ĥ =

∞

∫
−∞

Fdx, F = 1
2
𝛽qr + v̂, v̂ = q𝜔.

Through simple calculation, we have

q
(

v̂
q

)
x
+ v̂2 − (𝜂2 − 𝛽qr)v̂ − 𝜂2qr = 0 (18)

by the Riccati equation (11).
In order to prove the integrability of the Kundu equation, we first find the relation between the Hamiltonian structure

and conserved quantities.

Lemma 3. The variational derivative on u of the integrable type functional

H(u, v) =

∞

∫
−∞

F(u, v)dx

under the condition

G(u, v,ux, vx) = 0 (19)

is
𝛿H(u, v)

𝛿u
= 𝜕F(u, v)

𝜕u
+ 𝜌

𝜕G(u, v,ux, vx)
𝜕u

− 𝜕

𝜕x
𝜌
𝜕G(u, v,ux, vx)

𝜕ux
,

where 𝜌 is a Lagrangian multiplier which is determined by (19) and the following relation

𝜕F(u, v)
𝜕v

+ 𝜌
𝜕G(u, v,ux, vx)

𝜕v
− 𝜕

𝜕x
𝜌
𝜕G(u, v,ux, vx)

𝜕vx
= 0. (20)

Proof. Given a Lagrangian multiplier 𝜌, let

H(u, v) =

∞

∫
−∞

[F(u, v) + 𝜌G(u, v,ux, vx)]dx.
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Then its Gateaux derivative on u at a direction of h is

H(u, v)′[h] = 𝜕

𝜕𝜀
|𝜀=0

∞

∫
−∞

F(u + 𝜀h, v) + 𝜌G(u + 𝜀h, v, (u + 𝜀h)x, vx)dx.

Under assumption
[

hx𝜕
−1

(
𝜌

𝜕G
𝜕ux

)] |∞x=−∞ = 0, we have

H(u, v)′[h] =

∞

∫
−∞

𝜕F(u, v)
𝜕u

h + 𝜌
𝜕G(u, v, zx, vx)

𝜕u
h − h 𝜕

𝜕x
𝜌
𝜕G(u, v, zx, vx)

𝜕ux
dx

=< 𝜕F(u, v)
𝜕u

+ 𝜌
𝜕G(u, v,ux, vx)

𝜕u
− 𝜕

𝜕x
𝜌
𝜕G(u, v, zx, vx)

𝜕ux
, h > .

Similarly, we can obtain the Gateaux derivative of H(u, v) on v at a direction h

H(u, v)′[h] =< 𝜕F(u, v)
𝜕v

+ 𝜌
𝜕G(u, v,ux, vx)

𝜕v
− 𝜕

𝜕x
𝜌
𝜕G(u, v,ux, vx)

𝜕vx
, h > . (21)

So the functional derivative of H(u, v) on u under the condition (19) is

𝛿H(u, v)
𝛿u

= 𝜕F(u, v)
𝜕u

+ 𝜌
𝜕G(u, v,ux, vx)

𝜕u
− 𝜕

𝜕x
𝜌
𝜕G(u, v,ux, vx)

𝜕ux
,

and the Lagrangian multiplier 𝜌 can be defined by (19) and (20).

Lemma 3 provides us a method to calculate the variational derivative under a certain constraint condition.

Theorem 2. Consider the nonlinear evolution equation hierarchy (6). Its recursion operator Φ and the corresponding
conjugate operator Φ∗ satisfy

Φ𝜃 = 𝜃Φ∗, (22)

where 𝜃 is an implectic operator. If the integrable type functional

H(u, v, 𝜆) =

∞

∫
−∞

𝑓 (u, v, 𝜆)dx

is the conserved quantity of (6) and Γ = 𝛿H(u,v,𝜆)
𝛿u

satisfies

Φ∗Γ = 𝜆Γ − 𝜃−1K(u),

then every equation in the nonlinear evolution equation hierarchy (6) has a Hamiltonian structure and it is integrable in
the Liouville sense, where 𝜆 is a parameter.

Proof. Substituting the Laurent series of Γ on 𝜆

Γ =
∞∑
𝑗=0

Γ𝑗𝜆
−𝑗−1

into (24) and comparing the coefficient of the same power of 𝜆, we obtain

Γ𝑗 = Φ∗𝑗𝜃−1K(u). (23)
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For Φ𝜃 = 𝜃Φ∗, ut = ΦmK(u) can be rewritten as ut = 𝜃Φ∗m𝜃−1K(u). Expanding H as the following Laurent series

H =
∞∑
𝑗=0

H𝑗𝜆
−𝑗−1, (24)

we can find that every equation in the nonlinear evolution equation hierarchy (6) has a Hamiltonian structure

ut = 𝜃Γm = 𝜃
𝛿Hm

𝛿u

by comparing the coefficient of the same power of 𝜆.
It is easy to verify that

{Hl,Hm}𝜃 =<
𝛿Hl

𝛿u
, 𝜃

𝛿Hm

𝛿u
>=< Γl, 𝜃Γm >=< 𝜃−1K(u),Φl𝜃Φ∗m𝜃−1K(u) >

=< 𝜃−1K(u),Lm+nK(u) >=< Lm+nK(u), 𝜃−1K(u) >= 0

by using (22), namely, Hl and Hm are involutive. So every equation in the nonlinear evolution equation hierarchy (6)
is integrable in the Liouville sense.

As an application of Theorem 2, we have the following corollary:

Corollary 1. Every equation in the Kundu hierarchy (10) is integrable in Liouville sense.

Proof. Through the Lemma 3, we have

G = 𝛿Ĥ
𝛿û

=

(
𝛿Ĥ
𝛿q
𝛿Ĥ
𝛿r

)
=

( 1
q
(𝜌v)x + 𝛽𝜌rv − 𝜌𝜂2r + 1

2
𝛽r,

𝛽𝜌qv − 𝜌𝜂2q + 1
2
𝛽q,

)

where û = (q, r)T and 𝜌 can be defined by (18) and

𝜌x = 1 + 𝜌

(
−

qx

q
+ 2v − 𝜂2 + 𝛽qr

)
.

By complicated calculation, we have

Φ̂∗G = −𝜂2
(

B
C

)
− 𝜃̂−1

(
q
−r

)
,

where

𝜃̂−1 = 𝜎𝛿 + 2(1 − 𝛽)𝛿û𝜕−1ûT𝛿.

So every equation in the Kundu hierarchy (10) is integrable in Liouville sense.

Through Corollary 1, we prove the integrability of the Kundu equations in a way different from the previous method.
The main difference between the two methods is that they have different starting points.

6 CONCLUSIONS

In general, we developed a method to prove the Liouville integrability of evolution equations with continuous variable
through the connection between CLs and Hamiltonian structures. From the Lax pair of the Kundu hierarchy, we first
deduced its CLs through expanding the ratio of two eigenfunctions into a Laurent series. To obtain the conserved quanti-
ties of the Kundu hierarchy from its Hamiltonian structure, we decomposed the recursion operator Φ̂ into the product of
an implectic operator 𝜃̂ and a symplectic operator Ĵ. Although the conserved quantities have already be deduced by the
Tu scheme in Fan,24 we re-derived them through the Fokas' method to demonstrate the connection between the CLs and
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Hamiltonian structures. By the Lagrange multiplier and the functional derivatives under certain constraint conditions,
the connection between the conserved quantities and Hamiltonian structures was found. Then a method was built to
prove the integrability of evolution equations from their conserved quantities. Finally, as an application, the integrability
of the Kundu equation was proved by the CLs resulted in Section 3.
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