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A new Kaup–Newell type soliton hierarchy is generated from an asymmetric matrix spec-
tral problem associated with the three-dimensional special linear Lie algebra slð2;RÞ. Then
based on semi-direct sums of matrix Lie algebras consisting of 3� 3 block matrix Lie alge-
bras, corresponding bi-integrable couplings of this hierarchy are constructed. Each equa-
tion in the resulting system has a bi-Hamiltonian structure furnished by the variational
identity, which lead to Liouville integrability.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recently, seeking for new integrable systems including soliton hierarchies and integrable couplings forms a pretty impor-
tant and interesting area of research in mathematical physics. Usually, soliton hierarchies associate with semisimple Lie
algebras from the point of view of zero curvature equations and possess many nice properties such as bi-Hamiltonian struc-
tures, which lead to Liouville integrability. Classical soliton hierarchies include the Ablowitz–Kaup–Newell–Segur hierarchy,
the Kaup–Newell (KN) hierarchy, the Wadati–Konno–Ichikawa hierarchy, the Korteweg–de Vries hierarchy, the Dirac hier-
archy, the Boiti–Pempinelli–Tu hierarchy and so on [1–19]. For integrable couplings, zero curvature equations over semi-
direct sums of Lie algebras, i.e., non-semisimple Lie algebras, lay the foundation for generating them, which provide valuable
new insights into the classification of multi-component integrable systems. Some concrete integrable couplings showed var-
ious specific mathematical structures such as block matrix type Lax representations, bi-Hamiltonian structures of triangular
form, have been presented in Refs. [20–41]. In addition, the Hamiltonian structures for soliton hierarchies can be established
by the trace identity [8–10] or for integrable couplings by the variational identity [16,36].

Firstly, we shall make use of the three-dimensional special linear Lie algebra slð2;RÞ to construct a new KN type soliton
hierarchy and consider corresponding bi-Hamiltonian structures by means of the trace identity [8–10] in the paper. This Lie
algebra consists of 2� 2 trace-free matrices, and has the following basis
e1 ¼
1 0
0 �1

� �
; e2 ¼

0 1
0 0

� �
; e3 ¼

0 0
1 0

� �
; ð1:1Þ
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with the circular commutator relations
½e1; e2� ¼ 2e2; ½e2; e3� ¼ e1; ½e1; e3� ¼ �2e3:
Then the matrix loop algebra eslð2;RÞ can be defined by
eslð2;RÞ ¼
X
iP0

Mik
n�ijMi 2 slð2;RÞ; i P 0; n 2 Z

( )
; ð1:2Þ
which is the space of all Laurent series in k with a finite number of non-zero terms of positive powers of k and coefficient
matrices in slð2;RÞ. Thus the standard procedure for building soliton hierarchy associated with slð2;RÞ can be given as
follows:

Step 1: We need to select an appropriate spectral matrix U ¼ Uðu; kÞ 2 eslð2;RÞ to form a spatial spectral problem
/x ¼ Uðu; kÞ/, where u denotes a column dependent variable and k is the spectral parameter.

Step 2: Then, we construct a Laurent series solution W ¼Wðu; kÞ such as W ¼
P1

k¼0Wkk
�2k;Wk 2 slð2;RÞ to the stationary

zero curvature equation Wx ¼ ½U;W�, based on which one can also prove the localness property for W.
Step 3: Further, we construct suitable temporal spectral problems /tm

¼ V ½m�/;m P 0 to guarantee that the zero curvature

equations Utm � V ½m�x þ ½U;V
½m�� ¼ 0 can generate a soliton hierarchy utm ¼ KmðuÞ, where V ½m� ¼ ðkmWÞþ þ Dm 2 eslð2;RÞ is

derived from W.
Step 4: Finally, in order to show a certain integrability, we construct bi-Hamiltonian structures for the obtained soliton

hierarchy, which lead to Liouville integrability by using the trace identity d
du

R
tr @U

@k W
� �

dx ¼ k�c @
@k kctr @U

@u W
� �

.
After completing the construction of the new KN type soliton hierarchy, we consider further work including correspond-

ing bi-integrable couplings and bi-Hamiltonian structures via the variational identity [16,36]. Bi-integrable couplings of a
soliton hierarchy ut ¼ KðuÞ ¼ Kðx; t;u;ux;uxx; . . .Þ have the following form
ut ¼ KðuÞ;
u1;t ¼ S1ðu;u1Þ;
u2;t ¼ S2ðu;u1;u2Þ

8><>: ð1:3Þ
generated from certain non-semisimple Lie algebras, where u;u1;u2 denote some column vectors of dependent variables. The
system (1.3) is called a nonlinear bi-integrable coupling if at least one of S1ðu;u1Þ; S2ðu;u1;u2Þ are nonlinear with respect to
any sub-vectors u1;u2. In this paper, we will introduce the following non-semisimple Lie algebras �g with triangular block
matrices [40,41]
�g ¼ fMðA1;A2;A3Þg;

MðA1;A2;A3Þ ¼
A1 A2 A3

0 A1 aA2

0 0 A1

264
375; ð1:4Þ
to generate bi-integrable couplings (1.3), where A1;A2;A3 are arbitrary square matrices of the same order and a is a non-zero
constant. In the following calculation process, we can see that block A1 is used for generating the initial soliton hierarchy and
block A2;A3 are used for constructing the supplementary sub-vector fields S1; S2. The above non-semisimple Lie algebras �g

have two subalgebras
~g ¼ fMðA1;0;0Þg;
~gc ¼ fMð0;A2;A3Þg;
which form semi-direct sums: �g ¼ ~gfi~gc . The notion of semi-direct sums means that the two subalgebras ~g and ~gc satisfy
½~g; ~gc�# ~gc . We also require the closure property between ~g and ~gc under the matrix multiplication: ~g~gc; ~gc~g # ~gc .

The paper is organized as follows. In Section 2, we would like to construct a new KN type soliton hierarchy associated
with slð2;RÞ. Then bi-Hamiltonian structures are furnished by using the trace identity, and thus all equations in the resulting
soliton hierarchy are Liouville integrable. In Section 3, we will use the non-semisimple Lie algebras (1.4) to establish bi-inte-
grable couplings of the new KN type soliton hierarchy. Bi-Hamiltonian structures are shown by means of the variational
identity. The last section is devoted to conclusions and discussions.

2. New KN type soliton hierarchy and bi-Hamiltonian structures

In order to present a new KN type soliton hierarchy associated with slð2;RÞ, we introduce the following asymmetric
matrix spectral problem
/x ¼ Uðu; kÞ/ ¼ k2q kp

k �k2q

" #
/; u ¼

p
q

� �
; / ¼

/1

/2

� �
; ð2:1Þ
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We solve the stationary zero curvature equation firstly
Wx ¼ ½U;W�; W 2 eslð2;RÞ: ð2:2Þ
When W is selected to be
W ¼ ae1 þ be2 þ ce3 ¼
a b

c �a

� �
; ð2:3Þ
we have
ax ¼ cpk� bk;

bx ¼ 2bqk2 � 2apk;

cx ¼ 2ak� 2cqk2;

8><>: ð2:4Þ
from (2.2). Let us assume that a; b and c are Laurent series in k given by
a ¼
X
iP0

aik
�2i; b ¼

X
iP0

bik
�2i�1; c ¼

X
iP0

cik
�2i�1: ð2:5Þ
Substituting (2.5) into (2.4), system (2.4) leads equivalently to
ai;x ¼ pci � bi;

biþ1 ¼ p
q aiþ1 þ 1

2q bi;x; i P 0;

ciþ1 ¼ 1
q aiþ1 � 1

2q ci;x;

8><>: ð2:6Þ
where the initial values are taken as
a0 ¼ 1; b0 ¼
p
q
; c0 ¼

1
q
; ð2:7Þ
which are required by the equations on the first powers of k in (2.4)
a0;x ¼ pc0 � b0; qb0 ¼ pa0; qc0 ¼ a0:
Moreover, by (2.6), we can obtain an expression for aiþ1;x,
aiþ1;x ¼ pciþ1 � biþ1

¼ p
1
q

aiþ1 �
1

2q
ci;x

� �
� p

q
aiþ1 þ

1
2q

bi;x

� �
¼ � p

2q
ci;x �

1
2q

bi;x: ð2:8Þ
Thus we obtain a recursion relation for aiþ1,
aiþ1 ¼ �@�1 p
2q

@ci � @�1 1
2q

@bi; i P 0: ð2:9Þ
Then, from (2.6) and (2.9), the recursion relations for biþ1 and ciþ1 are as follows
biþ1

ciþ1

� �
¼

1
2q @ �

p
2q @

�1 1
q @ � p

2q @
�1 p

q @

� 1
2q @

�1 1
q @ � 1

2q @ � 1
2q @

�1 p
q @

" #
bi

ci

� �
; i P 0: ð2:10Þ
While using (2.9) and the above recursion relations (2.10), we impose the condition on the constants of integration:
aiju¼0 ¼ biju¼0 ¼ ciju¼0 ¼ 0; i P 1;
to determine the sequence of fai; bi; ciji P 1g uniquely. The first two sets can be computed as follows by using Maple
a1 ¼ �
p

2q2 ;

b1 ¼
qpx � p2 � pqx

2q3 ;

c1 ¼
qx � p

2q3 ;

a2 ¼
1

8q4 ð3p2 � 2qpxÞ;

b2 ¼
1

8q5 ð2pxxq2 � 6pxpq� 6pxqxq� 2pqxxqþ 3p3 þ 6p2qx þ 6pq2
x Þ;



S. Yu et al. / Commun Nonlinear Sci Numer Simulat 23 (2015) 366–377 369
c2 ¼
1

8q5 ð�2qxxqþ 3p2 � 6pqx þ 6q2
x Þ;

a3 ¼ �
1

16q6 ð2pxxq2 � 4pxqxq� 6pxpq� 4pqqxx þ 10pq2
x þ 5p3Þ;

b3 ¼
1

16q7 ð2q3pxxx � 12q2qxpxx � 8q2ppx � 2q2pqxxx � 6q2p2
x � 8q2pxqxx þ 30qpxq2

x þ 40pqpxqx

þ 20pqqxqxx þ 15qp2px þ 10qp2qxx � 30pq3
x � 40p2q2

x � 15p3qx � 5p4Þ;

c3 ¼ �
1

16q7 ð2pxxq2 � 2q2qxxx � 10pxqxqþ 20qqxqxx � 10pqqxx � 30q3
x þ 40pq2

x � 15p2qx þ 5p3Þ:
We point out that the localness of the sequence of fai; bi; ciji P 3g can be shown by the mathematical induction, and thus,
all the functions fai; bi; ciji P 1g are differential functions. Since from the stationary zero curvature Eq. (2.2), we can compute
d
dx

trðW2Þ ¼ 2trðWWxÞ ¼ 2trðW½U;W�Þ ¼ 0
and hence, due to trðW2Þ ¼ 2ða2 þ bcÞ , we can obtain
a2 þ bc ¼ ða2 þ bcÞju¼0 ¼ 1:
Thus a balance of coefficients of k�2i�2 tells that
aiþ1 ¼ �
1
2

X
kþ l ¼ iþ 1

k; l P 1

akal þ
X

kþ l ¼ i
k; l P 0

bkcl

0BBBBB@

1CCCCCA; i P 2:
So based on the recursion relation (2.9) and the last two equations in (2.6), all the functions fai; bi; ciji P 3g are differential
functions in p and q by applying the mathematical induction. It means that they are all local.

Now, from the recursion relations in (2.4), we have
ðkðk2mþ1WÞþÞx � ½U; kðk
2mþ1WÞþ� ¼ kbm;xe2 þ kcm;xe3;
where Pþ denotes the polynomial part of P. This is not the same type matrix as Utm :
Utm ¼ k2qtm
e1 þ kptm

e2:
So we choose the suitable Lax matrices and modification terms as follows
V ½m� ¼ kðk2mþ1WÞþ þ Dm

¼

Xm

i¼0

aik
2m�2iþ2 þ k2f m

Xm

i¼0

bik
2m�2iþ1 þ kgm

Xm

i¼0

cik
2m�2iþ1 þ khm �

Xm

i¼0

aik
2m�2iþ2 � k2f m

266664
377775; m P 0; ð2:11Þ
to guarantee the zero curvature equations
Utm � V ½m�x þ ½U;V
m� ¼ 0; m P 0; ð2:12Þ
present a soliton hierarchy. After a complicated calculation from the recursion relations (2.6) and (2.9) by using Maple, the
modification terms are determined
hm ¼ �cm;

f m ¼ �qcm;

gm ¼ �pcm;

ptm
¼ bm;x � ðpcmÞx;

qtm
¼ �ðqcmÞx;

8>>>>>><>>>>>>:
m P 0: ð2:13Þ
Thus, we obtain a new KN type soliton hierarchy
utm ¼ Km ¼
p

q

� �
tm

¼
bm;x � ðpcmÞx
�ðqcmÞx

� �
; m P 1; ð2:14Þ
which are all local, because of the localness of the sequence of fai; bi; ciji P 1g. The first two nonlinear systems in this soliton
hierarchy are
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pt1
¼ 1

2q4 ðpxxq2 � 4pxqxq� 2pqxxqþ 6pq2
x Þ;

qt1
¼ 1

2q3 ðpxq� qqxx � 2pqx þ 2q2
x Þ

(

and
pt2
¼ 1

4q6 q3pxxx � 3q2ðp2
x þ pxqxx þ ppxx þ 2qxpxxÞ þ 24pqpxqx þ 12qpxq2

x þ 6qp2qxx � 30p2q2
x

� 	
;

qt2
¼ 1

4q5 q2qxxx � 3qðpxp� pxqx � pqxx þ 3qxqxxÞ þ 6p2qx � 12pq2
x þ 12q3

x

� 	
:

(

Next, we shall use the trace identity to construct Hamiltonian structure for the soliton hierarchy (2.14). It is direct to
compute
@U
@k
¼

2kq p

1 �2kq

� �
; tr W

@U
@k

� �
¼ 4aqkþ cpþ b;

@U
@p
¼

0 k

0 0

� �
; tr W

@U
@p

� �
¼ ck;

@U
@q
¼ k2 0

0 �k2

" #
; tr W

@U
@q

� �
¼ 2ak2:
Then, the trace identity [8–10]
d
du

Z
tr

@U
@k

W
� �

dx ¼ k�c @

@k
kctr

@U
@u

W
� �

; ð2:15Þ
becomes
d
du

Z
ð4aqkþ cpþ bÞdx ¼ k�c @

@k
kc ck

2ak2

� �
:

Substituting (2.5) into above equation and balancing coefficients of k�2m�1 in this equality, it leads to
d
du

Z
ð4qamþ1 þ pcm þ bmÞdx ¼ ðc� 2mÞ

cm

2amþ1

� �
; m P 0:
The identity with m ¼ 1 gives c ¼ 0, and thus we obtain
d
du
Hm ¼

cm

2amþ1

� �
; m P 0; ð2:16Þ
with the Hamiltonian functionals being defined by
H0 ¼
Z

p
q

dx;

Hm ¼ �
Z

4qamþ1 þ pcm þ bm

2m

� �
dx; m P 1:
Further, from recursion relation (2.6), we can obtain
bm;x ¼ 2qbmþ1 � 2pamþ1

¼ 2qðpcmþ1 � amþ1;xÞ � 2pamþ1

¼ 2pqcmþ1 � 2qamþ1;x � 2pamþ1

¼ 2pðamþ1 �
1
2

cm;xÞ � 2pamþ1 � 2qamþ1;x

¼ �pcm;x � 2qamþ1;x:
Consequently, the soliton hierarchy (2.14) has the Hamiltonian structure
utm ¼ Km ¼
bm;x � ðpcmÞx
�ðqcmÞx

� �
¼ J

cm

2amþ1

� �
; m P 1; ð2:17Þ
where the Hamiltonian operator is defined by
J ¼
�p@ � @p �q@

�@q 0

� �
: ð2:18Þ
From the recursion relation (2.6) and (2.9), it is obvious that

dHm

du
¼ W

dHm�1

du
; m P 1; ð2:19Þ



S. Yu et al. / Commun Nonlinear Sci Numer Simulat 23 (2015) 366–377 371
where
W ¼
� 1

2q @
1

2q

1
2 @
�1 1

q @
p
q @ þ 1

2 @
�1 p

q @
1
q @

1
2 @
�1 1

q @
2 � 1

2 @
�1 1

q @
p
q� 1

2 @
�1 p

q @
1
q

" #
: ð2:20Þ
It is a direct computation that all members in the soliton hierarchy (2.14) are bi-Hamiltonian
utm ¼ Km ¼ J
dHm

du
¼ M

dHm�1

du
; m P 1; ð2:21Þ
where
M ¼ JW ¼
0 � 1

2 @
2

1
2 @

2 � 1
2 @

" #
: ð2:22Þ
Then from Kmþ1 ¼ UKm;m P 1, and JW ¼ UJ, we obtain a common hereditary recursion operator for the soliton hierarchy
(2.14)
U ¼ Wy ¼
@ 1

2q � 1
2 @

p
q @

1
q @
�1 � 1

2 @
1
q @

p
q @
�1

1
2q � 1

2 @
2 1

q @
�1 � p

2q @
1
q @
�1 � 1

2q @
p
q @
�1

" #
; ð2:23Þ
where Wy denotes the conjugate operator of W.
Upon observation of the bi-Hamiltonian structures (2.21) and differential orders of the sequence fai; bi; ciji P 1g, we can

state that the soliton hierarchy (2.14) is Liouville integrable [37–41]. Every member in the hierarchy (2.14) possesses infi-
nitely many independent commuting conserved functionals
fHk;HlgJ :¼
R dHk

du

� �T
J dHl

du dx ¼ 0; k; l P 0;

fHk;HlgM :¼
R dHk

du

� �T
M dHl

du dx ¼ 0; k; l P 0
and symmetries
½Kk;Kl� :¼ K 0kðuÞ½Kl� � K 0lðuÞ½Kk� ¼ 0; k; l P 0;
where K 0 denotes the Gateaux derivative.

3. Bi-integrable couplings and bi-Hamiltonian structures

In this section, we consider corresponding bi-integrable couplings and bi-Hamiltonian structures for the obtained KN type
soliton hierarchy (2.14). Bi-integrable couplings will be constructed directly by means of non-semisimple Lie algebras which
are used for generating enlarged zero curvature equations. Then bi-Hamiltonian structures are furnished by the variational
identity [16,36], which lead to Liouville integrability for the new obtained bi-integrable couplings.

3.1. Bi-integrable couplings of (2.14)

We proceed to construct bi-integrable couplings of the new KN type soliton hierarchy (2.14). An enlarged spectral matrix
is chosen as
U ¼ Uð�u; kÞ ¼ MðU;U1;U2Þ; �u ¼ ðp; q; r1; s1; r2; s2ÞT ; ð3:1Þ
where U is defined as in (2.1) and
Ui ¼ UiðuiÞ ¼
k2si kri

0 �k2si

" #
; ui ¼

ri

si

� �
; i ¼ 1;2; ð3:2Þ
where r1; s1; r2 and s2 are new dependent variables.
To solve the corresponding enlarged stationary zero curvature equation
Wx ¼ ½U;W�; ð3:3Þ
we choose a solution of the following form
W ¼Wð�u; kÞ ¼ MðW;W1;W2Þ 2 �g; ð3:4Þ
where W is given by (2.3) and W1;W2 are assumed to be



372 S. Yu et al. / Commun Nonlinear Sci Numer Simulat 23 (2015) 366–377
W1 ¼
e f

g �e

� �
¼ RiP0eik

�2i RiP0f ik
�2i�1

RiP0gik
�2i�1 �RiP0eik

�2i

" #
;

W2 ¼
e0 f 0

g0 �e0

" #
¼

RiP0e0ik
�2i RiP0f 0ik

�2i�1

RiP0g0ik
�2i�1 �RiP0e0ik

�2i

" #
:

ð3:5Þ
Then Eq. (3.3) is equivalent to
Wx ¼ ½U;W�;
W1;x ¼ ½U;W1� þ ½U1;W�;
W2;x ¼ ½U;W2� þ ½U2;W� þ a½U1;W1�:

8><>: ð3:6Þ
Substituting (3.5) into (3.6), we get (2.4),
ex ¼ cr1kþ gpk� f k;

f x ¼ 2bs1k
2 þ 2fqk2 � 2ar1k� 2epk;

gx ¼ �2cs1k
2 � 2gqk2 þ 2ek

8><>: ð3:7Þ
and
e0x ¼ agr1kþ cr2kþ g0pk� f 0k;

f 0x ¼ 2bs2k
2 þ 2f 0qk2 � 2ar2k� 2e0pkþ 2as1f k2 � 2ar1ek;

g0x ¼ �2cs2k
2 � 2g0qk2 þ 2e0k� 2ags1k

2:

8><>: ð3:8Þ
Equivalently, the systems (3.7) and (3.8) lead to the recursion relations
ei;x ¼ r1ci þ pgi � f i;

f i;x ¼ 2s1biþ1 þ 2qfiþ1 � 2r1aiþ1 � 2peiþ1;

gi;x ¼ �2s1ciþ1 � 2qgiþ1 þ 2eiþ1

8><>: ð3:9Þ
and
e0i;x ¼ ar1gi þ r2ci þ pg0i � f 0i;

f 0i;x ¼ 2qf 0iþ1 � 2pe0iþ1 þ 2as1f iþ1 � 2ar1eiþ1 þ 2s2biþ1 � 2r2aiþ1;

g0i;x ¼ �2as1giþ1 � 2s2ciþ1 � 2qg0iþ1 þ 2e0iþ1:

8><>: ð3:10Þ
We take the initial values
e0 ¼ 0; f 0 ¼
r1q� s1p

q2 ; g0 ¼ �
s1

q2 ;

e00 ¼ 0; f 00 ¼
�as1r1qþ as2

1p� s2pqþ r2q2

q3 ; g00 ¼
as2

1 � s2q
q3

ð3:11Þ
and assume the constants of integration as zero, the recursion relations (3.9) and (3.10) uniquely generate the sequences of
fei; f i; giji P 1g; fe0i; f

0
i; g
0
iji P 1g. The first set of functions in the two sequences are computed as follows by Maple
e1 ¼ �
r1q� 2s1p

2q3 ;

g1 ¼ �
r1q� qs1;x þ 3s1qx � 3s1p

2q4 ;

f 1 ¼
r1;xq2 � r1qxq� 2r1pq� 2qpxs1 � qps1;x þ 3ps1qx þ 3s1p2

2q4 ;

e01 ¼ �
�2as1r1qþ 3as2

1pþ r2q2 � 2s2pq
2q4 ;

g01 ¼ �
�6as2

1qx þ 3as1qs1;x � q2s2;x þ 3qs2qx þ 6as2
1p� 3as1r1q� 3s2pqþ r2q2

2q5 ;

f 01 ¼ �
1

2q5 ½ðar1q2 � 3as1pqÞs1;x þ 2as1q2r1;x � q3r2;x þ pq2s2;x þ ð2s2q2 � 3aqs2
1Þpx

þ ðr2q2 � 3s2pqþ 6aps2
1 � 3aqs1r1Þqx þ 6as2

1p2 � 3p2qs2 þ ar2
1q2 þ 2r2pq2 � 6apqs1r1�:
Further, we introduce the enlarge Lax matrices
V ½m� ¼ MðV ½m�;V ½m�1 ;V ½m�2 Þ 2 �g; m P 0; ð3:12Þ
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where V ½m� is defined as in (2.11) and
V ½m�1 ¼

Xm

i¼0

eik
2m�2iþ2 þ k2em

Xm

i¼0

f ik
2m�2iþ1 þ kdm

Xm

i¼0

gik
2m�2iþ1 þ kgm �

Xm

i¼0

eik
2m�2iþ2 � k2em

266664
377775; m P 0;

V ½m�2 ¼

Xm

i¼0

e0ik
2m�2iþ2 þ k2e0m

Xm

i¼0

f 0ik
2m�2iþ1 þ kd0m

Xm

i¼0

g0ik
2m�2iþ1 þ kg0m �

Xm

i¼0

e0ik
2m�2iþ2 � k2e0m

266664
377775; m P 0:

ð3:13Þ
Then, the enlarged zero curvature equations
Utm ¼ V ½m�x þ ½U;V ½m��; m P 0; ð3:14Þ
give
Utm � V ½m�x þ ½U;V
½m�� ¼ 0;

U1;tm � V ½m�1;x þ ½U;V
½m�
1 � þ ½U1;V

½m�� ¼ 0;

U2;tm � V ½m�2;x þ ½U;V
½m�
2 � þ ½U2;V

½m�� þ a½U1;V
½m�
1 � ¼ 0:

8>><>>: ð3:15Þ
All above equations determine the KN type soliton hierarchy (2.14) of the bi-integrable couplings
�utm ¼

p

q

r1

s1

r2

s2

2666666664

3777777775
tm

¼ Kmð�uÞ ¼
KmðuÞ
S1;mðu; u1Þ
S2;mðu; u1; u2Þ

264
375 ¼

bm;x � ðpcmÞx
�ðqcmÞx

f m;x � ðpgm þ r1cmÞx
�ðs1cm þ qgmÞx

f 0m;x � ðpg0m þ r2cm þ ar1gmÞx
�ðs2cm þ qg0m þ as1gmÞx

2666666664

3777777775
: ð3:16Þ
3.2. Bi-Hamiltonian structures and Liouville integrability

When the associated matrix Lie algebras are semisimple, the Hamiltonian structure can be established by the trace iden-
tity. However, when the associated matrix Lie algebras are non-semisimple, the variational identity [16,36] provides an
effective approach to furnish the Hamiltonian structure of soliton equations. We shall search for bi-Hamiltonian structures
by the variational identity:
d
d�u

Z
@U
@k

;W

* +
dx ¼ k�c @

@k
kc @U

@�u
;W

* +
: ð3:17Þ
The key step of constructing non-degenerate, symmetric and ad-invariant bilinear form on non-semisimple matrix loop alge-
bras �g is to transform the semi-direct sums �g into a vector form (see [37,40]).

First, Defining a mapping
r : �gðkÞ ! R9; A # ða1; . . . ; a9ÞT ; ð3:18Þ
where
A ¼ MðA1;A2;A3Þ 2 �gðkÞ; Ai ¼
a3i�2 a3i�1

a3i �a3i�2

� �
; i ¼ 1;2;3: ð3:19Þ
This mapping r induces a Lie algebraic structure on R9. The Lie bracket ½�; �� on R9 can be computed as follows
½a; b�T ¼ aT RðbÞ; a ¼ ða1; . . . ; a9ÞT ; b ¼ ðb1; . . . ; b9ÞT 2 R9; ð3:20Þ
where
RðbÞ ¼ MðR1;R2;R3Þ; Ri ¼
0 2b3i�1 �2b3i

b3i �2b3i�2 0
�b3i�1 0 2b3i�2

264
375; i ¼ 1;2;3: ð3:21Þ
The mapping (3.18) is a Lie algebra isomorphism between the two Lie algebras.
Then, we define a bilinear form [37,40] on R9 as follow
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ha; bi ¼ aT Fb; ð3:22Þ
where F is a constant matrix. Obviously the symmetric property and ad-invariance property of F
ha; bi ¼ hb; ai; ha; ½b; c�i ¼ h½a; b�; ci; ð3:23Þ
require that
FT ¼ F; FðRðbÞÞT ¼ �RðbÞF; b 2 R9: ð3:24Þ
Solving the system (3.24) by Maple, we obtain
F ¼
g1 g2 g3

g2 ag3 0
g3 0 0

264
375� 2 0 0

0 0 1
0 1 0

264
375; ð3:25Þ
where g1;g2;g3 are arbitrary constants. The bilinear form on the semi-direct sums �gðkÞ of the two Lie subalgebras ~g and ~gc is
defined as
hA;Bi�gðkÞ ¼ hrðAÞ;rðBÞiR9 ¼ ða1; . . . ; a9ÞFðb1; . . . ; b9ÞT ; ð3:26Þ
where A ¼ r�1ðða1; . . . ; a9ÞTÞ 2 �gðkÞ;B ¼ r�1ððb1; . . . ; b9ÞTÞ 2 �gðkÞ.
Because of the isomorphism of r, the bilinear form (3.26) is also symmetric and ad-invariant:
hA;Bi�gðkÞ ¼ hB;Ai�gðkÞ; hA; ½B;C�i�gðkÞ ¼ h½A;B�; Ci�gðkÞ; A;B;C 2 �gðkÞ: ð3:27Þ
But this kind of bilinear form is not of Killing type, since the enlarged matrix loop algebras �gðkÞ are not semisimple. A bilinear
form (3.26) is non-degenerate if and only if the determinant of F is not zero, namely,
detðFÞ ¼ 8a3g9
3 – 0; ð3:28Þ
thus, g3 and a should be non-zero constants.
Then, according to the definition of bilinear form, we can compute by Maple
W ;
@U
@k

* +
�gðkÞ

¼ ð4aqkþ cpþ bÞg1 þ ð4eqkþ gpþ f þ 4as1kþ cr1Þg2 þ ð4e0qkþ g0pþ f 0 þ 4aes1kþ agr1 þ 4as2k

þ cr2Þg3
and
W ;
@U
@�u

* +
�gðkÞ

¼ ðckg1 þ gkg2 þ g0kg3;2ak2g1 þ 2ek2g2 þ 2e0k2g3; ckg2 þ agkg3;2ak2g2 þ 2aek2g3; ckg3;2akg3Þ
T
;

From the formula
c ¼ � k
2

d
dk

ln jhW;Wij; ð3:29Þ
we can determine the parameter c ¼ 0. Consequently, by using the variational identity, we obtain the Hamiltonian structure
for the hierarchy (3.16) of the bi-integrable couplings
�utm ¼ J
d �Hm

d�u
; m P 0; ð3:30Þ
with the Hamiltonian functionals
�Hm ¼
Z ð4qamþ1 þ pcm þ bmÞg1 þ ð4qemþ1 þ pgm þ f m þ 4s1amþ1 þ r1cmÞg2

2m

�
þ ð4qe0mþ1 þ pg0m þ f 0m þ 4aemþ1s1 þ agmr1 þ 4amþ1s2 þ cmr2Þg3

2m

#
dx; m P 0 ð3:31Þ
and the Hamiltonian operator
J ¼

0 0 J1

0 J1 J2

J1 J2 J3

26664
37775; ð3:32Þ
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where
J1 ¼
�p@�@p

ag3
� q@

ag3

� @q
ag3

0

24 35;

J2 ¼

ðp@þ@pÞg2
ag2

3
� r1@þ@r1

g3

q@g2
ag2

3
� s1@

g3

@qg2
ag2

3
� @s1

g3
0

264
375;

J3 ¼

ðp@þ@pÞg1
g2

3
� ðp@þ@pÞg2

2
ag3

3
þ ðr1@þ@r1Þg2

g2
3

� r2@þ@r2
g3

q@g1
g2

3
� q@g2

2
ag3

3
þ s1@g2

g2
3
� s2@

g3

@qg1
g2

3
� @qg2

2
ag3

3
þ @s1g2

g2
3
� @s2

g3
0

2664
3775:
Here 0 is zero square matrix of the same order as J1; J2; J3 and g3 – 0;a;g1;g2 are arbitrary constants.
Next we consider recursion relations of the bi-integrable couplings by taking the following form
Km ¼ �UKm�1 ¼
U 0 0
U1 U 0
U2 aU1 U

264
375Km�1; m P 1: ð3:33Þ
With the aid of symbolic computation by Maple, we can compute
U ¼
@ 1

2q � 1
2 @

p
q @

1
q @
�1 � 1

2 @
1
q @

p
q @
�1

1
2q � 1

2 @
2 1

q @
�1 � p

2q @
1
q @
�1 � 1

2q @
p
q @
�1

" #
;

U1 ¼
�@ s1

2q2 @ s1
q

p
2q @

1
q @
�1 þ 1

2q @
p
q @
�1


 �
� @ r1

2q @
1
q @
�1 þ @ p

2q @
s1
q2 @

�1 � @ 1
2q @

r1
q @
�1 þ @ 1

2q @
ps1
q2 @

�1

� s1
2q2

s1
q

p
2q @

1
q @
�1 þ 1

2q @
p
q @
�1


 �
� r1

2q @
1
q @
�1 þ p

2q @
s1
q2 @

�1 � 1
2q @

r1
q @
�1 þ 1

2q @
ps1
q2 @

�1 þ @2 s1
2q2 @

�1

264
375;

U2 ¼
U21 U22

U23 U24

� �
;

with the entries of U2 being defined as
U21 ¼ �@
s2

2q2 ;

U22 ¼ @
s2

2q2 @
p
q
@�1 þ @ s2p

2q2 @
1
q
@�1 þ a@

r1

2q
@

s1

q2 @
�1 � @ r2

2q
@

1
q
@�1 þ @ ps2

2q2 @
1
q
@�1 þ @ p

2q
@

s2

q2 @
�1

þ a@
p

2q
@

s2
1

q2 @
�1 þ a@

1
2q

@
r1s1

q
@�1 � @ 1

2q
@

r2

q
@�1 � a@

1
2q
@

ps2
1

q3 @
�1 þ @ 1

2q
@

ps2

q2 @
�1 � @ ps2

2q2 @
�1;

U23 ¼ �
s2

2q2 ;

U24 ¼
s2

2q2 @
p
q
@�1 þ s2p

2q2 @
1
q
@�1 þ a

r1

2q
@

s1

q2 @
�1 � r2

2q
@

1
q
@�1 þ ps2

2q2 @
1
q
@�1 þ p

2q
@

s2

q2 @
�1 � 1

2q
@

r2

q
@�1

þ a
p

2q
@

s2
1

q2 @
�1 þ a

1
2q

@
r1s1

q
@�1 � a

1
2q

@
ps2

1

q3 @
�1 þ 1

2q
@

ps2

q2 @
�1 � ps2

2q2 @
�1 þ @2 s2

2q2 @
�1 � a@2 s2

1

2q2 @
�1:
It is direct and lengthy to show that �U is hereditary by Maple, J and M ¼ �UJ constitute a Hamiltonian pair [40,41]. Thus, all
members in the soliton hierarchy (3.16) are bi-Hamiltonian
�utm ¼ Km ¼ J
dHm

d�u
¼ M

dHm�1

d�u
; m P 1: ð3:34Þ
Therefore, the soliton hierarchy of bi-integrable couplings (3.16) is Liouville integrable. Every member in (3.16) possesses
infinitely many independent commuting conserved functionals
fHk;HlgJ :¼
R dHk

d�u


 �T
J dHl

d�u dx ¼ 0; k; l P 0;

fHk;HlgM :¼
R dHk

d�u


 �T
M dHl

d�u dx ¼ 0; k; l P 0;
and symmetries
½Kk;Kl� :¼ K 0kð�uÞ½Kl� � K 0lð�uÞ½Kk� ¼ 0; k; l P 0:



376 S. Yu et al. / Commun Nonlinear Sci Numer Simulat 23 (2015) 366–377
4. Conclusions and discussions

There are many soliton hierarchies obtained by using matrix spectral problems based on certain real Lie algebras such as
slð2;RÞ and soð3;RÞ. Recently, seeking for integrable couplings associated with non-semisimple Lie algebras has aroused
more and more interest. Various examples of bi- and tri-integrable couplings bring us ideas to classify multi-component
integrable systems. In this paper, we have introduced a new asymmetric 2� 2 matrix spectral problem associated with
slð2;RÞ and derived a new KN type soliton hierarchy (2.14), together with bi-Hamiltonian structures firstly. Then based
on a class of non-semisimple matrix Lie algebras consisting of 3� 3 block matrices, we have derived bi-integrable couplings
(3.16) of the obtained soliton hierarchy. Corresponding bi-Hamiltonian structures are constructed by the variational identity,
which imply the system has infinitely many commuting symmetries and conserved functionals. In addition, we must point
out that the mathematical software Maple is used to deal with some complicated computations in this paper.

In fact, we can construct other kinds of integrable couplings by means of more complex non-semisimple Lie algebras such
as
�g ¼ fMðA1;A2;A3Þg;

MðA1;A2;A3Þ ¼
A1 A2 A3

0 A1 þ aA2 bA2 þ aA3

0 0 A1 þ aA2

264
375
and
�g ¼ fMðA1;A2;A3;A4Þg;

MðA1;A2;A3;A4Þ ¼

A1 A2 A3 A4

0 A1 þ aA2 aA3 bA2 þ aA4

0 0 A1 þ aA2 þ lA3 mA3

0 0 0 A1 þ aA2

26664
37775
presented in Refs. [40,41]. Considering the calculation is similar, we omit the lengthy process for the sake of convenience.
The algebra slð2;RÞ is one of the only two three-dimensional real Lie algebras with a three-dimensional derived algebra,

and the other one is the special orthogonal Lie algebra soð3;RÞ. In a subsequent study, we will consider the construction of
integrable couplings for the KN type soliton hierarchy associated with soð3;RÞ and soðnþ 1;RÞ.
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