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Abstract In this paper, we study a (3+1)-dimensional
generalized Kadomtsev–Petviashvili equation, which
is physically meaningful. Applying the simplified
Hirota’s method, we derive multiple-soliton solutions
and lumps for this newmodel, where the coefficients of
spatial variables are not constrained by any conditions.
But the phase and the new model are dependent on all
these coefficients.Moreover, this newmodel passes the
Painlevé integrability test.
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1 Introduction

For the research on nonlinear complex phenomena,
we all know that nonlinear partial differential equa-
tions play an much more essential role. And they have
got many applications, such as nonlinear optics, fluid
mechanics and so forth. In order to know how to be
in charge of nonlinear systems, a lot of experts have
paid a little bit more attention to the multi-soliton solu-
tions and lumps in the recent years. Among the effi-
cient approachers are theHirota bilinearmethod [1], the
generalized bilinear method [2,3] the Bäcklund trans-
formation method [4–6], the Darboux transformation
[7–9], the inverse scattering method [10], the Painlevé
analysis [11–13] and other methods.

Recently, More people are interested in the multiple
solitons [14–16] and lump, which is a completely new
locally nonlinear waves. For the soliton solutions, there
is a good balance between dispersion effects and the
nonlinearity. But the lump solution is a sort of rational
solution and is localized in all of the directions of space
[17–22].

The KP equation of (2+1)-dimension [23] can give
perfect descriptions of the nonlinear and long waves
with small amplitudes. In the past decades, some
extended KP equations have been presented and inves-
tigated in the following references [24,25]

uxxxy + 3(uxuy)x + utx + uty − uzz = 0. (1)
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under the transformation u = 2(ln f )x , becomes

(D3
x Dy + Dt Dx + Dt Dy − D2

z ) f × f = 0, (2)

where Dt , Dx , Dy and Dz are Hirota’s bilinear oper-
ators. Moreover, its resonant solitons have been con-
structed.

In this work, we will introduce a (3+1)-dimensional
generalized KP equation:

uxxxy+3(uxuy)x+utx+uty+utz−uxx−uzz = 0, (3)

where extra terms utz, uxx are added to Eq. (1). Using
u = 2(ln f )x , we obtain its Hirota bilinear form

(D3
x Dy+Dt Dx+Dt Dy+Dt Dz−D2

x−D2
z ) f × f = 0,

(4)

Employing Hirota’s method, we firstly establish
multiple-soliton solutions and lumps for Eq. (3). To
the best of our knowledge, there are few papers about
lumps of (3+1)-dimensional generalized KP equations.
Then, we prove that it is Painlevé integrable.

2 Multiple-soliton solutions of Eq. (3)

2.1 One-soliton solutions

In order to derive the dispersion relation of Eq. (3), we
first substitute

u = eki x+ri y+si z−ci t (5)

into linear terms of (3) and obtain by direct computa-
tions

ci = k3i ri − k2i − s2i
ki + ri + si

, i = 1, 2, . . . , N . (6)

Therefore, the dispersion variables are

θi = e
ki x+ri y+si z− k3i ri−k2i −s2i

ki+ri+si
t
, i = 1, 2, . . . , N , (7)

which implies that the one-soliton solution

u = 2(ln f )x , (8)

where

f = 1 + eθi , i = 1, 2 . . . , N . (9)

2.2 Two-soliton solutions

To construct two-soliton solutions, we plug

f = 1+ eθi + eθ j + ai j e
θi+θ j , 1 ≤ i < j ≤ N (10)

into (4) and obtain the phase shift as follows:

ai j = Li j

Mi j
, 1 ≤ i < j ≤ N , (11)

where

Li j = Li j (ki , ri , si , ci ; k j , r j , s j , c j ),
Mi j = Mi j (ki , ri , si , ci ; k j , r j , s j , c j ) (12)

are two polynomials of degree 6. For simplicity, we
will not give Li j , Mi j in detail since they are too com-
plicated. But we noted that no constraints are on the
coefficients of variables x, y, z, which means they are
completely free. If ki = ri = si , the phase shift ai j will
be the Hirota’s type. Otherwise, ai j differs completely
from the Hirota’s type, which implies that some new
two-soliton solutions have been constructed.Moreover,
there is not any resonant phenomenon shown by Eq.
(3) since ai j �= 0 or ∞ while ki = k j , i �= j, i, j =
1, 2, . . . , N .

2.3 N-soliton solutions

In the same way, N-soliton solutions of Eq. (3) can be
written in the following form

f =
∑

μ=0,1

exp

⎛

⎝
N∑

i=1

μiθi +
N∑

1≤i< j≤N

μiμ j ln(Ai j )

⎞

⎠ ,

(13)

where
∑

μ=0,1 means the summation over all possible
combinations ofμ1 = 0, 1, . . . , μN = 0, 1. For exam-
ple, three-soliton solutions are constructed by letting

f = 1 + eθi + eθ j + eθk + ai j e
θi+θ j

+ aike
θi+θk + a jke

θ j+θk

+ ai jke
θi+θ j+θk , 1 ≤ i < j < k ≤ N . (14)
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Substituting (14) into (4), we obtain ai jk = ai j aika jk .
Thus, we can get the three-soliton solutions through
u = 2(ln f )x .

3 Lumps of Eq. (3)

The lumps of Eq. (3) are constructed in the form of the
sum of positive quadratic functions in this section.

3.1 Two quadratic function solutions

In order to get the lump solutions described by the sum
of two quadratic functions, we assume

f = g2 + h2 + ω, (15)

with

g = a1x + b1y + c1z + d1t + r1,

h = a2x + b2y + c2z + d2t + r2, (16)

where ai ’s are real constants to be determined. Substi-
tuting (15) and (16) into (4) , we can get all the values
of ai ’s as follows:

b1 = a21d1 + 2a1a2d2 − a22d1 + c21d1 + 2c1c2d2 − c22d1
d21 + d22

− a1 − c1,

b2 = −(a21d2 − 2a1a2d1 − a22d2 + c21d2 − 2c1c2d1 − c22d2)

d21 + d22
+ a2 + c2,

ω = p

q
, (17)

with

p = p(a1, b1, c1, d1; a2, b2, c2, d2),
q = q(a1, b1, c1, d1; a2, b2, c2, d2) (18)

are two complicated polynomials of degree 6. For sim-
plicity, we will not provide their detailed forms. It
is observed that this resulting lump solutions contain
eleven parameters, of which there are eight free param-
eters. The central points, which play key roles in study-
ing lumps about velocity of waveform and so on, can
be got via computing extremum points. We also noted
that the lump u = 2 ln( f )x is analytic if and only if

ω > 0, and it is not degenerate if any two column vec-

tors of matrix

(
a1 b1 c1
a2 b2 c2

)
are linearly independent.

Moreover, It is easily to find that the aforementioned
lump solution u → 0 if and only if g2 + h2 → ∞,
which is equivalent to x2 + y2 + z2 → ∞while evolv-
ing. Hence, the analyticity and localization of the afore-
mentioned lump can be completely guaranteed. The
totally free parameters also determine the expansion
and the deflection angle of lump, the smaller the abso-
lute values of which, the greater the expansion of lump.
Now, we choose some specific values of the parame-
ters: a1 = 1, a2 = 3, b1 = −9/2, b2 = 39/2, c1 =
2, c2 = 5, d1 = 1, d2 = 1, r1 = 3, r2 = 3, ω =
3240/13, , and the graphs of the lump wave are shown
vividly in Fig.1.

3.2 Multiple quadratic function solutions

Similarly, we firstly set

f =
N∑

i=1

(ai x + bi y + ci z + di t + ri )
2 + ω, (19)

where N ≥ 2 is an integer and ai , bi , ci , di , ri , ω are
real constants to be determined. In order to explain
the proposed method, we consider the three quadratic
function solutions by letting

f =
3∑

i=1
(ai x + bi y + ci z + di t + ri )2 + ω. (20)

Substituting (20) into (4) and solving for ai , bi , ci ,
di , ri , ω, we can get the following results

b1 = (5a21 + a1d1 − 2a22 − 2a23)

d1
, b2 = 6a1a2

d1
,

b3 = 6a1a3
d1

, d2 = d3 = 0, ω = p

q
, (21)

where

p = p(a1, d1, a2, r2, a3, r3), q = q(d1, a2, a3),

(22)

which are two polynomials of degree 5 and degree 3,
respectively. For the simplicity, they will not be pre-
sented here. Thus,weobtained the three quadratic func-
tion solutions explicitly via the formula u = 2(ln f )x .
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Fig. 1 Evolution profiles of
lump wave with the specific
parameters: a1 = 1, a2 =
3, b1 = −9/2, b2 =
39/2, c1 = 2, c2 =
5, d1 = 1, d2 = 1, r1 =
3, r2 = 3, ω = 3240/13

It is observed that this resulting lump wave contains
twelve parameters, of which six are free parameters.
The the extremum points can help us get the central
points. We also noted that the lump wave u = 2 ln( f )x
is analytic if and only if ω > 0, and it is not degenerate

if

∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
�= 0 holds. Moreover, It is not difficult to

find that the aforementioned lump solution u → 0 if
and only if the sum of squares x2 + y2 + z2 → ∞ at
any given time. Hence, the analyticity and localization
of the obtained lump are guaranteed. Moreover, the
deflection and the expansion of lump are determined
by the totally free parameters, Now, we choose some
particular parameters: a1 = 1, a2 = 2, a3 = 3, d1 =
1, r1 = 1, r2 = 2, r3 = 1, c1 = −2, c2 = −2, c3 =
−3, b1 = −20, b2 = 12, b3 = 18, d2 = 0, d3 =
0, ω = 1202/13 , and the graphs of the lump wave are
shown vividly in Fig. 2.

4 Painlevé analysis

Applying the WTC–Kruskal approach [11], we first
analyze the leading order of Eq. (3) by setting u =

∑∞
j=0 u jφ

j−ρ , where ρ > 0 is an integer. Then, we got
that ρ = 1 and u0 = 2φx . And four resonance points
for Eq. (3) are also found, which are j = −1, 1, 4, 6.
Since the max resonance point occurs at j = 6, to get
the compatibility conditions, we need compute the u j

up to j = 6.
For j = 1, we have

u1 = u1, (23)

which means the parameter u1 is arbitrary.
For j = 2, we obtain

u2 = −3φ2
x + 3φxφyu1,x − φ2

x

6φ2
xφy

+3φxφxxy + φyφx xx − 3φxxφxy − φ2
z + φzφt

6φ2
xφy

.

(24)

Similarly, we can get u j , j = 3, 4, 5, 6, and find
u4 and u6 are also arbitrary. Therefore, the new (3+1)-
dimensional model passes the Painlevé test. Hence, it
is integrable in the sense of Painlevé.
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Fig. 2 Evolution profiles of
lump wave with the specific
parameters:a1 = 1, a2 =
2, a3 = 3, d1 = 1, r1 =
1, r2 = 2, r3 = 1, c1 =
−2, c2 = −2, c3 =
−3, b1 = −20, b2 =
12, b3 = 18, d2 = 0, d3 =
0, ω = 1202/13

5 Conclusions

In this study, the (3+1)-dimensional Eq. (3) is intro-
duced and its multiple-soliton solutions and lump solu-
tions are derived by using the Hirota bilinear approach.
During the investigation, we remarked that there are
not any constraints for the coefficients of spatial vari-
ables. In the meantime, the conditions which can guar-
antee the positiveness, the analyticity and the localiza-
tion of lumps are obtained. The Painlevé analysis is
presented to prove Eq. (3) is integrable in the sense of
Painlevé. Actually, this introducedmodel Eq.(3) is very
much physically meaningful since it can be applied
to investigate some nonlinear phenomena in physics
as well. For instance, it can be applied to study long
wavelength water waves, which are associated with
frequency dispersion and weakly nonlinear restoring
forces, and it can also be employed to model three-
dimensional matter-wave pulses in Bose–Einstein con-
densates and waves in ferromagnetic media.
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