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In this work, we study the modified Volterra lattice. Applying the gauge transformation
of the associated 2 x 2 matrix spectral problems, we establish the N-fold Darboux
transformation (DT), and then construct a few explicit solutions in terms of determinants
upon using the obtained DT. Moreover, all the results are illustrated by the graphs of
the solitonic evolution profiles of the aforementioned solutions. Finally, infinitely many
conservation laws for the modified Volterra lattice are proposed. The obtained results
of this research might be applied to the research on nonlinear phenomena in physics or
engineering areas.
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1. Introduction

Nonlinear integrable systems have been applied to many fields,! such as nonlin-
ear optics and chaos. Moreover, their explicit solutions have been playing a key
role in many research areas, for example, descriptions of different kinds of waves.
Therefore, many researchers pay much attention to this important research. Until
now, some excellent methods have been established, which are inverse scattering
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transformation,? Hirota bilinear method and generalized bilinear method,3 8 the
homogeneous method,” '® the hyperbolic function method,'* the F-expansion
method,’® the Bicklund transformation method,'® the extended tanh-function
method,'” similarity transformation,'®'? algebra-geometric approach,2? variable-
detached method,?! Painleve analysis,?? Darboux transformation,23~27

forth.28733 Among the aforementioned methods, the Darboux transformation is
34

and so

one of the powerful and direct methods to investigate explicit solutions.
In this paper, we will study the DT and explicit solutions of the modified
Volterra lattice:

DPn,t = (pi + C)(pn+1 - pn—l) 5 (1)

where p, = p(n,t) is a function of discrete variable n and time variable ¢, and
Dnt = K%". From Ref. 35, the Lax pair for Eq. (1) is

At pn

—Pn A
c? CPn
2 + PnPn—1 By + APn-1
Pn,t = VnSDn = Pn (3)
o CPn—1

—A\pn, A2 nDr—
3 D + PnPrn—1

where @, = (¢1,n,p2.n)" is an eigenfunction vector, and T denotes the transpose
of a vector or a matrix, and E is the shift operator defined by Ef(n,t) = f(n +
1,t), E71f(n,t) = f(n — 1,t), and X stands for the spectral parameter which is
independent of time variable ¢t. Naturally, the condition of compatibility between
Egs. (2) and (3) leads to a zero-curvature equation

Un,t = Vn+1Un - Unvn . (4)

)T

This paper is organized as follows. In Sec. 2, the N-fold DT for Eq. (1) is
constructed by using the AKNS procedure; then some explicit solutions described by
determinants are obtained according to the aforementioned N-fold DT. Moreover,
the interactions of those solutions are illustrated in Sec. 3. In Sec. 4, infinitely
many conservation laws of Eq. (1) are given. Finally, some applications in physics
and other conclusions are given in Sec. 5.

2. N-Fold Darboux Transformation

In order to construct the N-fold Darboux transformation, we firstly introduce the
following gauge transformation:

on =Ton, (5)
where ¢, satisfies Egs. (2) and (3), and
E¢n=Unpn, Un=TuniUT, ", (6)
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Szjn,t = Vn@na V = (Tn,t + TnVn)Tn_l . (7)

The Darboux matrix 7T,, will play a vital role in establishing the DT for Eq. (1)
since it can guarantee the validity of the N-fold DT. We assume

ATL BTL
T, =
Cn Dn

N— N
AZNHL Z Q27+ (2541 Z b2) N2
j=—N-1 j=—N
- N N ’ (8)
_ Z b;—2j)>\2j A—2N-1 Z a%—zj—1)>\2j+1
j=— j=—N

where A\;’s (A; # 0, A # Aj, 0 # 4,4, =1,2,...,2N +1) are roots of the polynomial
o*N+2 det(T),) of degree 8N + 4. It is easy to prove that

2N+1
AVER det(T,) = a2V Y H (W2 =A%, (9)

which implies that det(T,(\;)) = 0. Then we have

N-1 N
Z aZItD\2HL Z BEDNH g, ) = —AZNFL
j=—N-1 j=—N
x (10)
Z b —2j) 2] + Z 2] 1))\2]+16 — _51.7”)\7;—2N—1 ,
:7 j_fN
where
©2.n (i) (Xidin — Pn)Ni
i = "= Qi = 11
' Soln()\z) il Aipnézm +c ( )

where ¢, = (1.1, P2.n)7 is a solution of the Lax pairs (2) and (3). We will choose
suitable A\;,7;(\; Z0,7; #£0,i=1,2,...,2N + 1) to ensure that the coefficient de-
terminant for Egs. (10) is not equal to zero. Thus, ag ), bgf ), cgf ), dgf ) can be uniquely
determined by Egs. (10). Based on the aforementioned facts, the following theorem

is true.

Theorem 1. The matrices Uy, V, defined in (6) and (7) have the same forms as
Uy, Vy, respectively, where the transformations from the old potential p to the new
one p is given by
2N—1 2N

P =Dpna gL—&-l - bgu—l . (12)
Proof. Let the adjoint matrix of T}, be T/, then T7* = (det T},)T,; !. Then
fii(An) - fiz(An)
fa(An)  far(Am))
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It is easy to show that fi1(\, n) is a polynomial of degree 8N 44 in A and fi2(A,n)
and fa1(A,n) are polynomials of degree 8N + 5 and faa(A,n) is a polynomial of
degree 8N + 6. Therefore, we have fs:(A;,n) = 0(s,t = 1,2). Now, (13) can be
rewritten as follows:

NN (T, U )Ty
= X"V H2 det(T,,)Qn (V)
— A2 Jet(T,) ( qﬁ) Q12)/\ + Q12) ) (14)
g+ a8 a$)N + a8 + o)
where qgn) are functions to be determined and independent of A. Then we have
MTo1Un) = Qn T, . (15)
Comparing the coefficients of A*N+3 \*N+1in Eq. (16), we get
Y =e ¢y =0, ai) =pua TV -3 =p ) =0, 16)
gy = —(ppal Y =) = =i, 6 = ek =0, gy =1,

which implies P = U.
Similarly, we can prove that the matrix V has the same form as V. O

It follows from Theorem 1 that the transformations (5) and (12) can transform
the Lax pairs (2) and (3) into the Lax pairs (6) and (7) of the same type. Thus,
they can both result in Eq. (1). The transformations (5) and (12) are called an
N-fold DT of Eq. (1).

3. Explicit Solutions

In this section, the transformations (5) and (12) will be applied to constructing the
explicit solutions of Eq. (1). Substituting the trivial solution p = 0 into (3) and (4),
we got a solution of (2) and (3):

A —_n CQt
z2 ez
o= ¢ . (17)

/\ne)\zt
Moreover, we have

N 2oy N
e AZ ) 6i,n+1 Z5zn (18)

5i,n =
Solving the linear algebraic system (10) yields to

—2N-1 —2N
a(72N71) _ Aa»gl ) bn(72N) _ Ab% )
n A ) A )
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with
2N-1 —2N-1 —2N
Al c A AV 61n NNSL
2N-1 —2N-1 —2N
A5 D ¥ Ay N2, /\%N51,n
aN-1 —2N-1 —2N 2N
A )‘2N+1 e )‘2N+1 )‘2N+152N+1ﬂb T /\2N+152N+1,n (20)
= |y—2N+1 2N+1 —2N
A o, A -\ =AY
—2N+1 IN+1 —2N
D D VAL Y -5 —\3N
—2N+1 2N+1 —2N 2N
/\2N+1 Orn - )‘2N+1517n _)‘2N+1 _)‘2N+1
(-2N-1) . L .
Aay, is generated from A by replacing its (2N + 1)th column with
2N+1 2N+1 2N+1 2N+1 —2N-1 —2N-1
(—A7 s —A5 seey m AN TAT 010, —Ag 02,ms s —AgN41 O2N+1m)s

and Ab%_QN) is generated from A by replacing its (4N + 2)th column with
(_)‘%N+17 _)‘§N+17 LR _)\3%1%7 _)\%N+151,n7 _)‘272N7162,n7 RN} _A;I\Q[Ii;152N+1,n)~
The suitable A; are selected to guarantee A # 0. According to (12), a solution
of Eq. (1) is obtained

. —2N

b= =03 (21)
In order to better understand (21), the following cases of N = 0 and N = 1 are
studied:

(I) When N = 0, solving Egs. (10) for n + 1 leads to

Cuy_ Ad) g AN,

Apy1 = %ﬂv bn+1 - T> (22)
o )\1_1 61,n+1 Aa(_l) o _)\1 51,n+1
- ’ n+l — _ )
AMbi 1 —1 * R TR S
1 (23)
AYO Ay =M
n+1 — 1l
01n41A1 —01n41A]

Applying the DT, we got the solution of Eq. (1) as follows:
. 0
Pn = — 51-1)-1 ) (24)

the evolution profiles of which at different times are shown in Fig. 1.
(IT) When N = 1, solving Egs. (10), we got

-3
a=d = A“5z+1)
n+1 A 9

(25)

(=2)
b(—2) _ Abn—0—1
n+1 A
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Fig. 1. (Color online) The evolution plot of solution (24) when N = 0 with specific parameter
(a) A= %,c: %, (b)yA=2,c=1and (c) A=1 c:%.

with

-3
AafH_l) =

A
A2

A3
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02.n+1
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53,n+1
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A
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Fig. 2. (Color online) The evolution profile of the solution (27) when N = 1 with specific

=-20

parameter (a) A1 = 1, Ao = %7 A3z = %, c=1,(b) 1 = % Ao = %, Az = %, c = % and
QM=% d=-1, =28 c=1
1 01,n+1
>\1 )\71 _A% );2 51,n+1 _)‘%
1
1 52 41
A2 I -3 ’;2 02, n+1 -3
2
1 03 n+1
A3 ™ A3 /\nz 03, n+1 -3
Ab(_Z) _ 3 3
Al 61,n+1 bV 61,n+1 )\2 1 51,n+1 ’
A 191,n+1 ™ 23 M - - 23
1 1
02,n+1 02 ny1 d2,n+41
2 2
03 n+1 03,n41 03,n41
’ A3 _%in 2 1 B
)\3 303,n+1 )\g 3 )\g

where Aagfl) is generated from A by replacing its (3)th column with

(=3, =A3, =3, —A381 i1, —)\27352,,#1, —)\5353,n+1), and Ab;fl) is gener-
ated from A by replacing its (6)th column with (—=A3, —=A3, —A3, —A381 41,
—)\27362,,1“, —)\5363,,1“). So that the solution of Eq. (1) is obtained by using
the DT as

. -2
Pn = _b'EL-’rl) ) (27)
the evolution profiles of which at different times are illustrated by Fig. 2.
4. Conservation Laws
It follows from (2) that

C
Pln+1 = X@l,n +pn902,na P2 n+1 = —PnPln + >\902,n . (28)
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If assume 6,, = if’:, then (28) can be rewritten as
P1,n+1 C ¥2,n+1 Pn
— = -+ nena ’ :_74_)" 29
Sal,n >\ b 502,11 gn ( )
which implies
~ 220, 4+ pr(0n0p41 + DX+ b1 =0. (30)
&)
Assuming 6,, = Zj:(xf Hé and plugging it into (30), then the recursion relation is
obtained
07(11) = DPn, 97(12) =0, 0£m+2) = DPn Z agj)egﬁ-{l—j) + 087(171)1 > (31)
j=1

where m > 0 is a positive integer. Moreover, from (3) and (29), we can get

2
[ln(§01,n)}t = [S;ll,n}t = <>C\2 +pnpn—1) + (Cp;\n + Apn—1>0n (32)

and

—C

{m (i +pn9n)]t = (E - 1)[ A; + Pnpn_1 + (ipn + Apnl)en]- (33)

Equating the same powers of A in (33), we obtain an infinite number of conservation
laws for Eq. (1), and list the first two conservation laws:

8 6 4 2
p 4 p p
_inogp In Sy I ) — (B — 1) [2pnpn_i],
(4c4+3c3 264+C>t ( )[2Pnpn—1]
(34)
PaPn+1 2 2 2
<pnpn+1 T A ) = (E — 1)[p5pn—1Pn+1 + cpy, + Pp—1Pny1 — 7] .
t

5. Conclusions

This modified Volterra lattice not only behaves like a discrete version of the KdV
equation but also is an integrable system related to the Toda lattice. It has been
applied to solve complex nonlinear phenomenon in physics, biology and other engi-
neering fields. For instance, it can be used to describe predator—prey interactions of
a series of species preying on the next, and it can be also used as a model for Lang-
muir waves in plasmas.® In this work, the N-fold DT (5) and (12) of Eq. (1) were
established, and the explicit solutions (24) and (27) described by determinants were
also constructed. Furthermore, the solitonic evolution profiles were plotted, Figs. 1
and 2 show the solution of p, when N = 0 and N = 1, respectively. Finally, the
infinitely many conservation laws of Eq. (1) were derived using a standard way.
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