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In this work, we study the modified Volterra lattice. Applying the gauge transformation

of the associated 2 × 2 matrix spectral problems, we establish the N -fold Darboux
transformation (DT), and then construct a few explicit solutions in terms of determinants

upon using the obtained DT. Moreover, all the results are illustrated by the graphs of

the solitonic evolution profiles of the aforementioned solutions. Finally, infinitely many
conservation laws for the modified Volterra lattice are proposed. The obtained results

of this research might be applied to the research on nonlinear phenomena in physics or

engineering areas.

Keywords: Lax pair; Darboux transformation; explicit solution; modified Volterra lattice;

conversation law.

1. Introduction

Nonlinear integrable systems have been applied to many fields,1 such as nonlin-

ear optics and chaos. Moreover, their explicit solutions have been playing a key

role in many research areas, for example, descriptions of different kinds of waves.

Therefore, many researchers pay much attention to this important research. Until

now, some excellent methods have been established, which are inverse scattering

¶Corresponding author.
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transformation,2 Hirota bilinear method and generalized bilinear method,3–8 the

homogeneous method,9–13 the hyperbolic function method,14 the F -expansion

method,15 the Bäcklund transformation method,16 the extended tanh-function

method,17 similarity transformation,18,19 algebra-geometric approach,20 variable-

detached method,21 Painleve analysis,22 Darboux transformation,23–27 and so

forth.28–33 Among the aforementioned methods, the Darboux transformation is

one of the powerful and direct methods to investigate explicit solutions.34

In this paper, we will study the DT and explicit solutions of the modified

Volterra lattice35:

pn,t = (p2n + c)(pn+1 − pn−1) , (1)

where pn = p(n, t) is a function of discrete variable n and time variable t, and

pn,t = dpn
dt . From Ref. 35, the Lax pair for Eq. (1) is

Eϕn = Unϕn =

(
cλ−1 pn

−pn λ

)
ϕn , (2)

ϕn,t = Vnϕn =


c2

λ2
+ pnpn−1

cpn
λ

+ λpn−1

−cpn−1
λ
− λpn λ2 + pnpn−1

ϕn , (3)

where ϕn = (ϕ1,n, ϕ2,n)T is an eigenfunction vector, and T denotes the transpose

of a vector or a matrix, and E is the shift operator defined by Ef (n, t) = f(n +

1, t), E−1f(n, t) = f(n − 1, t), and λ stands for the spectral parameter which is

independent of time variable t. Naturally, the condition of compatibility between

Eqs. (2) and (3) leads to a zero-curvature equation

Un,t = Vn+1Un − UnVn . (4)

This paper is organized as follows. In Sec. 2, the N -fold DT for Eq. (1) is

constructed by using the AKNS procedure; then some explicit solutions described by

determinants are obtained according to the aforementioned N -fold DT. Moreover,

the interactions of those solutions are illustrated in Sec. 3. In Sec. 4, infinitely

many conservation laws of Eq. (1) are given. Finally, some applications in physics

and other conclusions are given in Sec. 5.

2. N-Fold Darboux Transformation

In order to construct the N -fold Darboux transformation, we firstly introduce the

following gauge transformation:

ϕ̂n = Tϕn , (5)

where ϕ̂n satisfies Eqs. (2) and (3), and

Eϕ̂n = Ûnϕ̂n, Ûn = Tn+1UnT
−1
n , (6)
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ϕ̂n,t = V̂nϕ̂n, V̂ = (Tn,t + TnVn)T−1n . (7)

The Darboux matrix Tn will play a vital role in establishing the DT for Eq. (1)

since it can guarantee the validity of the N -fold DT. We assume

Tn =

(
An Bn

Cn Dn

)

=


λ2N+1 +

N−1∑
j=−N−1

a(2j+1)
n λ2j+1

N∑
j=−N

b(2j)n λ2j

−
N∑

j=−N
b(−2j)n λ2j λ−2N−1 +

N∑
j=−N

a(−2j−1)n λ2j+1

 , (8)

where λi’s (λi 6= 0, λi 6= λj , i 6= j, i, j = 1, 2, . . . , 2N+1) are roots of the polynomial

x4N+2 det(Tn) of degree 8N + 4. It is easy to prove that

λ4N+2 det(Tn) = a(−2N−1)n

2N+1∏
i=1

(λ2 − λ2i )2 , (9)

which implies that det(Tn(λi)) = 0. Then we have

N−1∑
j=−N−1

a(2j+1)
n λ2j+1

i +

N∑
j=−N

b(2j)n λ2ji δi,n = −λ2N+1
i ,

−
N∑

j=−N
b(−2j)n λ2ji +

N∑
j=−N

a(−2j−1)n λ2j+1
i δi,n = −δi,nλ−2N−1i ,

(10)

where

δi,n =
ϕ2,n(λi)

ϕ1,n(λi)
, δi,n+1 =

(λiδi,n − pn)λi
λipnδi,n + c

, (11)

where ϕn = (ϕ1,n, ϕ2,n)T is a solution of the Lax pairs (2) and (3). We will choose

suitable λi, ri(λi 6= 0, ri 6= 0, i = 1, 2, . . . , 2N + 1) to ensure that the coefficient de-

terminant for Eqs. (10) is not equal to zero. Thus, a
(i)
n , b

(i)
n , c

(i)
n , d

(i)
n can be uniquely

determined by Eqs. (10). Based on the aforementioned facts, the following theorem

is true.

Theorem 1. The matrices Ûn, V̂n defined in (6) and (7) have the same forms as

Un, Vn, respectively, where the transformations from the old potential p to the new

one p̂ is given by

p̂ = pna
(−2N−1)
n+1 − cb(−2N)

n+1 . (12)

Proof. Let the adjoint matrix of Tn be T ∗n , then T ∗n = (detTn)T−1n . Then

λ4N+3Tn+1UnT
∗
n =

(
f11(λ, n) f12(λ, n)

f21(λ, n) f22(λ, n)

)
. (13)
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It is easy to show that f11(λ, n) is a polynomial of degree 8N + 4 in λ and f12(λ, n)

and f21(λ, n) are polynomials of degree 8N + 5 and f22(λ, n) is a polynomial of

degree 8N + 6. Therefore, we have fst(λi, n) = 0(s, t = 1, 2). Now, (13) can be

rewritten as follows:

λ4N+3(Tn+1Un)T ∗n

= λ4N+2 det(Tn)Qn(λ)

= λ4N+2 det(Tn)

(
q
(0)
11 q

(1)
12 λ+ q

(0)
12

q
(1)
21 λ+ q

(0)
21 q

(2)
22 λ

2 + q
(1)
22 λ+ q

(0)
22

)
, (14)

where q
(m)
ij are functions to be determined and independent of λ. Then we have

λ(Tn+1Un) = QnTn . (15)

Comparing the coefficients of λ4N+3, λ4N+1 in Eq. (16), we get

q
(0)
11 = c, q

(0)
12 = 0, q

(1)
12 = pna

(−2N−1)
n+1 − cb(−2N)

n+1 = p̂n, q
(0)
21 = 0 ,

q
(1)
21 = −(pna

(−2N−1)
n+1 − cb(−2N)

n+1 ) = −û, q
(0)
22 = q

(1)
22 = 0, q

(2)
22 = 1 ,

(16)

which implies P = Û .

Similarly, we can prove that the matrix V̂ has the same form as V .

It follows from Theorem 1 that the transformations (5) and (12) can transform

the Lax pairs (2) and (3) into the Lax pairs (6) and (7) of the same type. Thus,

they can both result in Eq. (1). The transformations (5) and (12) are called an

N -fold DT of Eq. (1).

3. Explicit Solutions

In this section, the transformations (5) and (12) will be applied to constructing the

explicit solutions of Eq. (1). Substituting the trivial solution p = 0 into (3) and (4),

we got a solution of (2) and (3):

ϕ =


(
λ

c

)−n
e
c2

λ2
t

λneλ
2t

 . (17)

Moreover, we have

δi,n =
λ2ni
cn

e
(λ2
i− c2

λ2
i

)t
, δi,n+1 =

λ2i
c
δi,n . (18)

Solving the linear algebraic system (10) yields to

a(−2N−1)n =
∆a

(−2N−1)
n

∆
, bn(−2N) =

∆b
(−2N)
n

∆
, (19)
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with

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ2N−11 · · · λ−2N−11 λ−2N1 δ1,n · · · λ2N1 δ1,n

λ2N−12 · · · λ−2N−12 λ−2N2 δ2,n · · · λ2N2 δ1,n

· · · · · · · · · · · · · · · · · ·
λ2N−12N+1 · · · λ−2N−12N+1 λ−2N2N+1δ2N+1,n · · · λ2N2N+1δ2N+1,n

λ−2N+1
1 δ1,n · · · λ2N+1

1 δ1,n −λ−2N1 · · · −λ2N1
λ−2N+1
2 δ2,n · · · λ2N+1

2 δ2,n −λ−2N2 · · · −λ2N2
· · · · · · · · · · · · · · · · · ·

λ−2N+1
2N+1 δ1,n · · · λ2N+1

2N+1δ1,n −λ−2N2N+1 · · · −λ2N2N+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (20)

∆a
(−2N−1)
n is generated from ∆ by replacing its (2N + 1)th column with

(−λ2N+1
1 ,−λ2N+1

2 , . . . ,−λ2N+1
2N+1,−λ

2N+1
1 δ1,n,−λ−2N−12 δ2,n, . . . ,−λ−2N−12N+1 δ2N+1,n),

and ∆b
(−2N)
n is generated from ∆ by replacing its (4N + 2)th column with

(−λ2N+1
1 ,−λ2N+1

2 , . . . ,−λ2N+1
2N+1,−λ

2N+1
1 δ1,n,−λ−2N−12 δ2,n, . . . ,−λ−2N−12N+1 δ2N+1,n).

The suitable λi are selected to guarantee ∆ 6= 0. According to (12), a solution

of Eq. (1) is obtained

p̂n = −b(−2N)
n+1 . (21)

In order to better understand (21), the following cases of N = 0 and N = 1 are

studied:

(I) When N = 0, solving Eqs. (10) for n+ 1 leads to

a
(−1)
n+1 =

∆a
(−1)
n+1

∆
, b

(0)
n+1 =

∆b
(0)
n+1

∆
, (22)

∆ =

∣∣∣∣∣ λ−11 δ1,n+1

λ1δ1,n+1 −1

∣∣∣∣∣ , ∆a
(−1)
n+1 =

∣∣∣∣∣ −λ1 δ1,n+1

−δ1,n+1λ
−1
1 −1

∣∣∣∣∣ ,
∆b

(0)
n+1 =

∣∣∣∣∣ λ−11 −λ1
δ1,n+1λ1 −δ1,n+1λ

−1
1

∣∣∣∣∣ .
(23)

Applying the DT, we got the solution of Eq. (1) as follows:

p̂n = −b(0)n+1 , (24)

the evolution profiles of which at different times are shown in Fig. 1.

(II) When N = 1, solving Eqs. (10), we got

a
(−3)
n+1 =

∆a
(−3)
n+1

∆
,

b
(−2)
n+1 =

∆b
(−2)
n+1

∆

(25)
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(a) (b) (c)

Fig. 1. (Color online) The evolution plot of solution (24) when N = 0 with specific parameter

(a) λ = 4
5

, c = 1
2

, (b) λ = 2, c = 1 and (c) λ = 1
3

, c = 2
3

.

with

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1
1

λ1

1

λ31

δ1,n+1

λ21
δ1,n+1 λ21δ1,n+1

λ2
1

λ2

1

λ32

δ2,n+1

λ22
δ2,n+1 λ22δ2,n+1

λ3
1

λ3

1

λ33

δ3,n+1

λ23
δ3,n+1 λ23δ3,n+1

δ1,n+1

λ1
λ1δ1,n+1 λ31δ1,n+1 −λ21 −1 − 1

λ21

δ2,n+1

λ2
λ2δ2,n+1 λ32δ2,n+1 −λ22 −1 − 1

λ22

δ3,n+1

λ3
λ3δ3,n+1 λ33δ3,n+1 −λ23 −1 − 1

λ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

∆a
(−3)
n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1
1

λ1
−λ31

δ1,n+1

λ21
δ1,n+1 λ21δ1,n+1

λ2
1

λ2
−λ32

δ2,n+1

λ22
δ2,n+1 λ22δ2,n+1

λ3
1

λ3
−λ33

δ3,n+1

λ23
δ3,n+1 λ23δ3,n+1

δ1,n+1

λ1
λ1δ1,n+1 −δ1,n+1

λ31
−λ21 −1 − 1

λ21
δ2,n+1

λ2
λ2δ2,n+1 −δ2,n+1

λ32
−λ22 −1 − 1

λ22
δ3,n+1

λ3
λ3δ3,n+1 −δ3,n+1

λ33
−λ23 −1 − 1

λ23

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (26)

1850409-6

M
od

. P
hy

s.
 L

et
t. 

B
 2

01
8.

32
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SO

U
T

H
E

R
N

 C
A

L
IF

O
R

N
IA

 @
 L

O
S 

A
N

G
E

L
E

S 
on

 1
2/

17
/1

8.
 R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 5, 2018 9:26 MPLB S0217984918504092 page 7

N-fold Darboux transformation and conservation laws of the modified Volterra lattice

(a) (b) (c)

Fig. 2. (Color online) The evolution profile of the solution (27) when N = 1 with specific

parameter (a) λ1 = 1, λ2 = 7
5

, λ3 = 8
5

, c = 1, (b) λ1 = 1
2

, λ2 = 7
5

, λ3 = 8
5

, c = 1
2

and

(c) λ1 = 1
2

, λ2 = − 1
5

, λ3 = 8
5

, c = 1
2

.

∆b
(−2)
n+1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1
1

λ1
−λ31

δ1,n+1

λ21
δ1,n+1 −λ31

λ2
1

λ2
−λ32

δ2,n+1

λ22
δ2,n+1 −λ32

λ3
1

λ3
−λ33

δ3,n+1

λ23
δ3,n+1 −λ33

δ1,n+1

λ1
λ1δ1,n+1 −δ1,n+1

λ31
−λ21 −1 −δ1,n+1

λ31
δ2,n+1

λ2
λ2δ2,n+1 −δ2,n+1

λ32
−λ22 −1 −δ2,n+1

λ32
δ3,n+1

λ3
λ3δ3,n+1 −δ3,n+1

λ33
−λ23 −1 −δ3,n+1

λ33

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where ∆a
(−3)
n+1 is generated from ∆ by replacing its (3)th column with

(−λ31,−λ32,−λ33,−λ31δ1,n+1,−λ−32 δ2,n+1,−λ−33 δ3,n+1), and ∆b
(−2)
n+1 is gener-

ated from ∆ by replacing its (6)th column with (−λ31,−λ32,−λ33,−λ31δ1,n+1,

−λ−32 δ2,n+1,−λ−33 δ3,n+1). So that the solution of Eq. (1) is obtained by using

the DT as

p̂n = −b(−2)n+1 , (27)

the evolution profiles of which at different times are illustrated by Fig. 2.

4. Conservation Laws

It follows from (2) that

ϕ1,n+1 =
c

λ
ϕ1,n + pnϕ2,n, ϕ2,n+1 = −pnϕ1,n + λϕ2,n . (28)
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If assume θn =
ϕ2,n

ϕ1,n
, then (28) can be rewritten as

ϕ1,n+1

ϕ1,n
=
c

λ
+ pnθn,

ϕ2,n+1

ϕ2,n
= −pn

θn
+ λ , (29)

which implies

− λ2θn + pn(θnθn+1 + 1)λ+ cθn+1 = 0 . (30)

Assuming θn =
∑+∞
j=1

θ(j)n
λj and plugging it into (30), then the recursion relation is

obtained

θ(1)n = pn, θ(2)n = 0, θ(m+2)
n = pn

m∑
j=1

θ(j)n θ
(m+1−j)
n+1 + cθ

(m)
n+1 , (31)

where m > 0 is a positive integer. Moreover, from (3) and (29), we can get

[ln(ϕ1,n)]t =
[ϕ1,n]t
ϕ1,n

=

(
c2

λ2
+ pnpn−1

)
+

(
cpn
λ

+ λpn−1

)
θn (32)

and [
ln

(
c

λ
+ pnθn

)]
t

= (E − 1)

[
−c2

λ2
+ pnpn−1 +

(
c

λ
pn + λpn−1

)
θn

]
. (33)

Equating the same powers of λ in (33), we obtain an infinite number of conservation

laws for Eq. (1), and list the first two conservation laws:(
− p8n

4c4
+
p6n
3c3
− p4n

2c4
+
p2n
c

)
t

= (E − 1)[2pnpn−1] ,

(
pnpn+1 −

p9npn+1

c4

)
t

= (E − 1)[p2npn−1pn+1 + cp2n + cpn−1pn+1 − c2] .

(34)

5. Conclusions

This modified Volterra lattice not only behaves like a discrete version of the KdV

equation but also is an integrable system related to the Toda lattice. It has been

applied to solve complex nonlinear phenomenon in physics, biology and other engi-

neering fields. For instance, it can be used to describe predator–prey interactions of

a series of species preying on the next, and it can be also used as a model for Lang-

muir waves in plasmas.36 In this work, the N -fold DT (5) and (12) of Eq. (1) were

established, and the explicit solutions (24) and (27) described by determinants were

also constructed. Furthermore, the solitonic evolution profiles were plotted, Figs. 1

and 2 show the solution of pn when N = 0 and N = 1, respectively. Finally, the

infinitely many conservation laws of Eq. (1) were derived using a standard way.
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