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In this research, we will introduce and study the localized interaction solutions and

their dynamics of the extended Hirota–Satsuma–Ito equation (HSIe), which plays a
key role in studying certain complex physical phenomena. By using the Hirota bilinear

method, the lump-type solutions will be firstly constructed, which are almost rationally

localized in all spatial directions. Then, three kinds of localized interaction solutions will
be obtained, respectively. In order to study the dynamic behaviors, numerical simulations
are performed. Two interesting physical phenomena are found: one is the fission and
fusion phenomena happening during the procedure of their collisions; the other is the
rogue wave phenomena triggered by the interaction between a lump-type wave and a

soliton wave.
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1. Introduction

As an important part of soliton theory, which has been applied in many fields

such as nonlinear optics, plasmas, solid-state physics and so forth, searching for

exact solutions of nonlinear evolution equations (NLEEs) has attracted a lot of

attention and has been one of the hot topics,1–13 such as the construction of

rational solutions14 and other exact solutions.15–26 In the recent decades, many

systematic and effective methods have been proposed for constructing exact solu-

tions, for example, Painlevé analysis method,27 Darboux transformation method,28

Bäcklund transformation method,29 Hirota bilinear method and generalized bi-

linear approach,30–33 and inverse scattering method.34 Among the aforementioned

methods, the Hirota direct method is a direct and effective method for constructing

exact solutions, which will be used in our research. For example, by using the Hirota

direct method, lump and hybrid solutions of NLEEs have been studied by many

researchers.35–42

Zhou et al.,43 applied the Hirota direct method to construct lump and inter-

action solutions to the (2 + 1)-dimensional Hirota–Satsuma–Ito (HSI) equation.

Moreover, Ma44 and Liu et al.45 constructed the lump and lump-soliton interaction

solutions of an (2 + 1)-dimensional extension of the HSI equation. These research

works motivate us to generalize the (2+1)-dimensional cases to the following (3+1)-

dimensional case, which can be applied to study shallow water:

wt = uxxt + 3uut − 3uxvt + αux, wx = −uy − uz, vx = −u. (1)

To the best of our knowledge, for the first time, Eq. (1) is introduced and there is

no reference about Eq. (1) elsewhere.

The task of this research is to obtain the interaction solution and its dynam-

ics of Eq. (1) based on the Hirota bilinear method. In the meanwhile, numerical

simulations are performed graphically, which show that choosing parameters has

big impact on the types and dynamic properties of the solutions. Since the struc-

ture of the (3 + 1)-dimensional equation (1) is more complex and complicated than

the (2 + 1)-dimensional models, then the obtained results in this paper are signi-

ficantly richer than those derived about the (2 + 1)-dimensional equations44 and

Ref. 45.

This paper is organized as follows. In Sec. 2, localized lump-type solutions are

given to the (3 + 1)-dimensional equation (1), wherein the dynamic behaviors are

graphically analyzed in detail. In Secs. 3–5, three kinds of interaction solutions are

constructed: the first consisting of a lump-type and a stripe soliton waves, the second

is the combination of a lump-type and a periodic waves, the last is the interaction

between a lump-type and a pair of kink waves. Due to the complex structure of

(3 + 1)-dimensional models and the tedious computations, we only provide three

kinds of interaction solutions. And the numerical simulations are given through the

corresponding graphs. Finally, some discussions are given in Sec. 6.
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2. Lump-Type Solution

In order to construct the lump-type solutions of Eq. (1), by using the logarithmic

transformation u = 2(ln f(x, y, z, t))xx, we firstly turn Eq. (1) into the following

Hirota bilinear form:

(DtD
3
x +DtDy +DtDz + αD2

x)(f · f) = 0, (2)

where α 6= 0 is a real constant and Dx, Dt, Dy, Dz are the Hirota derivatives defined

by

Dm
x D

n
yD

l
za(x, y, z) · b(x, y, z)

=

(
∂m

∂sm
∂n

∂tn
∂l

∂rl

)
a(x+ s, y + t, z + r)b(x− s, y − t, z − r)|s=0,t=0,r=0,

m, n, l = 0, 1, 2, 3, . . . . (3)

According to the quadratic function method,36 function f in Eq. (2) is as follows:

f = g2 + h2 + a11 (4)

with

g = a1x+ a2y + a3z + a4t+ a5, h = a6x+ a7y + a8z + a9t+ a10, (5)

where ai’s are real parameters to be determined later. Now, plugging (4) into (2)

and setting the coefficients of x, y, z, t to zero yield a solution of parameters ai’s as

follows:

a2 = − (αa21a4 + 2αa1a6a9 − αa4a26 + a3a
2
4 + a3a

2
9)

(a24 + a29)
,

a7 =
αa21a9 − 2αa1a4a6 − αa26a9 − a24a8 − a8a29

a24 + a29
,

a11 =

−3(a31a
3
4 + a31a4a

2
9 + a21a

2
4a6a9 + a21a6a

3
9 + a1a

3
4a

2
6

+ a1a4a
2
6a

2
9 + a24a

3
6a9 + a36a

3
9)

α(a1a9 − a4a6)2
,

(6)

which satisfy the following constraint conditions:

a1a9 − a4a6 6= 0, a24 + a29 6= 0, (7)

which make sure that u = 2(ln f(x, y, z, t))xx is well defined. The above-mentioned

solution of ai’s in (6) leads to a positive quadratic function solution of (2), which,

in turn, yields a lump-type solution of (1) given by

u = 2(ln f)xx =
4((a21 + a24)f − 2(a1g + a4h)2)

f2
(8)

with functions g and h defined in (5). As a matter of fact, the solution (8) is a lump

solution if and only if u → 0 while x2 + y2 + z2 → ∞. But the solution (8) does
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Fig. 1. (Color online) Profile of the bright lump-type solution u in (8) with t = 0, z = 1 at

different time. The specific parameters are α = −1, a1 = 2, a3 = 1, a4 = 1, a5 = 1, a6 = 1, a8 =

1, a9 = 1, a10 = 1. (a) 3D plot; (b) Density plot; (c) Contour plot.

not go to zero along any direction in the space of x, y, z because of the special and

complicated characters of (3+1)-dimensions in the resulting solution. For example,

when x2 + y2 + z2 → ∞ in the direction of the intersection line of surfaces g = 0

and h = 0, the solution (8) goes to a nonzero constant
4(a21+a

2
4)

a11
6= 0 for a21 + a24 6= 0

and a11 6= 0. Hence, it is only a lump-type solution not a lump solution.

The corresponding numerical simulations are given graphically by choosing spe-

cific parameters α = −1, t = 0, z = 1, a1 = 2, a3 = 1, a4 = 1, a5 = 1, a6 = 1, a8 =

1, a9 = 1, a10 = 1. By the tedious computations in Maple, we see that the solution u

in (8) has one maximum point (− 2
7 ,

4
7 , 1) and two minimum points (− 12

7 ±
√
6
3 ,

4
7 , 1).

Therefore, there is one peak corresponding to the maximum point and two valleys

corresponding to the two minimum points. Moreover, this solution u in (8) is a

bright lump-type solution since the height of the peak is bigger than the depth of

the two valley bottoms.

3. Localized Interaction Solutions

In recent years, based on the extensive investigation of exact solutions of NLEEs,

the study of interaction solutions among nonlinear excitations of integrable or non-

integrable systems has been paid a lot of attention since interaction solutions have

more interesting features and important applications. To construct the hybrid so-

lution between a lump-type and a soliton solution, function f is taken in the form

f = g2 + h2 + keβ + a15 (9)

with

g = a1x+ a2y + a3z + a4t+ a5,

h = a6x+ a7y + a8z + a9t+ a10,

β = a11x+ a12y + a13z + a14t,

(10)
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where ai’s and k are real parameters to be determined. By substituting (9) into (2),

the solutions of these parameters are obtained as

a1 =
3a9a

2
11

2α
, a2 = −3a6a

2
11

2
, a3 = 0, a4 = −2αa6

3a211
, a7 =

9a9a
4
11

4α
,

a8 = 0, a10 = −3a5a9a
2
11

2αa6
, a12 =

1

2
a311 − a13, a14 = − 2α

3a11
, a15 = 0

(11)

satisfying the condition a6a11 6= 0, which is a sufficient and necessary condition for

the solution u to be well defined. Without loss of generality, selecting appropriate

parameters, α = 1, k = 1, a5 = 1, a6 = −1, a7 = −1, a9 = −1, a11 = −1, a13 =

−1, a14 = 1, yields the corresponding solution u with t = 0 and z = 1

u = 2(ln(g + h+ keβ + a15))xx

=
2(gxx + hxx + (keβxx))− 2(gx + hx + (keβ)x)2

(g + h+ keβ)2
.

(12)

Then the interaction phenomena between a lump-type wave and a strip soliton

wave are as shown by Fig. 2. It is noted that the lump-type wave is firstly hidden

in the stripe soliton wave (see Fig. 2(a)). From Fig. 2(a), since it travels faster than

the stripe soliton wave with slow velocity, we can see that the stripe soliton begins

to split up into one lump-type wave, which implies that the fission phenomenon

happens. In Fig. 2(c), it is noted that it has totally run away from the stripe

soliton wave and keeps propagating along the negative direction of the y-axis. The

mathematical reason is that the solution u consists of two parts: a polynomial

function and an exponential function, which plays a more important role than the

polynomial part. Moreover, we found that the polynomial part of u has nothing to

do with spatial variable z.

Fig. 2. (Color online) Profile of the bright lump-type solution u in (8) with z = 1 at different time.
The specific parameters are α = −1, a1 = 2, a3 = 1, a4 = 1, a5 = 1, a6 = 1, a8 = 1, a9 = 1, a10 = 1.

(a) t = −5; (b) t = 0; (c) t = 100.
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4. Interaction Between a Lump-Type Solution and

a Periodic Solution

In this section, to obtain the interaction solution between a lump-type and a peri-

odic solution, the form of function f in (2) as a combination of a periodic function

and a positive quadratic polynomial function is

f = g2 + h2 + k cosβ + a15 (13)

with

g = a1x+ a2y + a3z + a4t+ a5,

h = a6x+ a7y + a8z + a9t+ a10,

β = a11x+ a12y + a13z + a14t,

(14)

where ai’s and k are all real parameters to be determined. Substituting (3) into the

bilinear form (2) leads to the constraint conditions among the parameters as

a1 = −3a9a
2
11

2α
, a2 =

3a6a
2
11

2
, a3 = 0, a4 =

2αa6
3a211

,

a7 =
9a9a

4
11

4α
, a8 = 0, a10 =

3a5a9a
2
11

2αa6
, a12 = −a

3
11

2
− a13,

a14 =
2α

3a11
, a15 = − 2α2k2a211

9a29a
4
11 + 4α2a26

(15)

satisfying a11a6 6= 0, which is a guarantee that the solution u of (1) is well defined.

If we take the above-mentioned parameters as α = 1, k = 1, a5 = 1, a6 = −1, a7 =

−1, a9 = −1, a11 = −1, a13 = −1, a14 = 1, the solution at t = 0 and y = 1 is given

as follows:

u = 2(ln(g + h+ keβ + a15))xx

=
2(gxx + hxx + (k cos(β))xx)− 2(gx + hx + (k cos(β))x)2

(g + h+ k cosh(β))2
.

(16)

From (15) and (16), the polynomial part of the solution u in (16) has nothing to

do with the spatial variable z but the coefficient of the spatial variable z in the

periodic part is not equal to zero. The interaction phenomena between a lump-type

and a strip soliton wave are illustrated in Fig. 3. From Fig. 3, at time of t = 0, we

see that the solution u in (16) has different shapes on different coordinate planes,

for example, the shape of u on the xOy plane is a lump wave, but the shapes of u

on other two coordinate planes look like the complex dark period solitons.
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Fig. 3. (Color online) Evolution profile of the interaction solution u in (16) with t = 0. The

specific parameters are α = 1, k = 1, a5 = 1, a6 = −1, a7 = −1, a9 = −1, a11 = −1, a13 =

−1, a14 = 1. (a) 3D plot on xOy plane; (b) 3D plot on yOz plane; (c) 3D plot on xOz plane.

5. Interaction Between a Lump-Type Solution and a Pair

of Kink Solutions

In order to study the interaction solution between a lump-type solution and a pair

of kink solutions, function f in (2) is taken to be a combination of a hyperbolic

cosine function and a positive quadratic polynomial function as

f = g2 + h2 + k coshβ + a15 (17)

with

g = a1x+ a2y + a3z + a4t+ a5,

h = a6x+ a7y + a8z + a9t+ a10,

β = a11x+ a12y + a13z + a14t,

(18)

where parameters ai’s and k are real to be determined. By putting (17) into the

bilinear equation (2), the corresponding relations are

k =
9a29a

4
11 + 16α2a21
8a211α

2
, a2 = −3a211(9a29a

4
11 + 16α2a21 + 16αa7a9

64a1α2
,

a3 =
3(9a9a

4
11 + 16αa7))a9a

2
11

64a1α2
, a4 =

4αa1
3a211

, a6 =
3a9a

2
11

4α
,

a8 = −9a9a
4
11 + 16αa7
16α

, a12 = −1

4
a311 − a13, a14 = − 4α

3a11

(19)

satisfying a11 6= 0, which guarantees the solution u of (1) be well defined. Now,

choosing the parameters α = 1, a1 = 1, a5 = 1, a7 = 1, a9 = 1, a10 = 1, a11 =

1, a13 = 1, a15 = 1, we have the solution u at time t = 0 and z = 1 as follows:

u = 2(ln(g + h+ k cosh(β) + a15))xx

=
2(gxx + hxx + (k cosh(β))xx)− 2(gx + hx + (k cosh(β))x)2

(g + h+ k cosh(β))2
.

(20)
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Fig. 4. (Color online) Evolution profile of the interaction solution u in (1) with t = 0, z = 1. The

specific parameters are α = 1, a1 = 1, a5 = 1, a7 = 1, a9 = 1, a10 = 1, a11 = 1, a13 = 1, a15 = 1.

(a) Contour plot at t = −30; (b) Contour plot at t = 0; (c) Contour plot at t = 30.

The numerical simulation of Eq. (20) is given by Fig. 4. During the interaction

progress, only a pair of kink waves exists, as shown in Fig. 4(a), as a matter of fact,

the lump-type solution is hiding itself in one of this pair of kink waves. In Fig. 4(b),

the collisions happened among the lump-type solution and the kink waves since the

kink wave in which the lump-type wave is hiding itself travels faster than the other

kink wave. Figure 4(c) shows that the kink waves which carry the lump-type wave

and the other kink wave are separated from each other and keep traveling forward.

6. Discussions

The extended HSIe (1) is a physical model of very importance, since it has richer

dynamic properties due to its complex structure. In this paper, by using the Hi-

rota direct method, lump-type solutions are constructed. And then three kinds of

localized interaction solutions are also obtained. Moreover, numerical analysis is im-

plemented on the dynamic behaviors and the propagation properties are obtained.

All the numerical simulations show that the dynamic behaviors of the solutions

are much richer and the types of parameters chosen have a very big impact on the

propagation properties, which can be seen from Figs. 2–4. Due to the complexity

of selecting the parameters and the complex structure of the (3 + 1)-dimensional

model, it is very hard to study the interaction solutions, however, they are worthy

of being investigated since they play a key role in physics. Therefore, in the future,

we will study other interaction solutions, such as the hybrid solutions between a

high-order breather and a line-soliton, and how the related parameters affect the

complex dynamic behaviors of the interaction solutions. The method used in this

paper can be used to construct solutions of other nonlinear physical models. More-

over, the results obtained in this paper may provide a potential technique to study

other localized waves.
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