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1. Introduction

It is interesting to search for new integrable equations in soliton theory and integrable systems. A traditional method is to
use zero curvature equations associated with finite-dimensional Lie algebras and to make use of the trace identity (or more
generally, the variational identity), to put the corresponding soliton equations into Hamiltonian forms [1-3]. This method
was extended to the super integrable equations in Ref. [4-6]. Many important super integrable equations were constructed
and written in super Hamiltonian forms by making use of the super trace identity (or the super variational identity [3]).
For examples, the super AKNS hierarchy [6-10], the super Dirac hierarchy [6,11,12], the super Kaup-Newell (KN) hierarchy
[13,14], and others [15-17]. Both of the odd variables and the even variables are involved in super integrable equations,
which has attracted many researchers’ attention [18-22].

In Ref. [23], the authors considered a hierarchy of generalized AKNS equations, where the spatial spectral problem is
given by

_h_ ¢
= Ug, U=< rﬂqr A+quqr>’ ¢=<¢;>’ (1)
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where g and r are both scalar potentials, A is the spectral parameter, and p is an arbitrary constant. The case of =0
reduces to the spatial spectral problem of the standard AKNS hierarchy [24]. Another three versions of generalized AKNS
equations were also discussed in refs. [25-27]. The same idea to generalize the KN hierarchy [28,29] and the Wadati-
Konno-Ichikaw (WKI) hierarchy [30], whose bi-Hamiltonian structures were constructed. Inspired by those generalizations,
we would, in this paper, like to construct a generalized super AKNS hierarchy.

The paper is organized as follows. In the next section, we shall construct a generalized super AKNS hierarchy. In Section 3,
the super bi-Hamiltonian form will be presented for the obtained super AKNS hierarchy by making use of the super trace
identity. Moreover, we propose a generalized super AKNS hierarchy with self-consistent sources generated from the varia-
tional derivative of spectra. Some conclusions and discussions will be listed in the last section.

2. A hierarchy of generalized super AKNS equations

In this section, we shall construct a generalized super AKNS hierarchy starting from a Lie super-algebra. First, let us
choose a set of basis vectors for the Lie super-algebra B(0, 1):

1 0 O 0 1 0 0 0 O 0 0 1 0 0 O
eg=(0 -1 O0),e;=(0 0 O0),es=(1 0 O0}).eaq=({0 0 O}),es=(0 0 1], (2)
0 0 0 0 0 O 0 0 O 0 -1 0 1 0 O

which satisfy the following relationship

[e1,e2) = —[es. e4) = 2e;, [e3, €1} =[5, e5} = 2e3, [e1, 4} =[e2, 5} = ey,
[es,e1) =[e3.es} = es,[ex. e3} =[es, e5) =e1,[es, e4} =[e3,e5} =0,

where [a, b} = ab — (=1)P@PM)pq is the super Lie bracket, and p(f) denotes the parity of an arbitrary odd or even element f.
Consider the following spatial spectral problem:

A+ow q o o
o =Ud, U=(?»+w)el+tJEz+rea+ae4+ﬂEs=( r -A-w ﬁ>,¢=(¢z), (3)
B —o 0 @3

where w = u(qr+ 2a8) with w is an arbitrary even constant, A is the spectral parameter, q and r are even potentials, and «

q
and B are odd potentials. Note that u = (&) is the potential. Obviously, the spatial spectral problem (3) with @ = 0 reduces

B
to the standard super AKNS case [6-10].
Second, to derive a soliton hierarchy associated with the spatial spectral problem (3), we solve the stationary zero cur-
vature equation

VX = [U,V], (4)

where

A B 0
v=|C -A 4] (5)
§ —-p O

Substituting U in (3) and V in (5) into the above Eq. (4), we have

Ax=qC—rB+ad + Bp,

By =2(A +w)B—2qA - 2up,

Go=-2A+w)C+2rA+ 26, (6)
px=A+w)p—aA— BB+qsé,

Oy =—(A+w)d+PA—aC+rp.

Choosing

A=Y ax7l. B=Yba . C= Al p=prl §=) 81 (7)

j=0 j=0 j=0 j=0 j=0
and comparing the coefficients of the same powers of A in Eq. (6), we obtain

bo =co=po=250=0,

ajy=qcj—rbj+ad;j+ Bpj. j=0,
bj.x:2bj+1 —2qaj—205pj+2a)bj, ]ZO,
cj,X=—26j+1+2raj+2/38j—2a)cj, j=>0,
Pjx = pjy1 —adj— Bbj+qd; +wp;, j=0,
8jx=—8j1 +Baj—acj+rp;—wd;, j=0,
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which leads to a recursive relationship

Cj+1 Cj
bj — I gj . j=0, 9)
j+1 J
Pj+1 Pj
where the recursive operator L; is given as follows:
10+ lg-ow —ro-'r 0 la+ B ro-1p
L — qo'q 70-q07'r—w qo'o g0 'B+a
= B q—a —Bo-1r T R ) BB +r
adlq —ad'r+ B adla—q d+ad'f-w

After a direct calculation, we get agx = 0. For the sake of simplicity, we take ag = 1. Moreover, all constants of integration
are chosen as zero. That is to say, a;|y—o = bjlu—o = Cjlu=o = Pjlu=o = 8jlu=o =0 (i = 1). Thus, the first three sets can be
computed as follows:

bi=qci=r.pp=a,8=5,a41=0,

1 1 1
b, = qu —wq,Cy = —Erx —r, py=0x— 0,8 =—Px—wp,a; = —E(qr+20u3),

1 1 1
bs = 70— iqu —qup +aoy — 5@xq — @G + w?q,

1 1 1
C3= —Ixx — Eqr2 —raf — BPBx+ SO + 0T + @?r,

4
1 1
P3 = Qo — 5 + 5B + QB — (e + qros + 2 B] + g’ ra,
1 1
83 = Buc— 5B + 51t + Tt + U[(qrB)x + qrfy+ 20 BBl + >’ B,
1
a3 = 7 (qrx — Gx7) + afy—axB + uqr(qr+4ap).

Last, let us introduce the temporal spectral problems;

¢, =V, (10)
where
[n] - % bj o n—j
74 :Z Cj —aj 81 A + Ay, n>=0,
j=0 (Sj —pPj 0

with A, being the modification term, which doesn’t appear in the standard super AKNS case. Upon supposing

b
Ap = (2 —a ;) the compatibility condition of the spectral problems (3) and (10) yields the following zero curvature
0

f —e
equation
U, - V" 4+ [u.vIM] =0, (1)

where n > 0. Making use of (8), we have

W, =0y, b=c=e=f=0,
G, = bnx — 2wby + 2qan + 20 pn + 2qa = 2bp, 1 + 2qa,
Iy, = Cnx + 2WCy — 210y — 238y — 2ra = —2¢y 41 — 214, (12)
Qt, = Pax — @Pn + Ay + Bby — @y + aa = ppy1 + aa,
Bt, = Snx + @8y — Ban +acyn —rpy — Ba = —6p1 — Pa,
which guarantees the following identity:

(qr +2ap), = —2(qca1 — Thpp1 + A8ni1 + BPnr1) = —2an51x-

Choosing a = —2u1a,,1, we arrive at the following hierarchy:

qt, 2byiq — 41qan.
U = T, | _ —2Cnq1 +4Uran (13)
" oy, Prs1 — 200y |’
B, ~8ns1 + 2 Ban 11

where n > 0. The case of Eq. (13) with i = 0 is exactly the standard super AKNS hierarchy [5]. Therefore, Eq. (13) is called
the generalized super AKNS hierarchy.
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When n =1 in Eq. (13), the flow is trivial. When n = 2 in Eq. (13), we obtain the first non-trivial flow:

G, = 3Gxx — G°1 — 2qaf + 2005 — 2 (qQuT + GP1 — Gotx B + 3G B + 25 B) — 2142q*r(qr + 4 B).
%rxx +qr? +2raf + 2 By — 2 (qx1? + qrry — ra By + 3ran + 2rxaB) + 27 qri (qr + 4aB),

o, = Ok + 3GxB + qBx — 1qrar — S (qxrer + 3qreer + 4qroy — 8aa ) — pn2q*ria,

B, = =B — 31x — Ty + 3qrB — S0 (qreB + 3657 + 4qr By + 8 B Bx) + 12q*r* B,

I, = —

whose Lax pairs are determined by U in (3) and V2], given by
yel oyl y
ven= [ v .
v -viso
with
Vigh =32 — J(ar+2a) — 5 (are — aur) — 211 (P — an) — 20%qr(qr + 4afp).
Ve =g+ g —qo
V[2] = oA+ oy — o,
Vlz] = —in—ro,

VIRl = BA — B — wp.

3. Super bi-Hamiltonian structures

In this section, we shall find super bi-Hamiltonian structures of the generalized super AKNS hierarchy (13). To this end,
we shall use the super trace identity, which was discussed in [4,5] and rigorously proved by Ma et al. in ref. [6]:

B fsn{v Yo (v a2 -

where Str denotes the super trace. It is easy to find that

au ou au
Str(Vak) =2A, Str( 3q V) =C+2urA, Str(arv> =B+ 21uqA,

Str (gU ) =28 +4upA, Str<gﬁ ) = —-2p —4ucA. (16)

Substituting (16) into (15), and balancing the coefficient of A-"2, we have

Cni1 + 24T0n 11
1) bny1 4+ 210qan
— [ 2ap2dx=(y —n—1 ., n=0.
Su / e 4 ) 2841 + 4 Ban h
—2pn11 — AU ny
The identity with n =0 tells y = 0. Thus, we have

Cny1 + 24T0n

bni1 +2pqa 8
n+1 Mqaniq _ Hni1 _ n>o. 17)
28n11 +4uBana du
—2pn11 —4pUan
where Hy,1 = — 21 [ ay,2dX. Moreover, it is easy to know that

Cnt1 Cnp1 + 2UTAn4q
b bni1 +21qa

nt | _ R, n+1 “qaniq C n=0 (18)
O 28011 + 4 Bania

Pn+1 —2pny1 — AUy
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where R, is given by

1-2urd-1q 2urd='r —urdla uro-'p

R — | ~21a97'q  1+2pq07'r —pgd ' nqd~'p

27| —2upolg 2uBOlr J-upd e BB
—2nadq 2ued1r —pedlae —L+pad'p

Thus, on the one hand, the hierarchy of generalized super AKNS Eq. (13) can be written as

Cni1 Cni1 + 2[4T0An 4 5
_ bnia | _ bni1 +210qani4 _ OHn41
Uy, =R Oni1 | — RiR; 208p41 + 4 Bansq =J Su ’ nz0 (19)
Pni1 =2Pns1 — 4oy
where
—4q0~1q 2 +4uqo-'r —4uq0a —4uqo-18
R — —24-4uro-'q  —4pro-lr 4purdla 4uro-18
=1 —2padlg 2uad1r —2uadla 1-2uad18
2uBo-1q =2uBo7'r —1+42uBd 'a 2uB0-1B
and
—-8uqd1q 2+8uqd'r —4uqd o 4puqd—'B
J=RR, = —2+8urd~'q  —-8urd'r 4urdla —4uro—'p
R T ] _4ped-iq 4p0d'r —2ued'a ~1 4 2puad'B
4uB07q —4pBo-'r L +2uBda —2uBa 1B

which is a super Hamiltonian operator.
On the other hand, by making use of the recursive relationship (9), the generalized super AKNS hierarchy (13) can be
written as follows:

Cn Cp + 2uray 5
_ bn | _ by +2uqay _ Hn
Uy, —R]L] (Sn —R1L1R2 28;1 +4/L,3an —MW, n>0, (20)
Pn =20 — 4poan

where M = RiLiRy = (M;j) 444, presented by as follows:

My =2q97'q—2/10q0~'q + 4uq(d~'qow + wd~'q) — 4*q20'q.

My = —2q0~'r — 2w 4+ 209q0~'r — 40q(3 " 'rw + wd 1) + 42qQ0 " r,
M3 =qd 'o — ndqd ' +2uq(d 'aw + wd ') — 2u%qQ3 e,

Mg = —a —qd7' B+ pdqd "B —21uq(d " B + wd ' B) +21*qQ207' B,
My = —2rd71q+ 2w — 2u0rd~'q — 4ur(d~'qw + wd~1q) + 4u*rQ0'q,
Moy = 2rd~'r + 2p0rd~'r + 4ur (0 'row + wd'r) — 4u*rQo ',

My = =B —19 7 Ta — pndrd e —2ur(d 'aw + wd o) + 2u%rQda,
Moy =137 ' B+ nord ' B +2ur(d'Bw +wd~18) —2u*rQ0 18,

Ms; = ad 'q—2udad g+ 2ua(d 1qw + wd~'q) — 2u*aQ0'q,

Msy =B —ad 'r+ 20000 'r = 2na (3 'rw + wd~1r) + 2u2a Q071 B,

Mss = —q + %aa’%x —udad o+ pa (@ law + wd'a) — naQd a,

Mas = @i B+ 3o+ pded ™ f — (@ foo + w0~ ) + a0,

My =0 —B07'q—2udB07'q—2uB (3 'qu + @d~'q) + 2u*BRQI~'q.
Mg = B ' r+2u0B3 7 r +2uB (07 'rw + wd~1r) — 22 BRI,

Mys = —%,33‘101 + L wdBI o — uBO 'aw+wd o) + u?BRI7'a,

2
Mas = 37+ 26075 + 1B~ + up (" oo + ™' B) — w2207 B.

with Q =9-1qdr+0-1rdq+ 20 'adB — 20-1Bda. Here M is the second super Hamiltonian operator.
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For m distinct spectral parameters Aq, Ay, ---, Am, the spatial parts by (3) and the temporal parts by (10) read

01 01

gzj =U(u, ;) gzj .

3i/ x 3j

®1j O1j (21)
¢ | =Vl r)|¢y). n=0,

#sj/ ., ¢3;

where 1 < j < m. Referring to the refs. [17,31,32], we obtain the variational derivative of the spectral parameter A; with
respect to the potential u:

82

g _¢22j — 2111
Oh; & 1 ¢12j — 214Gy jboj

Su S| Ej| =203 — 4B i)

%f 201 j@3j + 4oy b

(22)

where E; =2 [ ¢qj¢,;dx and 1 < j < m. Therefore, the generalized super AKNS hierarchy with self-consistent sources is
given by:

SH SN
t, =] = 4]y =0, (23)

=1

where m > 1.
4. Conclusions and discussions

In this paper, starting from the Lie super-algebra B(0, 1), we constructed a generalized super AKNS hierarchy (13), which
can be written as the super bi-Hamiltonian forms (19) and (20) by making use of the super trace identity (15). Choosing
m distinct spectral parameters Aq, Aj,..., Ay in the spatial spectral problem (3) and the temporal spectral problem (10), we
calculated the variational derivative of A; with respect to u. Thus, we proposed a generalized super AKNS hierarchy with
self-consistent sources (23). For other super integrable systems, can we construct their extensions by the similar method?
Moreover, in our previous papers, we have successfully applied binary nonlinearization to the super AKNS hierarchy [9,10].
Can we do the nonlinearization of Lax pairs for the generalized super AKNS hierarchy (13)? These two questions will be
discussed in a future paper.
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