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A new generalized Kadomtsev—Petviashvili (GKP) equation is derived from a bilinear
differential equation by taking the transformation v = 2(In f),. By symbolic computa-
tion with Maple, lump solutions, rationally localized in all directions in the space, to
the GKP equation are presented. The obtained lump solutions contain a set of six free
parameters, four of which should satisfy a nonzero determinant condition. As special
examples, six particular lump solutions are constructed and depicted with ¢t = 1.
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1. Introduction

Solving nonlinear differential equations has been one of the interesting topics in the
field of soliton and integrable system. Many methods have been developed to derive
solutions of nonlinear differential equations, such as Darboux transformation,* Hi-
rota bilinear method,? inverse scattering transformation® and so on. Among these
methods, Hirota bilinear method is regarded as a powerful tool to obtain soliton
solutions, 8 rational function solutions,”® etc. Lump solutions, which are located
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in all directions in the space, are a kind of rational function solutions and they
have been widely constructed by many researchers for many integrable equations,
such as (2 + 1)-dimensional nonlinear Schrodinger equation (i.e. Davey—Stewartson
equation),!® Kadomtsev-Petviashvili (KP) equation,**'2 BKP equation,'3 three-
dimensional three-wave resonant interaction,'* and so on.1522

In Ref. 12, one of the authors gave a class of lump solutions to the (2 + 1)-
dimensional KPI equation by Maple symbolic computation. Those lump solutions
contain six free parameters, four of which satisfy a nonzero determinant condition
guaranteeing analyticity and localization of the solutions. In fact, any lump solution
of KPI equation has this form of the sum of squares. Inspired by this, we will
construct a type of new GKP equation, and try to search for its lump solutions.

The plan of this paper is as follows. In Sec. 2, starting from Hirota bilinear
operators, a new bilinear differential equation is derived. By the transformation
u = 2(In f),, a GKP equation is constructed. Then we will search for positive
quadratic function solutions of this bilinear differential equation by a Maple pro-
gram. Accordingly, lump solutions of the GKP equation are obtained, and as its
application, six particular cases with specific values of the involved parameters are
plotted. Some conclusions and discussions are listed in Sec. 3.

2. Lump Solutions of the GKP Equation
Suppose that P is a polynomial in variables z,y, t:
P(z,y,t) = c1z’ + cox®yt + c3y® + cawy + et

where coefficients ¢; (1 < 4 < 5) are arbitrary constants. And the corresponding
(2 4+ 1)-dimensional bilinear differential equation read

P(Dy, Dy, Dy)f - f = (c1Dy + c2D2Dy Dy + c3D;, + 4Dy Dy + cs Dy Dy) f - f
= QCl(ffmmmc - 4facxmfa: + 3fw2x) + 262(ffmzyt - fwxyft - fzwtfy
+ fra Syt — 2feytfo + wayf;tt) + 203(ffyy - fy2)

+264(ffacy_fa:fy)+205(ffxt_facft):Ov (1)
where f is a function associated with variables x,y,t, and D,, D,, D; are Hirota
2,23

bilinear operators, defined by

o oN"/a o\N"[/d 0o\"
m yn Nk . — = - = - _
Dy DyDif -9 (8:10 Bm’) (8y 8y’> (at 875’)
X f(xv Y, t)g(l’l, ylv t/)|x’:z,y/:y,t/:t ) (2)

for non-negative integers m,n and k.

Remark 1. Term of D2D,D,f - f is useful for the following procedure of con-
structing rational function solutions. However, it has never appeared in the previous
relevant references.

1950126-2



Lump solutions of a new GKP equation

Taking the transformation
u=2(Inf)s, 3)
Eq. (1) can be written as the following nonlinear differential equation:
1 (Ugzz + 3u2) + Co(Ugyt + UV + 2upty) + 30y + Catty + cs5u =0, (4)
where u, = v,.

Remark 2. If f solves the bilinear differential equation (1), then u, defined by
(3), solves the nonlinear differential equation (4).

The nonlinear differential equation (4) is identified as the famous KPI equation
when ¢ = ¢4 = 0, ¢ = —c3 = ¢5 = 1 and KPII equation when ¢ = ¢4 = 0,
¢1 = ¢3 = ¢ = 1. Therefore, Eq. (4) is regarded as the GKP equation. Furthermore,
we have known that lump solutions of the KP equation have been studied in Ref. 12.
Here, we will search for lump solutions of Eq. (4). To this end, we firstly construct
polynomial function solutions of Eq. (1). Suppose

f=9"+h*+aq, (5)
where
g=a1x+ axy+ast+ayg, (©)
h = asx + agy + a7t + ag

and a; (1 <14 < 9) are real parameters to be determined. Substituting (5) into
Eq. (1), we obtain the constrained equation associated with parameters a; (1 <14 <
9) and ¢, (1 < k < 5). After a direct Maple program, the parameters a; (1 <¢ < 9)
can be solved as follows:

(a1a3 — aja? + 2azasa6)c3  ascy

)

R e e s ‘s

a4 = a4, a5 =0as, ag =0s,

(2a1a2a6 — adas + asa?)cs  ages
(ai + ad)es e
1

(alaﬁ - a2a5)20305

a7 = —

2., 233
ag = [—3(a] + a)’cics + (a1az + asag)
x (3aia3 — a3a? + 8ajasasag + 3azai — ajaj)cacs

+ (a% + ag)(&ﬁag + afag + 4ajazasa6 + a%ag + 3a§a§)0204] }, (7)

where a1, a9, aq, as, ag, ag are free real constants, cs # 0, ¢5 # 0, ajag — azas # 0
and a? + a2 # 0. In fact, if ayag — azas # 0, then a? + a2 # 0. But vice is not true.
The set (7) leads to a class of quadratic function solutions of Eq. (1):

2

(a1a3 — a1a2 + 2asasa6)c3  azcq

3 5 + t+aq
(af +ag)es Cs

= s o
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2 2 2
asag — a5as + 2a1a2a6)C agC
+[a5x+a6y—<<06 2252126)3+64>t+a8]
(ai + ag)cs C5

1
+ 3(a] + az)’cics + (a1as + asag)(3(ar1as + asag 2
o a8+ o) enes 1 )3 )

— (a1a6 — agas)?)cacs + (a3 + a2)(3(aras + asag)? + (a1ag — azas)?)cacy] .

(8)

Moreover, under the transformation (3), lump solutions of the nonlinear differential
equation (4) can be derived in the following form:

a1g1 + ashy

=4
f 9

9)

where

2 2
ai1a5 — a1ag + 2asa5a6)c3  G2Cy
2 6 ) t+ay,

(
g1 = a1T + a2y — (
(af 4 a3)cs cs

hi = asz + asy — ((a5a% — a%a:a +22a1a2a6)c3 + a664> t+ag,
(a1 + ag)es cs

and f are given by (8). Note that lump solutions (9) of the nonlinear equation (4) are
analytic in the zy-plane if and only if the parameter ag > 0 in (7). Furthermore, we
know that lump solutions (9) contain six free parameters (a1, as, a4, as, ag, ag), two
of which (a4, as) are due to the translation invariance of the GKP equation (4) and
the other four of which satisfy a nonzero determinant condition (ajas — azas # 0),
which indicates that g; and hy are independent.

From the above procedure, we find that free parameters ai,as,aq,as,ag, as
should satisfy the condition ajag — asas # 0, coefficients ¢, (1 < k < 5)
should satisfy the conditions c3 # 0,c¢5 # 0. Moreover, the condition ag > 0
should be satisfied. After direct calculation of ag in (7), we know that when
21 < 0, 24 > 0,(a1a2 + asag)(3(araz + asag)? — (ajag — agas)? )& > 0 while
¢ + c2 # 0, the condition ag > 0 is satisfied. In order to display lurnp solutions of
the GKP equation (1) more specifically, we choose the following five kinds of cases
ofcy =0,¢c0=0,¢c4 =0,¢c1 =c4 =0, co = cq4 =0 and the others are nonzero.
And all of ¢ (1 < k < 5) are nonzero as the sixth case. Here, we point out that the
chosen a; (1 <3 <9)and ¢; (1 <k <5) must comply with the above conditions. In
the following, we will display lump solutions of the GKP equation (4) under these
six cases. Note that the same free parameters a1, as, aq, as, ag, ag are chosen here.

Case 1. If we choose a1 = 1,a2 = 2,a5 = 1,a6 = —1,¢1 = 0,c0 = 1,c3 = —1,¢4 =
l,c5 = —1,a4 = 0,ag = 0, then ag = 22 > 0. The positive quadratic function

3
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(b) ©

Fig. 1. (Color online) The plots of (10) at (a) t = 1, (b) z-curves and (c) y-curves.

solutions and lump solutions are given by

5\2 5\% 10
f:(:zz+2y+§t> +<x—y+—t> + =

2 3’
(10)
B 42z +y + 5t)
(x+2y+ 312+ (x—y+ 312+ 127
The plots of u in (10) with ¢ = 1 are depicted by Fig. 1.
Case 2. If we choose a1 = 1,a2 = 2,a5 = 1,a6 = —1,¢1 = 1,c0 = 0,c3 = —1,¢4 =

l,c5 =1,a4 = 0,ag =0, then ag = % > 0. The positive quadratic function solutions
and lump solutions are given by

f=(z+2 —§t2—|— - —§t2+§
=+ -3 Ty 3

422 +y — 5t)
(x+2y— 202+ (x—y— 202+ 5"

(11)

The plots of u in (11) with ¢ = 1 are depicted by Fig. 2.

(a) (b) (©)

Fig. 2. (Color online) The plots of (11) at (a) t = 1, (b) z-curves and (c) y-curves.
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(b) (©)

Fig. 3. (Color online) The plots of (12) at (a) t = 1, (b) z-curves and (c) y-curves.

Case 3. If we choose a1 = 1,a2 = 2,a5 = 1,a6 = —1,¢c1 = l,c0 = 1,c3 = —1,¢4 =
0,cs = —1,a4 = 0,ag = 0, then ag = 1—?? > 0. The positive quadratic function

solutions and lump solutions are given by

1\? 7\% 10
f—(x+2y+2t> +(x—y+t> + =

2 37
(12)
B 42z +y + 4t)
(x+2y+3t)2+ (x—y+1t)2+10/3°
The plots of u in (12) with ¢ = 1 are depicted by Fig. 3.
Case 4. If we choose a1 = 1,a2 = 2,a5 = 1,a6 = —1,¢c1 = 0,c0 = 1,¢c3 = 1,¢4 =
0,c5 = —1,a4 = 0,a8 = 0, then ag = % > 0. The positive quadratic function
solutions and lump solutions are given by
2 2
1 7 2
f= <x+2y—2t> + (x—y—2t) —|—§,
(13)
4(2x 4y — 4t)
u = .
(x+2y— 302+ (@—y— L)+ 2
The plots of u in (13) with ¢ = 1 are depicted by Fig. 4.
Case 5. If we choose a1 = 1,a0 = 2,a5 = 1l,a6 = —1,¢c1 = 1,c0 = 0,c3 = —1,¢4 =

0,c5 =1,a4 =0,ag =0, then ag = % > 0. The positive quadratic function solutions
and lump solutions are given by

[ U ) kY (S R
- Y73 L 3’

42z +y — 4t)
(z+2y— 312+ (x—y— )2+ 35~

u =
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(b)

Fig. 4. (Color online) The plots of (13) at (a) ¢t = 1, (b) z-curves and (c) y-curves.

Fig. 5. (Color online) The plots of (14) at (a) t = 1, (b) z-curves and (c) y-curves.

(a) (b) (©)

Fig. 6. (Color online) The plots of (15) at (a) t = 1, (b) z-curves and (c) y-curves.

The plots of v in (14) with ¢ = 1 are depicted by Fig. 5.

Case 6. If we choose a1 = 1,a0 = 2,a5 = 1l,a6 = —1,c1 = —1,co =1,c3 =1,¢4 =
—1l,¢5 = —1,a4 = 0,ag = 0, then ag = 6 > 0. The positive quadratic function
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solutions and lump solutions are given by

5\ 5\
f:<m+2y—2t> +<x—y—2t) +6,

42z +y — 5t)
(x+2y—3t)2+(x—y—3t)2+6

(15)

The plots of u in (15) with ¢ = 1 are depicted by Fig. 6.

From above six cases, we notice that lump solutions v — 0 if and only if the
corresponding sum of squares g7 + h? — co. In fact, this condition is useful for any
cases as long as the chosen a; (1 < ¢ <9) and ¢ (1 < k < 5) satisfy the constrained
conditions.

3. Conclusions and Discussions

As for the bilinear GKP equation (1) and its corresponding nonlinear differen-
tial equation (4), positive quadratic functions solutions and lump solutions are
constructed by symbolic computations with Maple, respectively. Comparing Ref. 12
and our paper, we find that Eq. (1) with ¢; = —c3 = ¢5 = 1,¢0 = ¢4 = 0 is ex-
actly Eq. (2.2) with o = 1 in Ref. 12. Moreover, substituting ¢; = —c3 = ¢5 = 1,
ca = ¢4 = 0 into (8), positive quadratic function solutions of the bilinear GKP
equation (1) are defined by

3(af + a3)’

A R e P (16)

2 2 2 2
aijas;—aiag+2azasa6 2aiaza¢—asas+asa,
where fi = a1z+ay+="— 5% """t aa, fo = asTtagy+ "2 St

1Ta3 1Ta5

ag, which is in complete accord with Eq. (2.7) in Ref. 12. Because the transformation

(3) is different from (2.1) in Ref. 12, the corresponding lump solutions (Eq. (9) in
our paper and Eq. (2.8) in Ref. 12) are also different. For example, lump solutions

of the nonlinear GKP equation (4) with ¢; = —c3 = ¢5 = 1,¢2 = ¢4 = 0 are given
by
a1 f1 + as fa
u=4 2, 2 3(aitad)® ' (17)
i+ 12+ Gros—man

which are solutions of potential KP equation. In our future paper, we will search
for lump solutions of other nonlinear integrable equations.
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