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Abstract For the integrable couplings of Ablowitz-Kaup-Newell-Segur (ICAKNS) equations, N-fold Darboux trans-
formation (DT) T, which is a 4 X 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a
ratio of the (4N + 1)-order determinant and 4N-order determinant of eigenfunctions. By making use of these formulae,
the determinant expressions of N-transformed new solutions pI™1, ¢!, +¥1 and s!™ are generated by this N-fold DT.
Furthermore, when the reduced conditions ¢ = —p* and s = —r* are chosen, we obtain determinant representations
of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schrodinger (ICNLS) equations.
Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.
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1 Introduction

Integrable couplings of soliton equations have been at-
tracted much attention over the last few decades. Gener-
ally speaking, for a given integrable system of evolution
equations u; = K (u), a new system consisting of the orig-
inal system and its linearized system

ue = K(u), v =K'(u)], (1)

is still integrable. Here K'(u)[v] denotes the Gateaux
derivative of K(u) = K(u, Dyu,...) with respect to u in
a direction v, i.e.

K'()le] = oK (u-+ ev)leco

The second part v; = K'(u)[v] in the above new sys-
tem (1) is a special integrable couplings of the orig-
inal system u; = K(u). the method for
constructing integrable couplings of soliton equations
mainly included perturbations,!'=2 enlarging spectral
problems, 39! creating new loop algebras,[7~8 and multi-
integrable couplings.!9—11]
plings of soliton equations brought two major benefits.
One is to generalize the symmetry problem,?=13 the
other is to provide clues towards complete classification
of integrable systems.

So far,

The study of integrable cou-

It is well-known that DT[14-19 is always regarded as
one of the most effective method to construct solutions of
integrable equations. The main procedures are listed as
follows. Suppose the integrable equations are associated
with the following spectral problem

w:v = U¢7 7/% = V’(/Jv (2)
which is transformed into
gl = pligll, gl = vy, (3)
under a gauge transformation
Yt =T (4)

By Refs. [19-20] , we know that 7" in Eq. (4) must satisfy
following conditions

T,+TU =UWT, 1,47V =VvUlT, (5)

according to Eq. (3). It is crucial for us to search for
T in Eq. (4) so that UM and VI have the same forms
as U and V. Repeating N times, N-fold DT can be
constructed.
nant representation of DT for the integrable equations.
Without iterating, N-fold DT and N-transformed solu-
tions are derived for many integrable equations, such
as AKNS equation, ") derivative nonlinear Schrédinger

In 2006, the authors proposed determi-
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(DNLS) equation,?? Gerdjikov-Ivanov (GI) equation,?*
Chen-Lee-Liu (CLL) equation,! and so on.?>=28 Ac-
cordingly, many important solutions of these equations
are constructed in these references. For example, soliton
solutions, rogue wave solutions, breather solutions, and so
forth. To this day, no researchers considered determinant
representations of the N-fold DT and N-transformed new
solutions for the integrable couplings of soliton equations.
So we will solve this question in this paper.

The paper is organized as follows. In the next section,
we recall the construction of ICAKNS equations. Then
in Sec. 3, determinant representations of N-fold DT and
N-transformed solutions are constructed for the ICAKNS
equations. And in Sec. 4, under the constraint condition
q = —p" and s = —r*, we obtain ones of ICNLS equa-
tions. Some conclusions and discussions are listed in the
last section.

2 Integrable Couplings of the AKNS Equa-
tions

In this section, we will briefly recall the construction of
ICAKNS equations. Firstly, we know that the ICAKNS
system is associated with the following the spatial spectral

problem
Up Uy
e =U ) U=
o.=vo. v=("0 )

—iA p —iA 7
Uy = U, = 6
0 ( q i/\)’ ! ( 5 i>\> (6

where \ is a spectral parameter, p,q,r and s are poten-

tials, ¢ = (¢1, 2, #3,04)T is an eigenfunction. Solving
the stationary equation
Ve =0, V], (7)
where
(0 w) w-(e 5
0o W/’ C —-A)’
E F
1= (G —E) )
we have

A, =pC —qB, B, =-2iAB—2pA,
C, =2iAC +2¢qA, E,=pG—qF +rC—sB,
F, = —2iAF — 2iAB — 2pE — 21 A,

Gy = 210G + 2i0C + 2qF + 2sA. (8)
Taking
J=0 J=0 j>0
E=Y EX7, F=) FX7, G=) Gx7,
j=0 Jj=0 J=0

and comparing the coefficients of the same power of A\, we
have

By=Co=Fy=Go=0,
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Ajz =pCj —qBj,

Bj. = —2iBj1 —2pA;,

Cj» =2iCjq1 + 2945,

Ejx=pGj—qFj+rC; —sBj,

Fjo = =2iFj41 = 2iBjy1 — 2pE; — 2r4;,

Gjz =2iGj41 +2iCj41 + 2gE; + 254, 9)
where j > 0. It is easy to find that Ag, = Ey, = 0.

Choosing Ay = Ey = —1i, and taking constants of inte-
gral to be zero, we obtain all terms A;, B;,Cy, Ej, F;, G,
(j > 1). The first three terms are listed as follows:

A1:E1:0, Blzp7 Clzq7 FIZT, G1:S,
1. 1. 1.
A2=—§1pq7 B2:§1pw7 022—51%;7
1. 1,
By = Silpa—ps —qr), Fp=3i(rs —pa),
1. 1
G2 = 5i(0w = 52), Az = 7 (P2q—Pda),
1 1 1 1
By =—+ T —p? = — 7 lzxx —pg?
3 {Peat 570 Cs 1 dox T 5P,
1
b3 = (pzs PSz + QPQz 2pxq +qry — er) ;
1 1 1
F3* 4rxz+ pzfc+2p3_p q-l—pq?"
1 1 1
GS —Sza + qu+ q T_pq +p(]8

4 2 2
Secondly, let us introduce the temporal parts of the
spectral problem (6)

b, =V, VO =(\"V),, n>0, (10)

where “4+” means non-negative power. The compatible

condition of (6) and (10) yields to

U, — V™M +[U,v™] =0, n>0. (11)
Substituting U and V(™ into Eq. (11), we have
Pt, = —21Bnt1,  qr, = 21Cpq1,
Ty, = —21F,41 — 2B, 41,
S, = 2iGpi1 + 2iChas . (12)

Lastly, when n = 2 in Eq. (12), we obtain the ICAKNS

equations
1. . 9 1, . o
Pty = §1prx —1p7q, Qi, = _§1sz + 1pq~,
1. 1, . 9 . 9 .
Tty = 5170513:6 - ilpzz + 1p~q —1p~§ — 21pq7“,
_ _1. L a2 .2 .
St, = 213m + 21qm ipg® + ig°r 4+ 2ipgs,  (13)

whose Lax pairs are given by U and V(?) as follows:

(2) (2)
v _ <Vo V1(2)>

with
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V(2) _ —i)\2 — %ipq p>\ +
0 qA — %iqw ia2

(2) 71)\2 +
Vit = 1:
sSA+ EI(Qz - 51:)

3 DT of ICAKNS Equations (13)

In this section, we will derive determinant representa-
tion of DT for the ICAKNS equations (13). To this end,
we firstly suppose the Darboux matrix is

T
(T Ty,
0 Tp
The spectral problem O = U, 1, = V¢ is trans-
formed into gb UMl ¢[1] (V)M under the

DT (14). Here U[l] (V@) share the same forms as U,
V@,

(14)

After a direct calculation, we have
T, +7TU =UMT,
T, + TV® = (vl (15)

or

Ty.o + ToUp = UMNTY

Tio+ ToUh + TiUp = U Ty + ULy,

Tot, + ToVO(z) _ (V()(Z))[”To,

Tig, + Ton(z) + T VO(Q)

= (V0(2))[1]T1 + (1/1(2))[1]T0

Secondly, without loss of generality of the DT, let us
suppose the trial Darboux sub-matrices Ty and 77 are of

ap b1 aop bo
T == )\ )
’ ( a d ) - ( co do )

T1:<€1 f1>)\+<€0 fO).
g h go ho

Here, ag, bk, ¢k, dg, €k, [k, gk, b (k = 0,1), which are de-
termined later, are all functions of eigenfunctions. Sub-
stituting (17) and (18) into the spatial part of Eq. (16),
and comparing the coefficients of the same power of A\, we
have

(16)

the forms:

(17)

(18)

/\22 blzclzflzglzo,
A al,c = dl,m =€l = hl,:r = 07
pay + 2iby = pMd, ,

qdy — 2ico = ¢May ,

rai + per + 2ibo + 2ifo = pMhy + rHd,

sdy + gh1 — 2ico — 2igo = ¢Mey + sMay
At age + gbo

bo,» +pap =p

= P[I]Co )
[1]d0 ,
oz + qdo = ¢Mag,
do.. + peo = ¢!"bo

é%)
+%ipq ’

Li(pg — ps — qr)

T)‘jL%i(Tz*pz) >
ix2— Li(pg—ps—qr) )’

€0,z + sbo + qfo = p[l]g0 + 7"[1]60 ’
fow +rag + peg = pMhg + rWdy |
9o,z + sdo + qho = Weg + sWay,
ho,e +reo + pgo = g fo + s'lbo (19)

Meanwhile, if we apply the similar procedure to the tem-

poral part of Eq. (16), we have

M bi=a=fi=g=0,

A2 pay + 2iby = plldy
qdy — 2ico = ¢May,
rai + pey + 2ibg + 2i fy
sdy + qhy — 2ico — 2igg = qmel + stlay

=diy,

= plhy +rldy

Atoaig, =eit, =hity, =0,

1 1
pao + 5ipaar = pMdo + iipg[vl]dl ;

1
qdo — 5igpdy = qMag — *lqg[c]al ,

2 2
1. 1
peo + lemel +rag + §(TT - pm)al

=y + = ( 1 _ [1])d1 +pMhy 4+ = 5 1p[l]h1 ,
1 1
qm—immuw%+§m%—%mrmmm

1
+ ii(q[xl] — si)ay + qMeg — ilqg[v]el?

1 1 1
0, e — Lio b = —Lipni Zipltl
AV aos, — 5ipgao = Sigebo = —5iptg M ao + ipglco
1 1 1 1
bo.ts + 5ipsao + gipgbo = —5ipllglby + Siplldy,
1 1 1 1
Co.ts — 51PqC0 — §iqwd0 = —§iq[1]a0 + iipm ey,
1, 1,
dot, + 5 PxCo + ilpqdo —ilpé”bo + §1p qMdo
1, 1, 1,
€02 — 51Paco = 5ipsfo+ 5i(pg —ps —ar)ag
1
+ 5 ( - SI)bO
1
5l(p[l]q[ 1 plilghl _ glilpilyg,
1 1
351 i(rf = pl)eo — §ip[1]q[ leg + P;[cl]gov
1 1
fots + 21Pz€0 + *lplIfo
+ 510~ pedag — 5i(pa —ps — ar)b
51(re = pz)ao — 51(pg — ps — qr)bo
1
= Silp plglt) — plilghl _ g0l ilypg
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1, 1 Y -
n 51(7"9[51] — plydy — Siplghl 1, + 5275]]107 vz —Mfua fiz fiz fia
. ) o L | =Aafoo—Aafoa foo foz fou
. 0 — )
9oty — 21pqgo 21tho |Wal —A1f1a fia 0 0
1 1. p —A2 foa faa 0 0
+ = —ps —qr)co + -1(qs — Sz
2 i(pg = ps = ar)co 2 (4 )do fir —Mfiz—Mfia fiz fua
= 11(q[1] — sag 1 far —Aafer—Aafar faz o S
2 dO = Ttxr | )
1 |W4| fi3 —A1 f14 0 0
— 2(plYgh — plYs — g, I afur 0 0
1. 1. —A - A
— inlle + 5”’[1] qMgo, fu iz A=A fu
) o L Jor o foa —Xafar — Aafaz fou
0 — ’
hot, + 21]9:1:90 + 21pqh0 + 51( — Px)Co [Wal | fis fia —A1fi3 0
1 fas foa —A2fa3 0
9! i(pag = ps = ar)do Jiu fiz fis —Afii—Afis
ll(q U sy, oo I | far fa2 fas —Aafor — Aafas
0 — )
2 1 (Wal | fiz fua 0 —A1fi3
— il i(ptghtl — pllsltl — ¢yl g, fos foa O —X2 fa3
1. i) 1) fir iz =Afiz—Mfie fua
B ilpl' o+ §1p ¢ ho- (20) _ 1 Jor fa2 —Aafa2 —Aafor fou
It is easy to know that a1, d;,e; and hy are all indepen- g0 [Wal | fiz fia —A1f14 0|’
dent of variables x and t5. So, ai,dq,eq, and h; are fas  foa —Xo.fou 0
aull1 ct(.)nstants(i I?h orfelr t.o obtain the rll.(;n—trivialh new i fiz fis —Aifiz — Aifia
solutions and without losing any generality, we choose U 1 for for fos —ofas — Aafos
a1 = dy = e; = hy = 1. Thus, the Darboux sub-matrices hg = W 0 ) , (24)
Ty and Ty are of the forms al | i3 fra —Afu
Atag b foz faa O —A2fo4
Tp = ( Nt d ) ; Tvo T
o +do & Ty =Ti(A M, Ag, f1, fo) = 0 T ; (25)
1,0

T_(/\+60 fo >
te go A+ ho ’

where ag, bg, ¢, do, €0, fo, 9o, ho are undetermined func-
tions of (z,t). And the transformed new solutions

(21)

plt, g, 1 sl are given by
pM =p+2iby, " =q—2icy,
M =04 2if, sM=s-2ig. (22)
Denote that 2V eigenfunctions
fr = (fr1, fuzs frs, fea) ™ (23)
are basic solutions of systems (6) and (10) (n = 2) with

A=\ (1< k<2N).

Theorem 1 The elements of one-fold DT for the
ICAKNS equations (13) are determined by the eigenfunc-
tions f1, fo associated with the parameters A1, Ao as

“Mfuu—AMfis fiz fis fua

4y = 1 | =Aefar —Aofas foo foz o fou
|W4| —A1f13 fia 0 0]

—A2fa3 Jaa 0O

Jiu —Mfuii—Mfis fiz fua

be = L far —Aefor —Aafas foz o fou
Wil | f13 —A1f13 0 0]’

fa3 — A2 fa3 0 0

where the Darboux sub-matrices T4 ¢ and 77 ,; can be writ-
ten as the determinant forms:

A p2 0
1 Wi & Wy &

Tiog= —
W | e O b2 A
Wy & Wy &
Pz A ps O
1 W4 51 W4 fl
T 4 = —— 26
1,1 ‘W4| D3 0 P4 by ) ( )
Wy & Wy &
with
fir fiz fiz fua
W, = for fo2 faz fau 7

fiso fia 0 0
Jas faa O 0O
p1=(1,0,0,0), p2=(0,1,0,0),
ps =(0,0,1,0), ps=(0,0,0,1),
& = (M fir + Afis, Aafor + Ao fos, Arfis, Aafas) T,
& = (M fiz + Aufia, Aafor + Ao foa, M fra, Ao foa) T

Then, the new solutions p!*), ¢!, 711 sl are given by
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i =Mfii—=Mfiz fiz fua
oV = p 4 2i far —Aafor —Aafas faz fou ’
[Wal | f13 —A1f13 0 0
Ja3 — X2 fo3 0 0
“Afi2—Mfua fiz fiz fua
] . —Azfaz — Aafos fo faz foa
Q" =q— 21— ,
|Wa| —A1f14 fia 0 O
=2 fou foa 0 O
fuu fiz fis —Mfin—Mfis
A — 0 L | far fez fas —Aafor — Aafes ’
Wal | fis fua O —A1f13
Joz faa O — X2 fo3
fir fiz —Afiz—Aifia fua
S g9 1 | far foo —Xafoa—Aafoa fou (27)
(Wil | fizs fia —A1f1a 0
fos  fou — A2 fo4 0

Proof 1 By making use of the general fact of the DT, i.e. T1(A; A\p)|a=x, fx =0 (k =1,2), all ag, by, co, do, €0, fo, o, ho
are expressed by the eigenfunctions fi, fo associated with A1, As. Substituting b, co, fo, go given in Eq. (24) into
Eq. (22), new solutions are given as in Eq. (27). After a direct and tedious calculation, we show that T} in Eq. (25) and
new solutions in Eq. (27) indeed satisfy the temporal part (20). So the ICAKNS equations (13) are covariant under

the transformation T in Eq. (25). Thus, T} in Eq. (25) is the DT of ICAKNS equations (13).

In what follows, our key task is to establish the determinant representation of the N-fold DT for the ICAKNS

equations (13). To this end, we arrive at the following conclusion.

Theorem 2 N-fold DT for the ICAKNS equations (13) can be expressed by

TN:TN()\;)‘17"'7>\2Naf17"'7f2N): (

Tno Tna
0 TN ’

where the Darboux sub-matrices Ty g, Tiv,1 are given by the following determinant forms:

PAN-3 AN PAN—2 0
1 Win  &aves| | Win  Ean
T — an  &un-3 4N &an—3
MO T Wan| | [pav—s 0 pan—2 AN ’
Wyn  &anv—2 Win  &an—2
pav—1 NIV D4N 0
1 Win  &anv—3 Wan  §an—3
Tag = ——
N [Wan| | |Pan—1 0 panv NV ’
Wan  &an—2 Win Ean—2

with

Wan = (M1,M2, M3, My - -« s NAN—35 AN =2, AN —1, AN ) 5

Nak—sz = (AN far, oo e,

M v, NPT s, M fans) T, 1< k<N,

Nak—o = M fro, o N fon o, ST fras o M fana) T, 1< ES N,

Nak—1 = AN faz, oo M fans, 0,007, 1<k <N,
Nae = AN gy oo M fan s, 0,.,00T, 1<E< N,
pan—s = (1,0,0,0,X,0,0,0,...,AY=1,0,0,0),

pan—2 = (0,1,0,0,0,X,0,0,...,0,AY"1,0,0),
pan—1=(0,0,1,0,0,0,,0,...,0,0,A""1,0),

pan = (0,0,0,1,0,0,0,\,...,0,0,0,AN"1),

Eanv—z = A\ fir + NAY fiz, o A fon g + NI fan 3 AT fis, - -

AN fan )T,

(28)
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Eav—2 = (AY fiz + NAY fias -, Adn fan2 + NASN fan,a, AY fias - Aoy fanoa) T
Correspondingly, N-transformed solutions of ICAKNS equations (13) become
PN = p2iby_1, (@M =g—2iey_1, P =r42i(1-N)by_1+2ifn_1, M =s-2i(1-N)én_1—2ign_1, (30)

where

~ -1

by—1 = = det(n1, 12,13, M4, .- ., NaN—3,E4N—3, NAN—1, 14N ) »
[Wan|

5 -1

CN—1 = 7 det(n1, 12,3, M4y - - -, E4N—2, AN -2, NAN—1, 4N ) »
[Wan|

. ~1

IN-1= det(’ll,77277737774, e 7774N—3,774N—2a774N—17£4N—3) »
[Wan|

B -1

IN-1 = 7757 7 det(m,ng, N3, M4y -y 774N73a774N72>§4N7277]4N) .
[Wan|

Proof 2 According to the form of T; in Eq. (25), the N-fold DT should be of the form (28), where
Mot ay AN+ ag A+ ag b1 AV T DA+ Do
Tno = ~ N-1 ~ ~ N, j N-1 5 2
CN_1A + -+ A+ M +dy_1A + o+ diA+dy

— (N)\N +ena AT 4 6N+ é fN,})\N*I 4+t flAfrfO ) )
A NN T e aA R G0 NAY o AT ek A Ry )
with &j,l;j,éj,tfj,éj,fj,gjjzj (0 < j < N —1) are the | and then
functi.ons of x and ¢t. We know that the kernel of T is Tno+TyU = UWNIT. (33)
zero, i.e.
Substituting Ty given by Eq. (28) into the above equation
TN AL, AaN, f1,0 0 - =0, i .
N(k 12N 2N i Fon)la=ne fi (31) (33), and comparing the coefficients of A, we get the N-
1<k<2N.

transformed solutions (30). As for the temporal part (t3)
Thus, all coefficients dj,Bj,Ej,Jj,éj,JEj,gj,ﬁj (0 < j < spectral problem of the ICAKNS equations (13), we arrive
N — 1), which can be written as the determinant forms at the same conclusion after a similar discussion.

(29), are uniquely solved by the Cramer’s rule.

Under a covariant requirement of the spectral problem 4 Solutions of Integrable Couplings of the

of the ICAKNS equations (13), the transformed spatial NLS Equations
spectral problem should be When the reduction conditions ¢ = —p* and s = —r*
¢[N] _ U[N]¢[N] (32) are imposed on the ICAKNS equations (13), we have the
v ’ ICNLS equations

where 1 ,
N N . _ L :
0 U(g] 7 ‘ g™ ix ) L. 12 S 2k 12
. (N] Tty :il(rmx_pmm)_”pl p+ip " +2ilp|°r, (34)

U[N] B —i\ r
L= (S[N] i\ ) ’ whose Lax pairs are given by

—iA p —iX r
—p* iA —r* iA

¢x = . ¢7
0 0 —ix p

0 0 —p* i\

—iA2+ 2i[p]®2 pA+dip,  —iAZ+ Li(pr* +p'r — [p?) rA+ 2i(ry — pa)
o — | P sipy 1N —gilpl® —r* A = 5i(p; — 7} IN2 = i(pr* + p'r — [pl?) o (35)
2 0 0 —iA% + Zi|p[? PA+ 3ips

0 0 —p*A+ 3ip; iA? — Zilpf?
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Lemma 1 If (¢1, b2, ¢3,64)T is a solution of Eq. (35)
with A = \q, then (—¢3,¢7, —¢%, #5)T is a solution of
Eq. (35) with A = A}.

By making use of Lemma 1, if we choose Ao, = A5, _4,

fok,1 —fon—12 Jfor2 = fa11 foks = — Sl
fava = for_13 (1 < k < N), then N-fold DT and N-
transformed solutions of the ICNLS equations are ob-
tained. In what follows, as a special example, we choose
the seed solution p = r = 0 in Eq. (35), we have
Br = (—iAT — IN2t + ¢p) e PAeiNthes
b2 = (idz + iN*t +c1) eiret+iNttes ,
b3 = efiAzfiA2t+C3
bs = pirz+ir’t+es (36)
Furthermore, let ¢4 = ¢ = ¢3 = ¢4 = 0 in
Eq. (36), and then the corresponding eigenfunction f; =
(f11, f12, f13, f1a)T associated with )\ is given by
fir = (—i\z — iATt) eii)\lwfi)\fta
fra = (P + NP e MmN
fiz = e iMz—iAft
f14 = € (37)
Meanwhile, we take /\2 = /\I, f21 = —f1*2, f22 = fl*lv f23 =
—f{4, foa = f{3. Furthermore, choosing \; = & + inq,
14 13 n
where &1 and 1y are both real numbers, we have
fi1 = (g —iBy) e 11
fiz = (—oq +ify)e @t
f13 = eal_iﬁl )
f14 _ e—Oé1+i,31 ,

where oy = ma + 26mt, B = &ix + (€2
have

i,\lz+i>\§t_

(38)
—n?)t. So we

pltl =25 e 7281 sech (20 )
= 2n, (1 — 2iB8;) e 72181 sech (201) — 4y

x e~ 21 tanh(2a ) sech (2a1) , (39)

which are one-soliton solutions of the ICNLS equations
(34).

5 Conclusions and Discussions

DT has been widely applied to many notable integrable
equations, and several literatures can be found to study
DT for integrable couplings of soliton equations, for ex-
ample Refs. [29-34]. After some careful comparisons, we
found some differences and advantages between these ref-
erences and our paper. On one hand, comparing Ref. [29]
with our paper, the main difference include that the spec-
tral problem of ICAKNS system is different. Therefore,
the representation of DT, the numbers of basic solutions
and the representation of new solutions are also different.
On the other hand, there are some advantages of our paper
when compared with Ref. [34]. In our paper, the deter-
minant representations of N-fold DT and N-transformed
solutions for the ICAKNS equations (13) are constructed
in Egs. (28) and (30), respectively. While in Ref. [34], they
only obtained the representations of one-fold DT and one-
transformed solutions. And the other advantage of our pa-
per is to derive the determinant representation of N-fold
DT for the ICAKNS equations (13) without iterating.

Above all, in this paper, we have constructed determi-
nant representations of N-fold DT (28) and N-times trans-
formed solutions (30) for the ICAKNS equations (13). Im-
posing the constraint conditions ¢ = —p*, s = —r*, we
have obtained ones of the ICNLS equations (34). After
choosing the initial values p = r = 0, we derived soli-
ton solutions (39) of the ICNLS equations (34). We be-
lieve that this method will be successfully applied to the
other integrable couplings of soliton equations. And there
maybe exist the other solutions for integrable couplings of
equations. Both of these questions will be considered in
our future paper.
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