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Abstract For the integrable couplings of Ablowitz-Kaup-Newell-Segur (ICAKNS) equations, N-fold Darboux trans-
formation (DT) TN , which is a 4× 4 matrix, is constructed in this paper. Each element of this matrix is expressed by a
ratio of the (4N + 1)-order determinant and 4N -order determinant of eigenfunctions. By making use of these formulae,
the determinant expressions of N-transformed new solutions p[N ], q[N ], r[N ] and s[N ] are generated by this N-fold DT.
Furthermore, when the reduced conditions q = −p∗ and s = −r∗ are chosen, we obtain determinant representations
of N-fold DT and N-transformed solutions for the integrable couplings of nonlinear Schrödinger (ICNLS) equations.
Starting from the zero seed solutions, one-soliton solutions are explicitly given as an example.
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1 Introduction

Integrable couplings of soliton equations have been at-

tracted much attention over the last few decades. Gener-

ally speaking, for a given integrable system of evolution

equations ut = K(u), a new system consisting of the orig-

inal system and its linearized system

ut = K(u), vt = K ′(u)[v] , (1)

is still integrable. Here K ′(u)[v] denotes the Gateaux

derivative of K(u) ≡ K(u,Dxu, . . .) with respect to u in

a direction v, i.e.

K ′(u)[v] =
∂

∂ε
K(u+ εv)|ε=0 .

The second part vt = K ′(u)[v] in the above new sys-

tem (1) is a special integrable couplings of the orig-

inal system ut = K(u). So far, the method for

constructing integrable couplings of soliton equations

mainly included perturbations,[1−2] enlarging spectral

problems,[3−6] creating new loop algebras,[7−8] and multi-

integrable couplings.[9−11] The study of integrable cou-

plings of soliton equations brought two major benefits.

One is to generalize the symmetry problem,[12−13] the

other is to provide clues towards complete classification

of integrable systems.

It is well-known that DT[14−19] is always regarded as

one of the most effective method to construct solutions of

integrable equations. The main procedures are listed as

follows. Suppose the integrable equations are associated

with the following spectral problem

ψx = Uψ, ψt = V ψ , (2)

which is transformed into

ψ[1]
x = U [1]ψ[1], ψ

[1]
t = V [1]ψ[1] , (3)

under a gauge transformation

ψ[1] = Tψ . (4)

By Refs. [19–20] , we know that T in Eq. (4) must satisfy

following conditions

Tx + TU = U [1]T, Tt + TV = V [1]T , (5)

according to Eq. (3). It is crucial for us to search for

T in Eq. (4) so that U [1] and V [1] have the same forms

as U and V . Repeating N times, N-fold DT can be

constructed. In 2006, the authors proposed determi-

nant representation of DT for the integrable equations.

Without iterating, N-fold DT and N-transformed solu-

tions are derived for many integrable equations, such

as AKNS equation,[21] derivative nonlinear Schrödinger
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(DNLS) equation,[22] Gerdjikov-Ivanov (GI) equation,[23]

Chen-Lee-Liu (CLL) equation,[24] and so on.[25−28] Ac-

cordingly, many important solutions of these equations

are constructed in these references. For example, soliton

solutions, rogue wave solutions, breather solutions, and so

forth. To this day, no researchers considered determinant

representations of the N-fold DT and N-transformed new

solutions for the integrable couplings of soliton equations.

So we will solve this question in this paper.

The paper is organized as follows. In the next section,

we recall the construction of ICAKNS equations. Then

in Sec. 3, determinant representations of N-fold DT and

N-transformed solutions are constructed for the ICAKNS

equations. And in Sec. 4, under the constraint condition

q = −p∗ and s = −r∗, we obtain ones of ICNLS equa-

tions. Some conclusions and discussions are listed in the

last section.

2 Integrable Couplings of the AKNS Equa-
tions

In this section, we will briefly recall the construction of

ICAKNS equations. Firstly, we know that the ICAKNS

system is associated with the following the spatial spectral

problem

ϕx = Uϕ, U =

(
U0 U1

0 U0

)
,

U0 =

(
−iλ p

q iλ

)
, U1 =

(
−iλ r

s iλ

)
, (6)

where λ is a spectral parameter, p, q, r and s are poten-

tials, ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T is an eigenfunction. Solving

the stationary equation

Vx = [U, V ] , (7)

where

V =

(
V0 V1

0 V0

)
, V0 =

(
A B

C −A

)
,

V1 =

(
E F

G −E

)
,

we have

Ax = pC − qB, Bx = −2iλB − 2pA ,

Cx = 2iλC + 2qA, Ex = pG− qF + rC − sB ,

Fx = −2iλF − 2iλB − 2pE − 2rA ,

Gx = 2iλG+ 2iλC + 2qE + 2sA . (8)

Taking

A =
∑
j≥0

Ajλ
−j , B =

∑
j≥0

Bjλ
−j , C =

∑
j≥0

Cjλ
−j ,

E =
∑
j≥0

Ejλ
−j , F =

∑
j≥0

Fjλ
−j , G =

∑
j≥0

Gjλ
−j ,

and comparing the coefficients of the same power of λ, we

have

B0 = C0 = F0 = G0 = 0 ,

Aj,x = pCj − qBj ,

Bj,x = −2iBj+1 − 2pAj ,

Cj,x = 2iCj+1 + 2qAj ,

Ej,x = pGj − qFj + rCj − sBj ,

Fj,x = −2iFj+1 − 2iBj+1 − 2pEj − 2rAj ,

Gj,x = 2iGj+1 + 2iCj+1 + 2qEj + 2sAj , (9)

where j ≥ 0. It is easy to find that A0,x = E0,x = 0.

Choosing A0 = E0 = −i, and taking constants of inte-

gral to be zero, we obtain all terms Aj , Bj , Cj , Ej , Fj , Gj

(j ≥ 1). The first three terms are listed as follows:

A1 = E1 = 0, B1 = p, C1 = q, F1 = r, G1 = s ,

A2 = −1

2
ipq, B2 =

1

2
ipx, C2 = −1

2
iqx ,

E2 =
1

2
i(pq − ps− qr), F2 =

1

2
i(rx − px) ,

G2 =
1

2
i(qx − sx), A3 =

1

4
(pxq − pqx) ,

B3 = −1

4
pxx +

1

2
p2q, C3 = −1

4
qxx +

1

2
pq2,

E3 =
1

4
(pxs− psx + 2pqx − 2pxq + qrx − qxr) ,

F3 = −1

4
rxx +

1

2
pxx +

1

2
p2s− p2q + pqr ,

G3 = −1

4
sxx +

1

2
qxx +

1

2
q2r − pq2 + pqs .

Secondly, let us introduce the temporal parts of the

spectral problem (6)

ϕtn = V (n)ϕ, V (n) = (λnV )+, n ≥ 0 , (10)

where “+” means non-negative power. The compatible

condition of (6) and (10) yields to

Utn − V (n)
x + [U, V (n)] = 0, n ≥ 0 . (11)

Substituting U and V (n) into Eq. (11), we have

ptn = −2iBn+1, qtn = 2iCn+1 ,

rtn = −2iFn+1 − 2iBn+1 ,

stn = 2iGn+1 + 2iCn+1 . (12)

Lastly, when n = 2 in Eq. (12), we obtain the ICAKNS

equations

pt2 =
1

2
ipxx − ip2q, qt2 = −1

2
iqxx + ipq2,

rt2 =
1

2
irxx − 1

2
ipxx + ip2q − ip2s− 2ipqr ,

st2 = −1

2
isxx +

1

2
iqxx − ipq2 + iq2r + 2ipqs , (13)

whose Lax pairs are given by U and V (2) as follows:

V (2) =

(
V

(2)
0 V

(2)
1

0 V
(2)
0

)
,

with
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V
(2)
0 =

(
−iλ2 − 1

2 ipq pλ+ 1
2 ipx

qλ− 1
2 iqx iλ2 + 1

2 ipq

)
,

V
(2)
1 =

(
−iλ2 + 1

2 i(pq − ps− qr) rλ+ 1
2 i(rx − px)

sλ+ 1
2 i(qx − sx) iλ2 − 1

2 i(pq − ps− qr)

)
.

3 DT of ICAKNS Equations (13)

In this section, we will derive determinant representa-

tion of DT for the ICAKNS equations (13). To this end,

we firstly suppose the Darboux matrix is

T =

(
T0 T1

0 T0

)
. (14)

The spectral problem ϕx = Uϕ, ϕt2 = V (2)ϕ is trans-

formed into ϕ
[1]
x = U [1]ϕ[1], ϕ

[1]
t2 = (V (2))[1]ϕ[1] under the

DT (14). Here U [1], (V (2))[1] share the same forms as U ,

V (2). After a direct calculation, we have

Tx + TU = U [1]T ,

Tt2 + TV (2) = (V (2))[1]T , (15)

or

T0,x + T0U0 = U
[1]
0 T0 ,

T1,x + T0U1 + T1U0 = U
[1]
0 T1 + U

[1]
1 T0 ,

T0,t2 + T0V
(2)
0 = (V

(2)
0 )[1]T0 ,

T1,t2 + T0V
(2)
1 + T1V

(2)
0

= (V
(2)
0 )[1]T1 + (V

(2)
1 )[1]T0 . (16)

Secondly, without loss of generality of the DT, let us

suppose the trial Darboux sub-matrices T0 and T1 are of

the forms:

T0 =

(
a1 b1

c1 d1

)
λ+

(
a0 b0

c0 d0

)
, (17)

T1 =

(
e1 f1

g1 h1

)
λ+

(
e0 f0

g0 h0

)
. (18)

Here, ak, bk, ck, dk, ek, fk, gk, hk (k = 0, 1), which are de-

termined later, are all functions of eigenfunctions. Sub-

stituting (17) and (18) into the spatial part of Eq. (16),

and comparing the coefficients of the same power of λ, we

have

λ2 : b1 = c1 = f1 = g1 = 0 ,

λ : a1,x = d1,x = e1,x = h1,x = 0 ,

pa1 + 2ib0 = p[1]d1 ,

qd1 − 2ic0 = q[1]a1 ,

ra1 + pe1 + 2ib0 + 2if0 = p[1]h1 + r[1]d1 ,

sd1 + qh1 − 2ic0 − 2ig0 = q[1]e1 + s[1]a1 ,

λ0 : a0,x + qb0 = p[1]c0 ,

b0,x + pa0 = p[1]d0 ,

c0,x + qd0 = q[1]a0 ,

d0,x + pc0 = q[1]b0 ,

e0,x + sb0 + qf0 = p[1]g0 + r[1]c0 ,

f0,x + ra0 + pe0 = p[1]h0 + r[1]d0 ,

g0,x + sd0 + qh0 = q[1]e0 + s[1]a0 ,

h0,x + rc0 + pg0 = q[1]f0 + s[1]b0 . (19)

Meanwhile, if we apply the similar procedure to the tem-

poral part of Eq. (16), we have

λ3 : b1 = c1 = f1 = g1 = 0 ,

λ2 : pa1 + 2ib0 = p[1]d1 ,

qd1 − 2ic0 = q[1]a1 ,

ra1 + pe1 + 2ib0 + 2if0 = p[1]h1 + r[1]d1 ,

sd1 + qh1 − 2ic0 − 2ig0 = q[1]e1 + s[1]a1 ,

λ : a1,t2 = d1,t2 = e1,t2 = h1,t2 = 0 ,

pa0 +
1

2
ipxa1 = p[1]d0 +

1

2
ip[1]x d1 ,

qd0 −
1

2
iqxd1 = q[1]a0 −

1

2
iq[1]x a1 ,

pe0 +
1

2
ipxe1 + ra0 +

1

2
(rx − px)a1

= r[1]d0 +
1

2
(r[1]x − p[1]x )d1 + p[1]h0 +

1

2
ip[1]x h1 ,

qh0 −
1

2
iqxh1 + sd0 +

1

2
i(qx − sx)d1 + s[1]a0

+
1

2
i(q[1]x − s[1]x )a1 + q[1]e0 −

1

2
iq[1]x e1 ,

λ0 : a0,t2 −
1

2
ipqa0 −

1

2
iqxb0 = −1

2
ip[1]q[1]a0 +

1

2
ip[1]x c0 ,

b0,t2 +
1

2
ipxa0 +

1

2
ipqb0 = −1

2
ip[1]q[1]b0 +

1

2
ip[1]x d0 ,

c0,t2 −
1

2
ipqc0 −

1

2
iqxd0 = −1

2
iq[1]x a0 +

1

2
ip[1]q[1]c0 ,

d0,t2 +
1

2
ipxc0 +

1

2
ipqd0 = −1

2
ip[1]x b0 +

1

2
ip[1]q[1]d0 ,

e0,t2 −
1

2
ipqe0 −

1

2
ipxf0 +

1

2
i(pq − ps− qr)a0

+
1

2
i(qx − sx)b0

=
1

2
i(p[1]q[1] − p[1]s[1] − q[1]r[1])a0

+
1

2
i(r[1]x − p[1]x )c0 −

1

2
ip[1]q[1]e0 +

1

2
p[1]x g0 ,

f0,t2 +
1

2
ipxe0 +

1

2
ipqf0

+
1

2
i(rx − px)a0 −

1

2
i(pq − ps− qr)b0

=
1

2
i(p[1]q[1] − p[1]s[1] − q[1]r[1])b0
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+
1

2
i(r[1]x − p[1]x )d0 −

1

2
ip[1]q[1]f0 +

1

2
p[1]x h0 ,

g0,t2 −
1

2
ipqg0 −

1

2
ipxh0

+
1

2
i(pq − ps− qr)c0 +

1

2
i(qx − sx)d0

=
1

2
i(q[1]x − s[1]x )a0

− 1

2
i(p[1]q[1] − p[1]s[1] − q[1]r[1])c0

− 1

2
ip[1]x e0 +

1

2
ip[1]q[1]g0 ,

h0,t2 +
1

2
ipxg0 +

1

2
ipqh0 +

1

2
i(rx − px)c0

− 1

2
i(pq − ps− qr)d0

=
1

2
i(q[1]x − s[1]x )b0

− 1

2
i(p[1]q[1] − p[1]s[1] − q[1]r[1])d0

− 1

2
ip[1]x f0 +

1

2
ip[1]q[1]h0 . (20)

It is easy to know that a1, d1, e1 and h1 are all indepen-

dent of variables x and t2. So, a1, d1, e1, and h1 are

all constants. In order to obtain the non-trivial new

solutions and without losing any generality, we choose

a1 = d1 = e1 = h1 = 1. Thus, the Darboux sub-matrices

T0 and T1 are of the forms

T0 =

(
λ+ a0 b0

c0 λ+ d0

)
,

T1 =

(
λ+ e0 f0

g0 λ+ h0

)
, (21)

where a0, b0, c0, d0, e0, f0, g0, h0 are undetermined func-

tions of (x, t). And the transformed new solutions

p[1], q[1], r[1], s[1] are given by

p[1] = p+ 2ib0, q[1] = q − 2ic0 ,

r[1] = r + 2if0, s[1] = s− 2ig0 . (22)

Denote that 2N eigenfunctions

fk = (fk1, fk2, fk3, fk4)
T, (23)

are basic solutions of systems (6) and (10) (n = 2) with

λ = λk (1 ≤ k ≤ 2N).

Theorem 1 The elements of one-fold DT for the

ICAKNS equations (13) are determined by the eigenfunc-

tions f1, f2 associated with the parameters λ1, λ2 as

a0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
−λ1f11 − λ1f13 f12 f13 f14

−λ2f21 − λ2f23 f22 f23 f24

−λ1f13 f14 0 0

−λ2f23 f24 0 0

∣∣∣∣∣∣∣∣∣ ,

b0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 −λ1f11 − λ1f13 f13 f14

f21 −λ2f21 − λ2f23 f23 f24

f13 −λ1f13 0 0

f23 −λ2f23 0 0

∣∣∣∣∣∣∣∣∣ ,

c0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
−λ1f12 − λ1f14 f12 f13 f14

−λ2f22 − λ2f24 f22 f23 f24

−λ1f14 f14 0 0

−λ2f24 f24 0 0

∣∣∣∣∣∣∣∣∣ ,

d0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 −λ1f12 − λ1f14 f13 f14

f21 −λ2f22 − λ2f24 f23 f24

f13 −λ1f14 0 0

f23 −λ2f24 0 0

∣∣∣∣∣∣∣∣∣ ,

e0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 −λ1f11 − λ1f13 f14

f21 f22 −λ2f21 − λ2f23 f24

f13 f14 −λ1f13 0

f23 f24 −λ2f23 0

∣∣∣∣∣∣∣∣∣ ,

f0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 f13 −λ1f11 − λ1f13

f21 f22 f23 −λ2f21 − λ2f23

f13 f14 0 −λ1f13
f23 f24 0 −λ2f23

∣∣∣∣∣∣∣∣∣ ,

g0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 −λ1f12 − λ1f14 f14

f21 f22 −λ2f22 − λ2f24 f24

f13 f14 −λ1f14 0

f23 f24 −λ2f24 0

∣∣∣∣∣∣∣∣∣ ,

h0 =
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 f13 −λ1f12 − λ1f14

f21 f22 f23 −λ2f22 − λ2f24

f13 f14 0 −λ1f14
f23 f24 0 −λ2f24

∣∣∣∣∣∣∣∣∣ , (24)

⇔ T1 = T1(λ;λ1, λ2, f1, f2) =

(
T1,0 T1,1

0 T1,0

)
, (25)

where the Darboux sub-matrices T1,0 and T1,1 can be writ-

ten as the determinant forms:

T1,0 =
1

|W4|


∣∣∣∣ p1 λ

W4 ξ1

∣∣∣∣ ∣∣∣∣ p2 0

W4 ξ1

∣∣∣∣∣∣∣∣ p1 0

W4 ξ2

∣∣∣∣ ∣∣∣∣ p2 λ

W4 ξ2

∣∣∣∣
 ,

T1,1 =
1

|W4|


∣∣∣∣ p3 λ

W4 ξ1

∣∣∣∣ ∣∣∣∣ p4 0

W4 ξ1

∣∣∣∣∣∣∣∣ p3 0

W4 ξ2

∣∣∣∣ ∣∣∣∣ p4 λ

W4 ξ2

∣∣∣∣
 , (26)

with

W4 =


f11 f12 f13 f14

f21 f22 f23 f24

f13 f14 0 0

f23 f24 0 0

 ,

p1 = (1, 0, 0, 0), p2 = (0, 1, 0, 0) ,

p3 = (0, 0, 1, 0), p4 = (0, 0, 0, 1) ,

ξ1 = (λ1f11 + λ1f13, λ2f21 + λ2f23, λ1f13, λ2f23)
T,

ξ2 = (λ1f12 + λ1f14, λ2f22 + λ2f24, λ1f14, λ2f24)
T.

Then, the new solutions p[1], q[1], r[1], s[1] are given by
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p[1] = p+ 2i
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 −λ1f11 − λ1f13 f13 f14

f21 −λ2f21 − λ2f23 f23 f24

f13 −λ1f13 0 0

f23 −λ2f23 0 0

∣∣∣∣∣∣∣∣∣ ,

q[1] = q − 2i
1

|W4|

∣∣∣∣∣∣∣∣∣
−λ1f12 − λ1f14 f12 f13 f14

−λ2f22 − λ2f24 f22 f23 f24

−λ1f14 f14 0 0

−λ2f24 f24 0 0

∣∣∣∣∣∣∣∣∣ ,

r[1] = r + 2i
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 f13 −λ1f11 − λ1f13

f21 f22 f23 −λ2f21 − λ2f23

f13 f14 0 −λ1f13
f23 f24 0 −λ2f23

∣∣∣∣∣∣∣∣∣ ,

s[1] = s− 2i
1

|W4|

∣∣∣∣∣∣∣∣∣
f11 f12 −λ1f12 − λ1f14 f14

f21 f22 −λ2f22 − λ2f24 f24

f13 f14 −λ1f14 0

f23 f24 −λ2f24 0

∣∣∣∣∣∣∣∣∣ . (27)

Proof 1 By making use of the general fact of the DT, i.e. T1(λ;λk)|λ=λk
fk = 0 (k = 1, 2), all a0, b0, c0, d0, e0, f0, g0, h0

are expressed by the eigenfunctions f1, f2 associated with λ1, λ2. Substituting b0, c0, f0, g0 given in Eq. (24) into

Eq. (22), new solutions are given as in Eq. (27). After a direct and tedious calculation, we show that T1 in Eq. (25) and

new solutions in Eq. (27) indeed satisfy the temporal part (20). So the ICAKNS equations (13) are covariant under

the transformation T1 in Eq. (25). Thus, T1 in Eq. (25) is the DT of ICAKNS equations (13).

In what follows, our key task is to establish the determinant representation of the N-fold DT for the ICAKNS

equations (13). To this end, we arrive at the following conclusion.

Theorem 2 N-fold DT for the ICAKNS equations (13) can be expressed by

TN = TN (λ;λ1, . . . , λ2N , f1, . . . , f2N ) =

(
TN,0 TN,1

0 TN,0

)
, (28)

where the Darboux sub-matrices TN,0, TN,1 are given by the following determinant forms:

TN,0 =
1

|W4N |


∣∣∣∣ p4N−3 λN

W4N ξ4N−3

∣∣∣∣ ∣∣∣∣ p4N−2 0

W4N ξ4N−3

∣∣∣∣∣∣∣∣ p4N−3 0

W4N ξ4N−2

∣∣∣∣ ∣∣∣∣ p4N−2 λN

W4N ξ4N−2

∣∣∣∣
 ,

TN,1 =
1

|W4N |


∣∣∣∣ p4N−1 NλN

W4N ξ4N−3

∣∣∣∣ ∣∣∣∣ p4N 0

W4N ξ4N−3

∣∣∣∣∣∣∣∣ p4N−1 0

W4N ξ4N−2

∣∣∣∣ ∣∣∣∣ p4N NλN

W4N ξ4N−2

∣∣∣∣
 , (29)

with

W4N = (η1, η2, η3, η4, . . . , η4N−3, η4N−2, η4N−1, η4N ) ,

η4k−3 = (λk−1
1 f11, . . . , λ

k−1
2N f2N,1, λ

k−1
1 f13, . . . , λ

k−1
2N f2N,3)

T, 1 ≤ k ≤ N ,

η4k−2 = (λk−1
1 f12, . . . , λ

k−1
2N f2N,2, λ

k−1
1 f14, . . . , λ

k−1
2N f2N,4)

T, 1 ≤ k ≤ N ,

η4k−1 = (λk−1
1 f13, . . . , λ

k−1
2N f2N,3, 0, . . . , 0)

T, 1 ≤ k ≤ N ,

η4k = (λk−1
1 f14, . . . , λ

k−1
2N f2N,4, 0, . . . , 0)

T, 1 ≤ k ≤ N ,

p4N−3 = (1, 0, 0, 0, λ, 0, 0, 0, . . . , λN−1, 0, 0, 0) ,

p4N−2 = (0, 1, 0, 0, 0, λ, 0, 0, . . . , 0, λN−1, 0, 0) ,

p4N−1 = (0, 0, 1, 0, 0, 0, λ, 0, . . . , 0, 0, λN−1, 0) ,

p4N = (0, 0, 0, 1, 0, 0, 0, λ, . . . , 0, 0, 0, λN−1) ,

ξ4N−3 = (λN1 f11 +NλN1 f13, . . . , λ
N
2Nf2N,1 +NλN2Nf2N,3, λ

N
1 f13, . . . , λ

N
2Nf2N,3)

T,
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ξ4N−2 = (λN1 f12 +NλN1 f14, . . . , λ
N
2Nf2N,2 +NλN2Nf2N,4, λ

N
1 f14, . . . , λ

N
2Nf2N,4)

T.

Correspondingly, N-transformed solutions of ICAKNS equations (13) become

p[N ] = p+2ib̃N−1, q[N ] = q−2ic̃N−1, r[N ] = r+2i(1−N)b̃N−1+2if̃N−1, s[N ] = s−2i(1−N)c̃N−1−2ig̃N−1 , (30)

where

b̃N−1 =
−1

|W4N |
det(η1, η2, η3, η4, . . . , η4N−3, ξ4N−3, η4N−1, η4N ) ,

c̃N−1 =
−1

|W4N |
det(η1, η2, η3, η4, . . . , ξ4N−2, η4N−2, η4N−1, η4N ) ,

f̃N−1 =
−1

|W4N |
det(η1, η2, η3, η4, . . . , η4N−3, η4N−2, η4N−1, ξ4N−3) ,

g̃N−1 =
−1

|W4N |
det(η1, η2, η3, η4, . . . , η4N−3, η4N−2, ξ4N−2, η4N ) .

Proof 2 According to the form of T1 in Eq. (25), the N-fold DT should be of the form (28), where

TN,0 =

(
λN + ãN−1λ

N−1 + · · ·+ ã1λ+ ã0 b̃N−1λ
N−1 + · · ·+ b̃1λ+ b̃0

c̃N−1λ
N−1 + · · ·+ c̃1λ+ c̃0 λN + d̃N−1λ

N−1 + · · ·+ d̃1λ+ d̃0

)
,

TN,1 =

(
NλN + ẽN−1λ

N−1 + · · ·+ ẽ1λ+ ẽ0 f̃N−1λ
N−1 + · · ·+ f̃1λ+ f̃0

g̃N−1λ
N−1 + · · ·+ g̃1λ+ g̃0 NλN + h̃N−1λ

N−1 + · · ·+ h̃1λ+ h̃0

)
,

with ãj , b̃j , c̃j , d̃j , ẽj , f̃j , g̃j , h̃j (0 ≤ j ≤ N − 1) are the

functions of x and t. We know that the kernel of TN is

zero, i.e.

TN (λ;λ1, . . . , λ2N , f1, . . . , f2N )|λ=λk
fk = 0 ,

1 ≤ k ≤ 2N . (31)

Thus, all coefficients ãj , b̃j , c̃j , d̃j , ẽj , f̃j , g̃j , h̃j (0 ≤ j ≤
N − 1), which can be written as the determinant forms

(29), are uniquely solved by the Cramer’s rule.

Under a covariant requirement of the spectral problem

of the ICAKNS equations (13), the transformed spatial

spectral problem should be

ϕ[N ]
x = U [N ]ϕ[N ], (32)

where

U [N ] =

(
U

[N ]
0 U

[N ]
1

0 U
[N ]
0

)
, U

[N ]
0 =

(
−iλ p[N ]

q[N ] iλ

)
,

U
[N ]
1 =

(
−iλ r[N ]

s[N ] iλ

)
,

and then

TN,x + TNU = U [N ]T . (33)

Substituting TN given by Eq. (28) into the above equation

(33), and comparing the coefficients of λN , we get the N-

transformed solutions (30). As for the temporal part (t2)

spectral problem of the ICAKNS equations (13), we arrive

at the same conclusion after a similar discussion.

4 Solutions of Integrable Couplings of the
NLS Equations

When the reduction conditions q = −p∗ and s = −r∗
are imposed on the ICAKNS equations (13), we have the

ICNLS equations

pt2 =
1

2
ipxx + i|p|2p ,

rt2 =
1

2
i(rxx − pxx)− i|p|2p+ ip2r∗ + 2i|p|2r , (34)

whose Lax pairs are given by

ϕx =


−iλ p −iλ r

−p∗ iλ −r∗ iλ

0 0 −iλ p

0 0 −p∗ iλ

ϕ ,

ϕt2 =


−iλ2 + 1

2 i|p|
2 pλ+ 1

2 ipx −iλ2 + 1
2 i(pr

∗ + p∗r − |p|2) rλ+ 1
2 i(rx − px)

−p∗λ+ 1
2 ip

∗
x iλ2 − 1

2 i|p|
2 −r∗λ− 1

2 i(p
∗
x − r∗x) iλ2 − 1

2 i(pr
∗ + p∗r − |p|2)

0 0 −iλ2 + 1
2 i|p|

2 pλ+ 1
2 ipx

0 0 −p∗λ+ 1
2 ip

∗
x iλ2 − 1

2 i|p|
2

ϕ . (35)
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Lemma 1 If (ϕ1, ϕ2, ϕ3, ϕ4)
T is a solution of Eq. (35)

with λ = λ1, then (−ϕ∗2, ϕ∗1,−ϕ∗4, ϕ∗3)T is a solution of

Eq. (35) with λ = λ∗1.

By making use of Lemma 1, if we choose λ2k = λ∗2k−1,

f2k,1 = −f∗2k−1,2, f2k,2 = f∗2k−1,1, f2k,3 = −f∗2k−1,4,

f2k,4 = f∗2k−1,3 (1 ≤ k ≤ N), then N-fold DT and N-

transformed solutions of the ICNLS equations are ob-

tained. In what follows, as a special example, we choose

the seed solution p = r = 0 in Eq. (35), we have

ϕ1 = (−iλx− iλ2t+ c1) e
−iλx−iλ2t+c3 ,

ϕ2 = (iλx+ iλ2t+ c1) e
iλx+iλ2t+c4 ,

ϕ3 = e−iλx−iλ2t+c3 ,

ϕ4 = e iλx+iλ2t+c4 . (36)

Furthermore, let c1 = c2 = c3 = c4 = 0 in

Eq. (36), and then the corresponding eigenfunction f1 =

(f11, f12, f13, f14)
T associated with λ1 is given by

f11 = (−iλ1x− iλ21t) e
−iλ1x−iλ2

1t ,

f12 = (iλ1x+ iλ21t) e
iλ1x+iλ2

1t ,

f13 = e−iλ1x−iλ2
1t ,

f14 = e iλ1x+iλ2
1t . (37)

Meanwhile, we take λ2 = λ∗1, f21 = −f∗12, f22 = f∗11, f23 =

−f∗14, f24 = f∗13. Furthermore, choosing λ1 = ξ1 + iη1,

where ξ1 and η1 are both real numbers, we have

f11 = (α1 − iβ1) e
α1−iβ1 ,

f12 = (−α1 + iβ1) e
−α1+iβ1 ,

f13 = eα1−iβ1 ,

f14 = e−α1+iβ1 , (38)

where α1 = η1x + 2ξ1η1t, β1 = ξ1x + (ξ21 − η21)t. So we

have

p[1] = 2η1 e
−2iβ1 sech (2α1) ,

r[1] = 2η1(1− 2iβ1) e
−2iβ1 sech (2α1)− 4α1η1

× e−2iβ1 tanh(2α1) sech (2α1) , (39)

which are one-soliton solutions of the ICNLS equations

(34).

5 Conclusions and Discussions

DT has been widely applied to many notable integrable

equations, and several literatures can be found to study

DT for integrable couplings of soliton equations, for ex-

ample Refs. [29–34]. After some careful comparisons, we

found some differences and advantages between these ref-

erences and our paper. On one hand, comparing Ref. [29]

with our paper, the main difference include that the spec-

tral problem of ICAKNS system is different. Therefore,

the representation of DT, the numbers of basic solutions

and the representation of new solutions are also different.

On the other hand, there are some advantages of our paper

when compared with Ref. [34]. In our paper, the deter-

minant representations of N-fold DT and N-transformed

solutions for the ICAKNS equations (13) are constructed

in Eqs. (28) and (30), respectively. While in Ref. [34], they

only obtained the representations of one-fold DT and one-

transformed solutions. And the other advantage of our pa-

per is to derive the determinant representation of N-fold

DT for the ICAKNS equations (13) without iterating.

Above all, in this paper, we have constructed determi-

nant representations of N-fold DT (28) and N-times trans-

formed solutions (30) for the ICAKNS equations (13). Im-

posing the constraint conditions q = −p∗, s = −r∗, we
have obtained ones of the ICNLS equations (34). After

choosing the initial values p = r = 0, we derived soli-

ton solutions (39) of the ICNLS equations (34). We be-

lieve that this method will be successfully applied to the

other integrable couplings of soliton equations. And there

maybe exist the other solutions for integrable couplings of

equations. Both of these questions will be considered in

our future paper.
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