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In this paper, explicit representation of general rational solutions for the (3 + 1)-
dimensional Mel'nikov equation is derived by employing the Hirota bilinear method
It is obtained in terms of determinants whose matrix elements satisfy some differen-
tial and difference relations. By selecting special value of the parameters involved, the

first-order and second-order lump solutions are given and their dynamic characteristics
are illustrated by two- and three-dimensional figures.
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1. Introduction

Soliton equations are a kind of important partial differential equations and their
solutions can explain many related physical phenomena.! Therefore, solving soli-
ton equations have been paid close attention to by more and more researchers.
Some exact solutions, such as the soliton solutions, periodic wave solutions,
have been found by the inverse scattering method,>* Darboux transformation
method,> 7 Bicklund transformation method,?? symmetry method,'% 12 Hirota bi-
linear method,'® Painlevé expansion method,'* etc.

As the integrable extension of soliton equations, the Kadomtsev—Petviashvili
(KP) equation with self-consistent sources arose in the pioneering work of Mel’nikov
for describing the interaction of waves on the z,y plane.!®> After that, the study of
the KP equation with self-consistent sources has become a subject of intense in-
vestigation.16 18 Furthermore, more and more soliton equations with self-consistent
sources were studied by Sato’s theory,'® inverse scattering method,?? generalized
binary Darboux transformation method?! and sources generation method.?? It is
found that solitary waves moving with nonconstant velocity are admitted by soliton
equations with self-consistent sources.23 30

As a kind of rational function solutions localized in all directions in the space,
the lump waves have attracted more and more attention in recent years.?! 3% Ra-
tional solutions to some higher-dimensional and parity-time-symmetric nonlocal
nonlinear systems were also discussed.3* 4 However, in the (3 + 1)-dimensional
case, the solutions obtained are often rationally localized in almost all but not all
directions in space and are called only lump-type solutions.*>47 Consequently, it is
very important and interesting to investigate lump solutions to partial differential
equations in (3 4 1) dimensions.

In this work, we would like to discuss the general rational solutions of the (3+1)-
dimensional Mel’nikov equation

(ut + 6utly + Uggy + 8Kf|¢|i)x — Uyy + Uy = 0,
%¢y = 20y, + 2ud, (1)
i¢z = ¢wa: + U’¢7

where u is the long wave amplitude, ¢ is the complex short wave packet and x sat-
isfies the condition x? = 1. The main content of this paper is as follows: in Sec. 2,
the explicit expressions of general rational solutions are derived in terms of deter-
minants by the Hirota bilinear method. In Sec. 3, the two- and three-dimensional
figures of first-order and second-order lump wave solutions are presented to analyze
their dynamics. In Sec. 4, the conclusions are given.

2. Rational Solutions of Eq. (1)

In this section, we focus on the general rational solutions of the (3 + 1)-dimensional
Mel’nikov equation.
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Through the dependent variable transformation v = 2(In f),, and ¢ = %,
Eq. (1) is transformed into the bilinear equation
(Dy + DoDi — D+ D2)f - f = 8k(f* — g9) =0,
(2DZ —iDy)g- f =0, (2)
(D —iD.)g- f=0.
Here, f is a real function and g is a complex one with respect to the indepen-
dent variables z,y, z,t and g denotes complex conjugation of g. Introducing a new
independent variable s, Eq. (2) can be turned into
(D3 + DyDs— Dz +D2)f-f=0,
(DyDy — Dy D) f - f = 8k(f* — 7)),
(2D; —iDy)g-f=0,
(D2 —ZDz)g-f =0.
Moreover, by the variable transformation

ry =, T2 =V 71y7 3 =V 7127 Ty = 7(t + S)a T_1 = 4Hta (4)

then the bilinear form of Eq. (3) can be changed as the bilinear Backlund transfor-
mation of the (3+1)-dimensional KP equation prensented in Ref. 48 which reads as

(2D3251 + Dyy)Tnt1 Tn =0, (5a)

(D?, 4 Duy)Tngr T =0, (5b)

Dy Dy Ty T+ 2(Tngtr - Tt — 72) =0, (5¢)

(D, + D2, — Dy, Dy, — D2 )7y -7 = 0. (5d)

with f = 79, ¢ = 71, § = 71 and the complex conjugate condition becomes
Tn = T—n.

In order to find general rational solutions of the (3 + 1)-dimensional bilinear
Mel’'nikov equation (3), we first give the following elementary lemma.

Lemma 1. Let mEZ% wgn and ’(/Jj(-n) be functions of variables x_1, x1, x3, T3 and

x4 satisfying the following relations:

0r lmi’? = —o{" Dy,
axlm ”% ”)
O, m,n,) = _2(¢£"+1)¢§") (_n)q)%n—l)) ©)

7]

8z4m(”) 4(<p§"+2)w§" +<p§”+1)wj” 1)+¢§")¢§"72))7
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and

]

Bryp")

then the determinant

Or, 0" =
Doaipl") = =20 9,0 = 2" (7)
—p D g, ) = gn)

= 4" 9, " = —ag("Y

Oz, ‘Pz('n) =

J

m{" + Myt

(pl(_n+1), 8$1w](n) _ _w(_nfl)’

J

(3

Tn —

= det (mz(-n-)>
1<i,j<N »J

satisfies the bilinear equations Eqs. 5(a)-5(d).

b

Remark 1. We can find that the differential and difference relations with respect
to variables z1, z_; are the same as the Lemma 3.1 in Ref. 27, so Eq. (5¢) holds
true without need for proof any more. Therefore, we should verify the remaining

three equations.

Proof of Lemma 1. According to the differential of determinant and the ex-
pansion formula of bordered determinant, we can get the bordered determinants

expression about derivatives of 7 functions as follows:

(n)

(n)
Op: Ty, = Mig
T (n)
W0
(n)
m; g Pi
ax17n+l = | (7::_1)
(n)
m;
8217-71-"-1 = ‘ ,l/}(lvi‘rl) -
R
(n)
m:
O Tngl = —2 I
2 (n+1)
(n)
ms
81‘3T7L+1 = - | I
(n+1)

(n+1)

7. - mz(z) (pgn)
) +1 = )
n 71}[}](@-‘,-1) 1
n) A e
+| -0 0
71/}(n+1) 1 0

(n) (n)

2050033-4

(n+1)

(n+2) m; j Pi Pi
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myy o™ e
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mg}) (pgn+1) ml(_z_) %(_n)
OpyTn = — (n) o |~ 2 (m1) , (13)
_Il/}j _wj 0
(n) (n+1) (n) (n)
mii Py mg ; 2
OpsTn = — ‘ (Jn) — ‘ (njil) , (14)
—1; 0 —1; 0
(n) (n+2) (n) (n+1) (n) (n)
m; ; i W] i m; ; Pi
awz;Tn =4 | 7(1) + 4 ‘ (7;{1) + 4 (7;]72) ’ (15)
—zpj 0 —1; 0 —wj 0
and
m™ (p(n+3) (n) <p( )
O Opa =4 070 44l M —4B, (16)
—1; 0 ¥; 0
(n) (n+1) (n) (n)
1,7 gOZ mi, j <)O1,
8%17—71 = (‘il) ('n,jl) ) (].7)
—1; 0 ¥; 0
(n) (n+3) (n) (n+1)
2 _ ] T - 1,) 7
OyyTn =4 _z/;(.") . _1/](@72) .
J J
m{ ot mi") "
+4 (ne1) +4 (n3) + 4B, (18)
—1; 0 Y; 0
(n) (n+3) (n) (n+1)
92 - — m;i P B m; ; Pi
x3'M _w(n) 0 _w(_n*2) 0
J J
LTI O
| o) + (n_3) - 2B, (19)
¥y 0 ¥; 0
(n) (n+2) (n) (n+1) (n) (n)
m;i P m; ; Pi m; ; i
& 7, = (Jn) +2 (njl) + (niz) , (20)
—¥ 0 ¥ 0 —¥; 0
\ mgz) @§n+3) mgz) SDgn+2)
I R T3 o
—1; 0 Y; 0
(n) (n+1) (n) (n)
I B A R 2
—wj 0 Y; 0
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where
my ™ ity
B=| \" 0 0 |. (22)
—p"H 0

So, we have

(28517n+1 + a31627—n+1)7—n = 4(8351 Tn+1)(ax17-n) - T7L+1(28§17-n - angn) 5

(8ilTn+1 + Oy Tnt1)Tn = 2(0uy Tnt1) (O, Tn) — T,L+1(8£17n — O23Tn) 29)
which implies
(2D2, + Doy) g1 - T =0, o)
(D2, + Dyy)Tog1 - Tn = 0.
Furthermore,
(03,7 — Oy Ouy T + 02,70 — 02, 70)T0 = 12B (25)
and

3(8517%)2 - 4(8317%)(8%17%) + (8x47n)(8x17n) - (39527'")2 + (8:c37'n)2

(n) (n+1) n n 1
af| 7, m A | w o) sa;n“)
== (n—1) - - ,

~¥; O fluf™ o | =" ol o

(26)

then according to the Jacobi formula of determinants, we get the determinants
satisfy the bilinear equations

(Dil + Dig — DmlDa:4 — Dgs)'rn CTh = 0. (27)

The proof is completed. O

Based on the above elementary lemma, the general rational solution of the
(3+1)-dimensional Mel’nikov equation can be determined by the following theorem.

Theorem 1. The (3+1)-dimensional Mel'nikov equation (1) has rational solutions
u=2(In gz, ¢ = % by N x N determinants defined as

f:TO7 g="T1, (28)
where 1, = detlgiijN(ml(}?), and the matrixz elements are given by

n;

nj
n " — _ oA = ns— 1
m{y = > cin(pidpi+ & +n)" > eupiops + & —n)" T ——
k=0 1=0 i+ Pj (29)

S =pir+ Qiy + Rz + Qit,
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with
/ 2

—2vV/-1p}, (30)

4
Q= —— 128,

4

=
I

Here, p; are complex constants, n;, n; are arbitrary positive integers.

Proof. According to Lemma 1, in order to verify this theorem, we only need to
find the advisable matrix element mgz) which satisfies the differential and difference
relations presented in Lemma 1. Hence, in order to get rational solutions we make
an assumption for the functions cpz(-"), 1/)§n> and mgz) as follows:

o™ = Ai[f(pi))mest

v = Byl=fla) e

) _ [ g, - AiB [_f(pi)r e,
Mg /_oo“"l VI = o fa) | fan) ¢

¢ = f(;i)xfl + Fpr)es — 20F (o) s — [ (o) Ps + AL (pi)Peca

7= f(fq) + Fag)ar + 20 (g7)Pes + [F(a) s + ALf (g)P s

(31)

A=kl Fi)dp ™k,
k=0
B = Zdj,l[f(qj)aq]‘}nj_l )

=0

where f(p;) and f(g;) are arbitrary complex functions for p; and g;. And ¢; x, d;,
are arbitrary complex constants, n;,n; are arbitrary positive integers. First, we
have 0,,, A; = A;Oy,,, Oy, Bj = B;0s,,, and it is obvious that these ansatz satisfy
Egs. (6) and (7).

Next, by the operator relations, we can get

[F (i), ) F(pi)" €St = Cy f(pi)"e5 [ f (pi)Opi + n+ &,

[£(9:)05, 1= 1 (4)] "¢ = D;[=f(ai)] "™ [f(4)00; —n+m], (39
_dw) )
= dp; ' b; = dg; '
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where
6 = — a1 + ) = AL 20 (00 + 120 ().
(33)
0y = —f(;) T Fla)en + AL (g Pza + 20 (g2 + 12[ (g, s
Then, the matrix element m%) becomes
) _ . _f(pi)r €+, D
i QD][f@D e+ @) 39

where
g n;
D = Z Cik(f(pi)Op, +m+ &) " Z d;ji(f(q;)0q, —n+m;)" " (35)
k=0 1=0
In order to satisfy the complex conjugate condition 7,, = 7_,,, we find that

fg5) = fpj) = F(®5),  dju =751 (36)
Without loss of generality, we can take the functions f(p;) and f(g;) as the following
simple form:

then
1 .
& = ——x_1 +piwr — Apws — 2pfas + 12p}as,
! (39)
== e + g1 + 4q w0 + 2¢7 s + 12¢3 14 .
J

Consequently, the general rational solutions of (3 4 1)-dimensional Mel’nikov equa-
tion can be obtained by the dependent variable transformation u = 2(In f) .., ¢ = %
and the independent variable transformation Eq. (4) without considering the s de-

pendence. This completes the proof of Theorem 1. O

3. Lump Waves of Eq. (1)

According to Theorem 1, we take N =1, n; = 1 and i = 1, p; = 1, the fundamental
first-order lump waves of (3 4 1)-dimensional Mel’'nikov equation can be obtained
as

gu

U = 2(11’1 fll)mxa = 7 > (39)
fin
where
1 T 9 9 9 z2
fi1=—-+8t— = 4+ 128t“ — 16zt + 8y“ + 8yz + 22° + —,
4 2 2
. (40)
1
g1 = % -4~ 16t — g + 8y? + 8yz + 222 + 12812 + 8t +/—1(22 + 4y) .
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Fig. 1. Plots of first-order lump solution for v at z = 0, t = 0 for the parameter p; = 1.

10 110 B 0 5 10

ET 5 [ 5 o
¥

Fig. 2. Plots of first-order lump solution for |¢| at z = 0, t = 0 for the parameter p; = 1.

As shown in Figs. 1 and 2, the spatial structures of these solutions are drawn
for a particular choice of the parameters when z = ¢t = 0. It can be seen clearly
that when 22 4+ y* — oo, the lump solutions u — 0, |¢| — 1.

In addition, by selecting N = 1, ny = 1, ¢;90 = 1, ¢11 = 0 and taking p; =
p1r + V/—1py;, it is easy to see that the structures of u and |¢|?> depend on the
values of py,, p1;. For convenience, we only discuss the dynamic characteristics of
function |¢(z, y, 0, 0)|? here. It is found that |¢(x,y, 0, 0)|? is symmetric with respect
to y = 0. And we can obtain one extreme point 219% and two symmetric extreme
1+v3

2p1r
in Fig. 3, by fixing p1,, = 1, in the case of —p1, < p1; < p1r, the extreme point
1

e is a maximal point and it is a bright rouge wave. The amplitude of the wave

points , %m@ which correspond to the same amplitudes. Moreover, as shown

2050033-9
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1

6

o | | 1 1 366 1 1 I
-10 8 B - 2 0 2 4 [ 8 10

Fig. 3. Plots of first-order lump solution for |¢|? at y = 0, z = 0, t = 0 for the parameter p1, = 1.

decreases with the increase of py;. On the other hand, in the case of p1; > p1, (or
p1i < —p1r), the extreme point 217% is a minimum point value and it represents a
type of dark rouge wave of the (3 4 1)-dimensional Mel’nikov equation.

Furthermore, taking N = 2, p1 = 2, po = 1, we can get the second-order lump
waves described by the following solution:

w=20nfoo)pa, =22, (41)
fa2
where
G, 1808 2T 5SBL 21T 195608, 17T
27 T YR T aeR8 T T 1044 T 23328 27 108
L B07328 4 512, 82, 1, 13033 , 4652 ,
9 9 Y Ty 18 18 o7 Y
1163 ,. 701 , 332 , 83 , 50960 5 27400 , .,
2 - S — g t t
gy A g T T g T T e g Ty
6850 1931 65 1024 256 40
+722t2+7x2t2—§x3t+7y3z+?y2z2+3x2y2
+@ 23+ E:rzzz — @mzzt— 180895 *t + 4652 2t + 4—0902 z
9 Y 9 9 g Y 97 ST g Y
27400 ztz—@x Z+@ 2—!-@22
9 7 o7 FT 9V T3
145393 , 5531 217 , 89
2 " & 42
3 324 " 9967 T g VA (42)

2050033-10
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1808 199 8357 217 195608

— tryz — x+ t+ + 3 — 13:3 + 307328t4
9 Y77 33880 T 1944 " 23328 ' 27 108 9
L5124 82, 1, 13033, | 4652, , 1163 , 01 ,
97 T 18 18 97 YT o7 36
332 , 83 , 50960 5 27400 , , 6850 5 , 1931, , 65, 4
EECL P S ¢ ¢ ¢ 222 — 24
o7 T o7t g Tt g Py gt gt gt
1024 256 40 256 10 452 1808
+ Ty3z + 73}222 + §y2x2 + Tyz3 + §z2x2 - 7t$22 - Ttm 2
LA6%2 A0, 27400, 332 23, 23, 101023,
97 YETgY g (YET YR T Y T ag 324
3623 127 , 23 1 40, 1 34 5314 ,
T 2 eV Y+ — 2 —r— g+ ot
324 " T 106" TV (6y+ oF T Tttt g
+@ 22_1’_%15 +@ 22_@t x+§x2+ézx2—1—7zm+@3
3 Y o7 YT 3Y g YT Q¥ Ty 27 9 Y
107 10628 , 260
e 2082, ) 43
+ o 1 + 9 tYT zx) (43)

The second-order lump solutions are drawn for a particular choice of the pa-
rameters in Figs. 4 and 5. And in order to get more dynamic properties of the lump
solutions, we plot the two-dimensional figure of |¢(x,0,0,0)| in Fig. 6. We can find
that the maximum peak coordinate is about (1.1590, 6.5398) which is more than
six times the constant background. In Fig. 7, there are two lump waves which have
a collision. The lump with smaller peak is faster and the two lump waves separate
after their collision. Compared with the first-order lump solutions, the properties
of higher-order solutions may have more applications in physics.

Fig. 4.
p2 =1.

Plots of second-order lump solution for u at z = 0, ¢ = 0 for the parameter p1 = 2,

2050033-11
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-1 45 o [ 23 1

¥y

Fig. 5. Plots of second-order lump solution for |¢| at z = 0, ¢ = 0 for the parameter p; = 2,
p2 =1.

1 1 1 1 1 1
MG BB T S D35 tE0T

o
-10 -8 -6 -4 -2 0 2 4 B 8 10

Fig. 6. Plots of second-order lump solution for |¢| at y = 0, z = 0, ¢ = 0 for the parameter
p1=2,p2=1

4. Conclusion

In this paper, we have found the rational solutions expressed in terms of determi-
nants for the (34 1)-dimensional Mel’nikov equation by the Hirota bilinear method.
The method used here is general and can be applied to other nonlinear soliton
equations. Also, we studied graphically some dynamic behaviors of first-order and
second-order lump waves. Moreover, we can get more richer superposition patterns
if we consider some larger N and special value of parameters involved by virtue of
Theorem 1. In the future, we will further investigate other types of interactive wave
solutions.

2050033-12
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Fig. 7. Plots of second-order lump solution for |¢| at ¢ = —0.3, —0.1, 0,0.1, 0.2, 0.3.
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