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1. Introduction

Soliton equations are a kind of important partial differential equations and their

solutions can explain many related physical phenomena.1 Therefore, solving soli-

ton equations have been paid close attention to by more and more researchers.

Some exact solutions, such as the soliton solutions, periodic wave solutions,

have been found by the inverse scattering method,2–4 Darboux transformation

method,5–7 Bäcklund transformation method,8,9 symmetry method,10–12 Hirota bi-

linear method,13 Painlevé expansion method,14 etc.

As the integrable extension of soliton equations, the Kadomtsev–Petviashvili

(KP) equation with self-consistent sources arose in the pioneering work of Mel’nikov

for describing the interaction of waves on the x, y plane.15 After that, the study of

the KP equation with self-consistent sources has become a subject of intense in-

vestigation.16–18 Furthermore, more and more soliton equations with self-consistent

sources were studied by Sato’s theory,19 inverse scattering method,20 generalized

binary Darboux transformation method21 and sources generation method.22 It is

found that solitary waves moving with nonconstant velocity are admitted by soliton

equations with self-consistent sources.23–30

As a kind of rational function solutions localized in all directions in the space,

the lump waves have attracted more and more attention in recent years.31–38 Ra-

tional solutions to some higher-dimensional and parity-time-symmetric nonlocal

nonlinear systems were also discussed.39–44 However, in the (3 + 1)-dimensional

case, the solutions obtained are often rationally localized in almost all but not all

directions in space and are called only lump-type solutions.45–47 Consequently, it is

very important and interesting to investigate lump solutions to partial differential

equations in (3 + 1) dimensions.

In this work, we would like to discuss the general rational solutions of the (3+1)-

dimensional Mel’nikov equation
(ut + 6uux + uxxx + 8κ|φ|2x)x − uyy + uzz = 0 ,

iφy = 2φxx + 2uφ ,

iφz = φxx + uφ ,

(1)

where u is the long wave amplitude, φ is the complex short wave packet and κ sat-

isfies the condition κ2 = 1. The main content of this paper is as follows: in Sec. 2,

the explicit expressions of general rational solutions are derived in terms of deter-

minants by the Hirota bilinear method. In Sec. 3, the two- and three-dimensional

figures of first-order and second-order lump wave solutions are presented to analyze

their dynamics. In Sec. 4, the conclusions are given.

2. Rational Solutions of Eq. (1)

In this section, we focus on the general rational solutions of the (3+1)-dimensional

Mel’nikov equation.
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Through the dependent variable transformation u = 2(ln f)xx and φ = g
f ,

Eq. (1) is transformed into the bilinear equation
(D4

x +DxDt −D2
y +D2

z)f · f − 8κ(f2 − gḡ) = 0 ,

(2D2
x − iDy)g · f = 0 ,

(D2
x − iDz)g · f = 0 .

(2)

Here, f is a real function and g is a complex one with respect to the indepen-

dent variables x, y, z, t and ḡ denotes complex conjugation of g. Introducing a new

independent variable s, Eq. (2) can be turned into
(D4

x +DxDs −D2
y +D2

z)f · f = 0 ,

(DxDt −DxDs)f · f = 8κ(f2 − gḡ) ,

(2D2
x − iDy)g · f = 0 ,

(D2
x − iDz)g · f = 0 .

(3)

Moreover, by the variable transformation

x1 = x, x2 =
√
−1y, x3 =

√
−1z, x4 = −(t+ s), x−1 = 4κt , (4)

then the bilinear form of Eq. (3) can be changed as the bilinear Bäcklund transfor-

mation of the (3+1)-dimensional KP equation prensented in Ref. 48 which reads as

(2D2
x1

+Dx2)τn+1 · τn = 0 , (5a)

(D2
x1

+Dx3
)τn+1 · τn = 0 , (5b)

Dx1
Dx−1

τn · τn + 2(τn+1 · τn−1 − τ2n) = 0 , (5c)

(D4
x1

+D2
x2
−Dx1Dx4 −D2

x3
)τn · τn = 0 . (5d)

with f = τ0, g = τ1, g = τ−1 and the complex conjugate condition becomes

τn = τ−n.

In order to find general rational solutions of the (3 + 1)-dimensional bilinear

Mel’nikov equation (3), we first give the following elementary lemma.

Lemma 1. Let m
(n)
i,j , ϕ

(n)
i and ψ

(n)
j be functions of variables x−1, x1, x2, x3 and

x4 satisfying the following relations:

∂x−1
m

(n)
i,j = −ϕ(n−1)

i ψ
(n+1)
j ,

∂x1
m

(n)
i,j = ϕ

(n)
i ψ

(n)
j ,

∂x2m
(n)
i,j = −2

(
ϕ
(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j

)
,

∂x3
m

(n)
i,j = −

(
ϕ
(n+1)
i ψ

(n)
j + ϕ

(n)
i ψ

(n−1)
j

)
,

∂x4
m

(n)
i,j = 4

(
ϕ
(n+2)
i ψ

(n)
j + ϕ

(n+1)
i ψ

(n−1)
j + ϕ

(n)
i ψ

(n−2)
j

)
,

(6)
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and 

m
(n+1)
i,j = m

(n)
i,j + ϕ

(n)
i ψ

(n+1)
j ,

∂x1ϕ
(n)
i = ϕ

(n+1)
i , ∂x1ψ

(n)
j = −ψ(n−1)

j ,

∂x2ϕ
(n)
i = −2ϕ

(n+2)
i , ∂x2ψ

(n)
j = 2ψ

(n−2)
j ,

∂x3ϕ
(n)
i = −ϕ(n+2)

i , ∂x3ψ
(n)
j = ψ

(n−2)
j ,

∂x4ϕ
(n)
i = 4ϕ

(n+3)
i , ∂x4ψ

(n)
j = −4ψ

(n−3)
j ,

(7)

then the determinant

τn = det
1≤i,j≤N

(
m

(n)
i,j

)
(8)

satisfies the bilinear equations Eqs. 5(a)–5(d).

Remark 1. We can find that the differential and difference relations with respect

to variables x1, x−1 are the same as the Lemma 3.1 in Ref. 27, so Eq. (5c) holds

true without need for proof any more. Therefore, we should verify the remaining

three equations.

Proof of Lemma 1. According to the differential of determinant and the ex-

pansion formula of bordered determinant, we can get the bordered determinants

expression about derivatives of τ functions as follows:

∂x1τn =

∣∣∣∣∣ m
(n)
i,j ϕ

(n)
i

−ψ(n)
j 0

∣∣∣∣∣ , τn+1 =

∣∣∣∣∣ m
(n)
i,j ϕ

(n)
i

−ψ(n+1)
j 1

∣∣∣∣∣ ,
∂x1

τn+1 =

∣∣∣∣∣ m
(n)
i,j ϕ

(n+1)
i

−ψ(n+1)
j 0

∣∣∣∣∣ ,
(9)

∂2x1
τn+1 =

∣∣∣∣∣ m
(n)
i,j ϕ

(n+2)
i

−ψ(n+1)
j 0

∣∣∣∣∣+

∣∣∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

−ψ(n)
j 0 0

−ψ(n+1)
j 1 0

∣∣∣∣∣∣∣∣ , (10)

∂x2
τn+1 = −2

∣∣∣∣∣ m
(n)
i,j ϕ

(n+2)
i

−ψ(n+1)
j 0

∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

−ψ(n)
j 0 0

−ψ(n+1)
j 1 0

∣∣∣∣∣∣∣∣ , (11)

∂x3
τn+1 = −

∣∣∣∣∣ m
(n)
i,j ϕ

(n+2)
i

−ψ(n+1)
j 0

∣∣∣∣∣+

∣∣∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

−ψ(n)
j 0 0

−ψ(n+1)
j 1 0

∣∣∣∣∣∣∣∣ , (12)
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∂x2τn = −2

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

−ψ(n)
j 0

∣∣∣∣∣∣− 2

∣∣∣∣∣ m
(n)
i,j ϕ

(n)
i

−ψ(n−1)
j 0

∣∣∣∣∣ , (13)

∂x3
τn = −

∣∣∣∣∣ m
(n)
i,j ϕ

(n+1)
i

−ψ(n)
j 0

∣∣∣∣∣−
∣∣∣∣∣ m

(n)
i,j ϕ

(n)
i

−ψ(n−1)
j 0

∣∣∣∣∣ , (14)

∂x4τn = 4

∣∣∣∣∣ m
(n)
i,j ϕ

(n+2)
i

−ψ(n)
j 0

∣∣∣∣∣+ 4

∣∣∣∣∣ m
(n)
i,j ϕ

(n+1)
i

−ψ(n−1)
j 0

∣∣∣∣∣+ 4

∣∣∣∣∣ m
(n)
i,j ϕ

(n)
i

−ψ(n−2)
j 0

∣∣∣∣∣ , (15)

and

∂x1
∂x4

τn = 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+3)
i

−ψ(n)
j 0

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

ψ
(n−3)
j 0

∣∣∣∣∣∣− 4B, (16)

∂2x1
τn =

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

−ψ(n)
j 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

ψ
(n−1)
j 0

∣∣∣∣∣∣ , (17)

∂2x2
τn = 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+3)
i

−ψ(n)
j 0

∣∣∣∣∣∣− 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

−ψ(n−2)
j 0

∣∣∣∣∣∣
+ 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+2)
i

−ψ(n−1)
j 0

∣∣∣∣∣∣+ 4

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

ψ
(n−3)
j 0

∣∣∣∣∣∣+ 4B, (18)

∂2x3
τn =

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+3)
i

−ψ(n)
j 0

∣∣∣∣∣∣−
∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

−ψ(n−2)
j 0

∣∣∣∣∣∣
−

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+2)
i

ψ
(n−1)
j 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

ψ
(n−3)
j 0

∣∣∣∣∣∣− 2B, (19)

∂3x1
τn =

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+2)
i

−ψ(n)
j 0

∣∣∣∣∣∣+ 2

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

ψ
(n−1)
j 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

−ψ(n−2)
j 0

∣∣∣∣∣∣ , (20)

∂4x1
τn =

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+3)
i

−ψ(n)
j 0

∣∣∣∣∣∣+ 3

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+2)
i

ψ
(n−1)
j 0

∣∣∣∣∣∣
+ 3

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n+1)
i

−ψ(n−2)
j 0

∣∣∣∣∣∣+

∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i

ψ
(n−3)
j 0

∣∣∣∣∣∣+ 2B , (21)
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where

B =

∣∣∣∣∣∣∣∣
m

(n)
i,j ϕ

(n)
i ϕ

(n+1)
i

ψ
(n)
j 0 0

−ψ(n−1)
j 0 0

∣∣∣∣∣∣∣∣ . (22)

So, we have

(2∂2x1
τn+1 + ∂x2

τn+1)τn = 4(∂x1
τn+1)(∂x1

τn)− τn+1(2∂2x1
τn − ∂x2

τn) ,

(∂2x1
τn+1 + ∂x3τn+1)τn = 2(∂x1τn+1)(∂x1τn)− τn+1(∂2x1

τn − ∂x3τn) ,
(23)

which implies

(2D2
x1

+Dx2
)τn+1 · τn = 0 ,

(D2
x1

+Dx3
)τn+1 · τn = 0 .

(24)

Furthermore,

(∂4x1
τn − ∂x1∂x4τn + ∂2x2

τn − ∂2x3
τn)τn = 12B (25)

and

3(∂2x1
τn)2 − 4(∂3x1

τn)(∂x1
τn) + (∂x4

τn)(∂x1
τn)− (∂x2

τn)2 + (∂x3
τn)2

= −12

(∣∣∣∣∣ m
(n)
i,j ϕ

(n+1)
i

−ψ(n−1)
j 0

∣∣∣∣∣
∣∣∣∣∣m

(n)
i,j ϕ

(n)
i

ψ
(n)
j 0

∣∣∣∣∣−
∣∣∣∣∣ m

(n)
i,j ϕ

(n)
i

−ψ(n−1)
j 0

∣∣∣∣∣
∣∣∣∣∣m

(n)
i,j ϕ

(n+1)
i

ψ
(n)
j 0

∣∣∣∣∣
)
,

(26)

then according to the Jacobi formula of determinants, we get the determinants

satisfy the bilinear equations

(D4
x1

+D2
x2
−Dx1

Dx4
−D2

x3
)τn · τn = 0 . (27)

The proof is completed.

Based on the above elementary lemma, the general rational solution of the

(3+1)-dimensional Mel’nikov equation can be determined by the following theorem.

Theorem 1. The (3+1)-dimensional Mel’nikov equation (1) has rational solutions

u = 2(ln f)xx, φ = g
f by N ×N determinants defined as

f = τ0, g = τ1 , (28)

where τn = det1≤i,j≤N (m
(n)
i,j ), and the matrix elements are given by

m
(n)
i,j =

ni∑
k=0

ci,k(pi∂pi + ξi + n)ni−k
nj∑
l=0

c̄j,l(p̄j∂p̄j + ξ̄j − n)nj−l 1

pi + p̄j
,

ξi = pix+Qiy +Riz + Ωit ,

(29)
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with

Qi = −4
√
−1p2i ,

Ri = −2
√
−1p2i ,

Ωi = −4κ

pi
− 12p3i .

(30)

Here, pi are complex constants, ni, nj are arbitrary positive integers.

Proof. According to Lemma 1, in order to verify this theorem, we only need to

find the advisable matrix element m
(n)
i,j which satisfies the differential and difference

relations presented in Lemma 1. Hence, in order to get rational solutions we make

an assumption for the functions ϕ
(n)
i , ψ

(n)
j and m

(n)
i,j as follows:

ϕ
(n)
i = Ai[f(pi)]

neξ
′
i ,

ψ
(n)
j = Bj [−f(qj)]

−neη
′
j ,

m
(n)
i,j =

∫ x1

−∞
ϕ
(n)
i ψnj dx1 =

AiBj
f(pi) + f(qj)

[
−f(pi)

f(qj)

]n
eξ
′
i+η

′
j ,

ξ′i =
1

f(pi)
x−1 + f(pi)x1 − 2[f(pi)]

2x2 − [f(pi)]
2x3 + 4[f(pi)]

3x4 ,

η′j =
1

f(qj)
x−1 + f(qj)x1 + 2[f(qj)]

2x2 + [f(qj)]
2x3 + 4[f(qj)]

3x4 ,

Ai =

ni∑
k=0

ci,k[f(pi)∂pi ]
ni−k ,

Bj =

nj∑
l=0

dj,l[f(qj)∂qj ]nj−l ,

(31)

where f(pi) and f(qj) are arbitrary complex functions for pi and qj . And ci,k, dj,l
are arbitrary complex constants, ni, nj are arbitrary positive integers. First, we

have ∂xm
Ai = Ai∂xm

, ∂xm
Bj = Bj∂xm

, and it is obvious that these ansatz satisfy

Eqs. (6) and (7).

Next, by the operator relations, we can get

[f(pi)∂pi ]f(pi)
neξ

′
i = Cif(pi)

neξ
′
i [f(pi)∂pi + n+ ξi] ,

[f(qj)∂qj ][−f(qj)]
−neη

′
j = Dj [−f(qi)]

−neη
′
j [f(qj)∂qj − n+ ηj ] ,

Ci =
df(pi)

dpi
, Dj =

df(qj)

dqj
,

(32)
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where

ξi = − 1

f(pi)
x−1 + f(pi)x1 − 4[f(pi)]

2x2 − 2[f(pi)]
2x3 + 12[f(pi)]

3x4 ,

ηj = − 1

f(qj)
x−1 + f(qj)x1 + 4[f(qj)]

2x2 + 2[f(qj)]
2x3 + 12[f(qj)]

3x4 .

(33)

Then, the matrix element m
(n)
i,j becomes

m
(n)
i,j = CiDj

[
−f(pi)

f(qj)

]n
eξ
′
i+η

′
j

D

f(pi) + f(qj)
, (34)

where

D =

ni∑
k=0

ci,k(f(pi)∂pi + n+ ξi)
ni−k

nj∑
l=0

dj,l(f(qj)∂qj − n+ ηj)
nj−l . (35)

In order to satisfy the complex conjugate condition τn = τ−n, we find that

f(qj) = f(pj) = f(pj), dj,l = cj,l . (36)

Without loss of generality, we can take the functions f(pi) and f(qj) as the following

simple form:

f(pi) = pi = qi, f(qj) = qj = pj , (37)

then

ξi = − 1

pi
x−1 + pix1 − 4p2ix2 − 2p2ix3 + 12p3ix4 ,

ηj = − 1

qj
x−1 + qjx1 + 4q2jx2 + 2q2jx3 + 12q3jx4 .

(38)

Consequently, the general rational solutions of (3 + 1)-dimensional Mel’nikov equa-

tion can be obtained by the dependent variable transformation u = 2(ln f)xx, φ = g
f

and the independent variable transformation Eq. (4) without considering the s de-

pendence. This completes the proof of Theorem 1.

3. Lump Waves of Eq. (1)

According to Theorem 1, we take N = 1, n1 = 1 and i = 1, p1 = 1, the fundamental

first-order lump waves of (3 + 1)-dimensional Mel’nikov equation can be obtained

as

u = 2(ln f11)xx, φ =
g11
f11

, (39)

where

f11 =
1

4
+ 8t− x

2
+ 128t2 − 16xt+ 8y2 + 8yz + 2z2 +

x2

2
,

g11 =
x2

2
− 1

4
− 16tx− x

2
+ 8y2 + 8yz + 2z2 + 128t2 + 8t+

√
−1(2z + 4y) .

(40)
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Fig. 1. Plots of first-order lump solution for u at z = 0, t = 0 for the parameter p1 = 1.

Fig. 2. Plots of first-order lump solution for |φ| at z = 0, t = 0 for the parameter p1 = 1.

As shown in Figs. 1 and 2, the spatial structures of these solutions are drawn

for a particular choice of the parameters when z = t = 0. It can be seen clearly

that when x2 + y2 →∞, the lump solutions u→ 0, |φ| → 1.

In addition, by selecting N = 1, n1 = 1, c10 = 1, c11 = 0 and taking p1 =

p1r +
√
−1p1i, it is easy to see that the structures of u and |φ|2 depend on the

values of p1r, p1i. For convenience, we only discuss the dynamic characteristics of

function |φ(x, y, 0, 0)|2 here. It is found that |φ(x, y, 0, 0)|2 is symmetric with respect

to y = 0. And we can obtain one extreme point 1
2p1r

and two symmetric extreme

points 1+
√
3

2p1r
, 1−

√
3

2p1r
which correspond to the same amplitudes. Moreover, as shown

in Fig. 3, by fixing p1r = 1, in the case of −p1r < p1i < p1r, the extreme point
1

2p1r
is a maximal point and it is a bright rouge wave. The amplitude of the wave

2050033-9



January 30, 2020 15:32 MPLB S0217984920500335 page 10

X. Yong et al.

Fig. 3. Plots of first-order lump solution for |φ|2 at y = 0, z = 0, t = 0 for the parameter p1r = 1.

decreases with the increase of p1i. On the other hand, in the case of p1i > p1r (or

p1i < −p1r), the extreme point 1
2p1r

is a minimum point value and it represents a

type of dark rouge wave of the (3 + 1)-dimensional Mel’nikov equation.

Furthermore, taking N = 2, p1 = 2, p2 = 1, we can get the second-order lump

waves described by the following solution:

u = 2(ln f22)xx, φ =
g22
f22

, (41)

where

f22 = −1808

9
xyzt− 217

3888
x+

5531

1944
t+

217

23328
+

195608

27
t3 − 17

108
x3

+
307328

9
t4 +

512

9
y4 +

32

9
z4 +

1

18
x4 − 13033

18
xt2 +

4652

27
y2t

+
1163

27
z2t+

701

36
x2t− 332

27
xy2 − 83

27
xz2 − 50960

9
xt3 +

27400

9
y2t2

+
6850

9
z2t2 +

1931

6
x2t2 − 65

9
x3t+

1024

9
y3z +

256

3
y2z2 +

40

9
x2y2

+
256

9
yz3 +

10

9
x2z2 − 452

9
xz2t− 1808

9
xy2t+

4652

27
yzt+

40

9
x2yz

+
27400

9
yzt2 − 332

27
xyz +

89

9
y2 +

89

36
z2

+
145393

324
t2 − 5531

324
xt+

217

1296
x2 +

89

9
yz , (42)

2050033-10
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g22 = −1808

9
txyz − 199

3888
x+

8357

1944
t+

217

23328
+

195608

27
t3 − 17

108
x3 +

307328

9
t4

+
512

9
y4 +

32

9
z4 +

1

18
x4 − 13033

18
t2x+

4652

27
ty2 +

1163

27
tz2 +

701

36
tx2

− 332

27
xy2− 83

27
xz2− 50960

9
t3x+

27400

9
t2y2 +

6850

9
t2z2 +

1931

6
t2x2− 65

9
tx3

+
1024

9
y3z +

256

3
y2z2 +

40

9
y2x2 +

256

9
yz3 +

10

9
z2x2 − 452

9
txz2 − 1808

9
txy2

+
4652

27
tyz +

40

9
yzx2 +

27400

9
t2yz − 332

27
xyz +

23

9
y2 +

23

36
z2 +

101023

324
t2

− 3623

324
tx+

127

1296
x2 +

23

9
yz +

√
−1

(
1

6
y +

40

9
z3 +

1

12
z − 34

27
yx+

5314

9
t2z

+
160

3
y2z +

214

27
ty +

80

3
yz2 − 520

9
tyx+

8

9
yx2 +

4

9
zx2 − 17

27
zx+

320

9
y3

+
107

27
tz +

10628

9
t2y − 260

9
tzx

)
. (43)

The second-order lump solutions are drawn for a particular choice of the pa-

rameters in Figs. 4 and 5. And in order to get more dynamic properties of the lump

solutions, we plot the two-dimensional figure of |φ(x, 0, 0, 0)| in Fig. 6. We can find

that the maximum peak coordinate is about (1.1590, 6.5398) which is more than

six times the constant background. In Fig. 7, there are two lump waves which have

a collision. The lump with smaller peak is faster and the two lump waves separate

after their collision. Compared with the first-order lump solutions, the properties

of higher-order solutions may have more applications in physics.

Fig. 4. Plots of second-order lump solution for u at z = 0, t = 0 for the parameter p1 = 2,

p2 = 1.

2050033-11
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Fig. 5. Plots of second-order lump solution for |φ| at z = 0, t = 0 for the parameter p1 = 2,
p2 = 1.

Fig. 6. Plots of second-order lump solution for |φ| at y = 0, z = 0, t = 0 for the parameter

p1 = 2, p2 = 1.

4. Conclusion

In this paper, we have found the rational solutions expressed in terms of determi-

nants for the (3+1)-dimensional Mel’nikov equation by the Hirota bilinear method.

The method used here is general and can be applied to other nonlinear soliton

equations. Also, we studied graphically some dynamic behaviors of first-order and

second-order lump waves. Moreover, we can get more richer superposition patterns

if we consider some larger N and special value of parameters involved by virtue of

Theorem 1. In the future, we will further investigate other types of interactive wave

solutions.

2050033-12
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Fig. 7. Plots of second-order lump solution for |φ| at t = −0.3, −0.1, 0, 0.1, 0.2, 0.3.
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