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Abstract. The modified Kadomtsev-Petviashvili-I equation is studied by the Hirota bilin-
ear method. Certain lump solutions of this equation are found via the ansatz technique.
Rational solutions presented include plane bounded lumps, which do not decay in all
directions in the space.
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1. Introduction

As a (2 + 1)-dimensional integrable generalisation of the modified Korteweg-de Vries
equation, the modified Kadomtsev-Petviashvili (mKP) equation

3
Vit Vi — Evzvx +3028,'V,, —30V, 3V, =0, (1.1)
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where 02 = £1, was introduced within the framework of the gauge-invariant description
of the KP equation in [13]. In [11], it appeared as the first member of the first modified KP
hierarchy. By introducing a new dependent variable defined as V = o U, Eq. (1.1) becomes

1
U, + Uyyy — 302 (§U2Ux -a,'U,, + Uxax_lUy) =0, (1.2)

which is classified as the modified Kadomtsev-Petviashvili-I (mKPI) equation when o =i
and the modified Kadomtsev-Petviashvili-II (mKPII) equation when o = 1 [44]. Both mKPI
and mKPII equations are physically significant nonlinear evolution equations. They can be
solved by the inverse scattering transform (IST) method, the Darboux transform method,
the d-dressing method, the Hirota bilinear method — cf. Refs. [1,2,6,14-17,25,29,45].

Lump solutions are a kind of analytic rational function solutions, localised in all direc-
tions in the space. General rational function solutions of the Korteweg-de Vries equation,
the Boussinesq equation and the Toda lattice equation have been studied by using Wron-
skian and Casoratian determinant [5,22-24]. Special lumps also appear as solutions of KPI,
BKB Davey-Stewartson-II and Ishimori-I equations [3,7,10,12,18,28,31,36-39]. Although
for mKP and KP equations the 2 + 1-dimensional Miura transformation exists, it does not
convert real solutions of mKPI and KPI equations into each other [15]. Therefore, it would
interesting to find an efficient way for finding real rational solutions of the mKPI equation.

Based on the Hirota bilinear method [9], one of the authors (Ma) proposed a direct
method for determining of positive quadratic function solutions to the (2 + 1)-dimensional
bilinear KPI equation [20] and general Hirota bilinear equations [21]. The same approach
applies to many other equations [8, 19, 26, 30, 32-35, 41, 42, 46-48]. The method has
been also recently used to characterise the lump solutions of the KPI equation with a self-
consistent source [43].

In this work, we employ Maple symbolic computation, to present two general classes of
lump solutions of the mKPI equation (1.2). This equation (1.2) has a Hirota bilinear form
and we use special ansitz to find real rational solutions. The solutions obtained contain
free parameters, a special choice of which covers lump solutions generated from the IST. In
addition, they also generate plane bounded lumps, which do not decay in all directions in
the space. Finally, a few concluding remarks are given at the end of the paper.

2. Lump Solutions of mKPI Equation

Using the variable transformation U = 2i(In(G/F)),., one can write the mKPI equa-
tion (1.2) as

(D, +D3+3iD,D,)G-F =0, o
(p2—iD,)G-F=0 '

with the D-operators

8 a\'[a a3\
D"D'G-F=|——— —— F(x',t
e PxG (at 3t’) (3x 3x’) Gl DF(X, E)

xX'=x,t'=t
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In order to compute real solutions to the mKPI equation (1.2), we take G as the complex
conjugation of F, so that

U9 ( F) _ OF)OmE), = (ReF), (ImF) 29

In —
" (ReF)2 + (ImF)2

where fReF and JmF are the real and imaginary parts of F, respectively. In order to obtain
rational solutions, we assume that

F=XTAX+C, X +a+i(X"TBX+C,X +b), X=(x,y,t)7, (2.3)

where a and b are real constants, A = (aji)3x3 and B = (bji)3x3 real symmetric matrixes,
and C,;, = (cpun)1x3, m = 1,2, real row vectors. These are also parameters we would like
to determine.

Substituting the Eq. (2.3) into (2.1) and extracting the coefficients at x, y, t, we obtain
an algebraic system for the parameters. Firstly, we notice that the conditions aj;bj. —
Anbmn = 0 hold for any subscripts. Without loss of generality, we can take A = 0 and
reduce F as

F=CX+a+i(X"BX+CX +b). (2.4)

This implies that fReF is a linear function and JmF is at most a quadratic function of in-
dependent variables. Moreover, the non-singularity condition F # 0 must be considered.
After detailed analysis, we found that two solutions of the determining equations — Viz.

Case 1.
c2 3c3
B=C;=0, ¢ :_ﬂ, Cpy = —2L,
1 22 ke 23 k%
Case 2.
_ 2413:132 _ by (6b15 —cq3)
by = , biyg=————,
b,y (18b15 —cq3) 4bq;y
_ b3,(18by;—c13) bar — 3b3,(18b1; —c13)
23 Sbfz > 33 8b‘r152 i
_48b;‘2 _4b%2(6b12 — C13)
C = 5 C = 5
H b3,(18by5 —c13) 27 byy(18byy—c13)
_ byy(2Dbypchy — byyce1 )(18b15 —c13)
Co3 = 3b3 )
12
Ky = 24b?2C22 2y bis
b§2(18b12 —C13) by
A
ko

a b2,b3,(6b15 + ¢13)(18b15 — c13)’
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where

A =2304b%, +432c2, b2, b, —24c13b2,¢5, b, — 648cy1ca0 b3, b3, + ¢33, T,

2 13 2 214 2 14 3 .2
+ 72C13C21C22 b12 b22 + 324b12C21 b22 - 36b12C13C21 b22 - 2b12C21 Coo b22C13,

and the other parameters are arbitrary provided that the solutions are well defined.

Until now, we can conclude that these two cases of solutions for the parameters lead
to two classes of lump solutions defined by (2.4), to the mKPI equation (1.2) through the
transformation (2.2).

In Case 1, we obtain the plane bounded lump solution

_ 4k;coq
(co1x —c2 y/ky +3c3 t/k? + ky)2 + k¥’

(2.5)

where kq,k, and c,; are arbitrary real constants. If we further set c,; =1 and k; = A/2,
this produces the plane lump solution from [15]. However, it does not tend to zero in the
Lo 2 3 2 -
direction cyyx — 3,y /kq + 3¢5, t/ki + ky =const.
In Case 2, we set
big=Dby =1, ci3=cy =Cp =2,

and obtain the lump solution

U =4(4y*—18x*+88t% —12xy + 24xt + 56yt — 12x + 8y + 56t + 58)/

(4(3x +y —2t +1)? + (3x* + 4xy + 4xt +2y* + 8yt + 12> + 4x + 4y + 8t + 11)?),
(2.6)

which decays in all directions in the (x, y)-plane. This solution is analytic, since the de-
nominator becomes [9(x —2t)?+9]? if 3x + y—2t +1 = 0. Fig. 1 shows three-dimensional
profiles of the two classes of plane lump and lump solutions. Their plots when y = 0 for
different times are depicted in Fig. 2, respectively.

-w W

a) b)
Figure 1. Lump solutions (2.5) and (2.6), t =0. a) Plane lump. b) Lump.
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Figure 2: Profiles of lump solutions (2.5) and (2.6) for y =0. a) Plane lump: solid, t =—2; dash, t =0;
dashdot, t =2. b) Lump: solid, t =—1; dash, t = 0; dashdot, t = 1.

3. Conclusion

We study lump solutions for the mKPI equation. Constraint conditions for the existence
of such polynomial solutions are given. The solutions presented include plane bounded
lumps, which do not decay in all directions in the space. Note that in general high-order
equations such as the (3+1)-dimensional Jimbo-Miwa equation and the (3+1)-dimensional
potential YTSF equation [4,40] have bounded plane lumps. It is known that linear partial
differential equations have lump solutions [27] and it will be interesting to find lump solu-
tions of nonlinear partial differential equations.
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