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Abstract. The modified Kadomtsev-Petviashvili-I equation is studied by the Hirota bilin-

ear method. Certain lump solutions of this equation are found via the ansatz technique.

Rational solutions presented include plane bounded lumps, which do not decay in all

directions in the space.
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1. Introduction

As a (2 + 1)-dimensional integrable generalisation of the modified Korteweg-de Vries

equation, the modified Kadomtsev-Petviashvili (mKP) equation

Vt + Vx x x −
3

2
V 2Vx + 3σ2∂ −1

x Vy y − 3σVx∂
−1
x Vy = 0, (1.1)
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where σ2 = ±1, was introduced within the framework of the gauge-invariant description

of the KP equation in [13]. In [11], it appeared as the first member of the first modified KP

hierarchy. By introducing a new dependent variable defined as V = σU , Eq. (1.1) becomes

Ut + Ux x x − 3σ2

�

1

2
U2Ux − ∂

−1
x Uy y + Ux∂

−1
x Uy

�

= 0, (1.2)

which is classified as the modified Kadomtsev-Petviashvili-I (mKPI) equation when σ = i

and the modified Kadomtsev-Petviashvili-II (mKPII) equation when σ = 1 [44]. Both mKPI

and mKPII equations are physically significant nonlinear evolution equations. They can be

solved by the inverse scattering transform (IST) method, the Darboux transform method,

the ∂̄ -dressing method, the Hirota bilinear method — cf. Refs. [1,2,6,14–17,25,29,45].

Lump solutions are a kind of analytic rational function solutions, localised in all direc-

tions in the space. General rational function solutions of the Korteweg-de Vries equation,

the Boussinesq equation and the Toda lattice equation have been studied by using Wron-

skian and Casoratian determinant [5,22–24]. Special lumps also appear as solutions of KPI,

BKP, Davey-Stewartson-II and Ishimori-I equations [3,7,10,12,18,28,31,36–39]. Although

for mKP and KP equations the 2+ 1-dimensional Miura transformation exists, it does not

convert real solutions of mKPI and KPI equations into each other [15]. Therefore, it would

interesting to find an efficient way for finding real rational solutions of the mKPI equation.

Based on the Hirota bilinear method [9], one of the authors (Ma) proposed a direct

method for determining of positive quadratic function solutions to the (2+1)-dimensional

bilinear KPI equation [20] and general Hirota bilinear equations [21]. The same approach

applies to many other equations [8, 19, 26, 30, 32–35, 41, 42, 46–48]. The method has

been also recently used to characterise the lump solutions of the KPI equation with a self-

consistent source [43].

In this work, we employ Maple symbolic computation, to present two general classes of

lump solutions of the mKPI equation (1.2). This equation (1.2) has a Hirota bilinear form

and we use special ansätz to find real rational solutions. The solutions obtained contain

free parameters, a special choice of which covers lump solutions generated from the IST. In

addition, they also generate plane bounded lumps, which do not decay in all directions in

the space. Finally, a few concluding remarks are given at the end of the paper.

2. Lump Solutions of mKPI Equation

Using the variable transformation U = 2i(ln(G/F))x , one can write the mKPI equa-

tion (1.2) as
�

Dt + D3
x + 3iDx Dy

�

G · F = 0,
�

D2
x
− iDy

�

G · F = 0
(2.1)

with the D-operators

Dm
t Dn

x G · F =
�

∂

∂ t
−
∂

∂ t′

�m� ∂

∂ x
−
∂

∂ x ′

�n

G(x , t)F(x ′, t′)

�

�

�

x ′=x ,t ′=t
.
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In order to compute real solutions to the mKPI equation (1.2), we take G as the complex

conjugation of F , so that

U = 2i

�

ln
F∗

F

�

x

= 4
(ReF)(ImF)x − (ReF)x (ImF)

(ReF)2 + (ImF)2
, (2.2)

where ReF and ImF are the real and imaginary parts of F , respectively. In order to obtain

rational solutions, we assume that

F = X T AX + C1X + a+ i
�

X T BX + C2X + b
�

, X = (x , y, t)T , (2.3)

where a and b are real constants, A= (a jk)3×3 and B = (b jk)3×3 real symmetric matrixes,

and Cm = (cmn)1×3, m = 1,2, real row vectors. These are also parameters we would like

to determine.

Substituting the Eq. (2.3) into (2.1) and extracting the coefficients at x , y, t, we obtain

an algebraic system for the parameters. Firstly, we notice that the conditions a jk b jk −
amn bmn = 0 hold for any subscripts. Without loss of generality, we can take A = 0 and

reduce F as

F = C1X + a + i
�

X T BX + C2X + b
�

. (2.4)

This implies that ReF is a linear function and ImF is at most a quadratic function of in-

dependent variables. Moreover, the non-singularity condition F 6= 0 must be considered.

After detailed analysis, we found that two solutions of the determining equations — viz.

Case 1.

B = C1 = 0, c22 = −
c2
21

k1

, c23 =
3c3

21

k2
1

.

Case 2.

b11 =
24b3

12

b22(18b12 − c13)
, b13 =

b22(6b12 − c13)

4b12

,

b23 =
b2

22(18b12 − c13)

8b2
12

, b33 =
3b3

22(18b12 − c13)

8b3
12

,

c11 =
−48b4

12

b2
22
(18b12 − c13)

, c12 =
−4b2

12(6b12 − c13)

b22(18b12 − c13)
,

c23 =
b22(2 b12c22 − b22c21)(18b12 − c13)

8b3
12

,

k1 =
24b3

12
c22

b2
22
(18b12 − c13)

−
2c21 b12

b22

,

k2 =
∆

b2
12

b3
22
(6b12 + c13)(18b12 − c13)

,
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where

∆ =2304b8
12 + 432c2

22 b2
22 b4

12 − 24c13 b3
12c2

22 b2
22 − 648c21c22 b3

12 b3
22 + c2

21c2
13 b4

22

+ 72c13c21c22 b2
12 b3

22 + 324b2
12c2

21 b4
22 − 36b12c13c2

21 b4
22 − 2b12c21c22 b3

22c2
13,

and the other parameters are arbitrary provided that the solutions are well defined.

Until now, we can conclude that these two cases of solutions for the parameters lead

to two classes of lump solutions defined by (2.4), to the mKPI equation (1.2) through the

transformation (2.2).

In Case 1, we obtain the plane bounded lump solution

U =
4k1c21

(c21 x − c2
21

y/k1 + 3c3
21

t/k2
1
+ k2)

2 + k2
1

, (2.5)

where k1, k2 and c21 are arbitrary real constants. If we further set c21 = 1 and k1 = λ/2 ,

this produces the plane lump solution from [15]. However, it does not tend to zero in the

direction c21 x − c2
21 y/k1 + 3c3

21
t/k2

1 + k2 =const.

In Case 2, we set

b12 = b22 = 1, c13 = c21 = c22 = 2,

and obtain the lump solution

U =4
�

4y2 − 18x2+ 88t2 − 12x y + 24x t + 56y t − 12x + 8y + 56t + 58
��

�

4(3x + y − 2t + 1)2 + (3x2 + 4x y + 4x t + 2y2 + 8y t + 12t2 + 4x + 4y + 8t + 11)2
�

,

(2.6)

which decays in all directions in the (x , y)-plane. This solution is analytic, since the de-

nominator becomes [9(x−2t)2+9]2 if 3x+ y−2t+1= 0. Fig. 1 shows three-dimensional

profiles of the two classes of plane lump and lump solutions. Their plots when y = 0 for

different times are depicted in Fig. 2, respectively.

a) b)

Figure 1: Lump solutions (2.5) and (2.6), t = 0. a) Plane lump. b) Lump.
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a) b)

Figure 2: Pro�les of lump solutions (2.5) and (2.6) for y = 0. a) Plane lump: solid, t = −2; dash, t = 0;
dashdot, t = 2. b) Lump: solid, t = −1; dash, t = 0; dashdot, t = 1.

3. Conclusion

We study lump solutions for the mKPI equation. Constraint conditions for the existence

of such polynomial solutions are given. The solutions presented include plane bounded

lumps, which do not decay in all directions in the space. Note that in general high-order

equations such as the (3+1)-dimensional Jimbo-Miwa equation and the (3+1)-dimensional

potential YTSF equation [4,40] have bounded plane lumps. It is known that linear partial

differential equations have lump solutions [27] and it will be interesting to find lump solu-

tions of nonlinear partial differential equations.
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