

## Lump Solutions of the Modified Kadomtsev-Petviashvili-I Equation

Xuelin Yong<sup>1,\*</sup>, Yunying Chen<sup>1</sup>, Yehui Huang<sup>1,3</sup>  
and Wen-Xiu Ma<sup>2,3,4,5,6</sup>

<sup>1</sup>*School of Mathematical Sciences and Physics, North China Electric Power University, Beijing 102206, P.R. China.*

<sup>2</sup>*Department of Mathematics, Zhejiang Normal University, Jinhua 321004, Zhejiang, P.R. China.*

<sup>3</sup>*Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA.*

<sup>4</sup>*School of Mathematics, South China University of Technology, Guangzhou 510640, P.R. China.*

<sup>5</sup>*College of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, P.R. China.*

<sup>6</sup>*International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa.*

Received 1 August 2019; Accepted (in revised version) 24 October 2019.

---

**Abstract.** The modified Kadomtsev-Petviashvili-I equation is studied by the Hirota bilinear method. Certain lump solutions of this equation are found via the ansatz technique. Rational solutions presented include plane bounded lumps, which do not decay in all directions in the space.

**AMS subject classifications:** 35Q51, 35Q53, 37K40

**Key words:** Lump, symbolic computation, Hirota bilinear method.

---

### 1. Introduction

As a  $(2+1)$ -dimensional integrable generalisation of the modified Korteweg-de Vries equation, the modified Kadomtsev-Petviashvili (mKP) equation

$$V_t + V_{xxx} - \frac{3}{2}V^2V_x + 3\sigma^2\partial_x^{-1}V_{yy} - 3\sigma V_x\partial_x^{-1}V_y = 0, \quad (1.1)$$

---

\*Corresponding author. Email addresses: mawx@cas.usf.edu (W.-X. Ma), yongxuelin@126.com (X. Yong), ncepumath@sohu.com (Y. Chen), yhhuang@ncepu.edu.cn (Y. Huang)

where  $\sigma^2 = \pm 1$ , was introduced within the framework of the gauge-invariant description of the KP equation in [13]. In [11], it appeared as the first member of the first modified KP hierarchy. By introducing a new dependent variable defined as  $V = \sigma U$ , Eq. (1.1) becomes

$$U_t + U_{xxx} - 3\sigma^2 \left( \frac{1}{2} U^2 U_x - \partial_x^{-1} U_{yy} + U_x \partial_x^{-1} U_y \right) = 0, \quad (1.2)$$

which is classified as the modified Kadomtsev-Petviashvili-I (mKPI) equation when  $\sigma = i$  and the modified Kadomtsev-Petviashvili-II (mKPII) equation when  $\sigma = 1$  [44]. Both mKPI and mKPII equations are physically significant nonlinear evolution equations. They can be solved by the inverse scattering transform (IST) method, the Darboux transform method, the  $\bar{\partial}$ -dressing method, the Hirota bilinear method — cf. Refs. [1, 2, 6, 14–17, 25, 29, 45].

Lump solutions are a kind of analytic rational function solutions, localised in all directions in the space. General rational function solutions of the Korteweg-de Vries equation, the Boussinesq equation and the Toda lattice equation have been studied by using Wronskian and Casoratian determinant [5, 22–24]. Special lumps also appear as solutions of KPI, BKP, Davey-Stewartson-II and Ishimori-I equations [3, 7, 10, 12, 18, 28, 31, 36–39]. Although for mKP and KP equations the  $2 + 1$ -dimensional Miura transformation exists, it does not convert real solutions of mKPI and KPI equations into each other [15]. Therefore, it would be interesting to find an efficient way for finding real rational solutions of the mKPI equation.

Based on the Hirota bilinear method [9], one of the authors (Ma) proposed a direct method for determining of positive quadratic function solutions to the  $(2 + 1)$ -dimensional bilinear KPI equation [20] and general Hirota bilinear equations [21]. The same approach applies to many other equations [8, 19, 26, 30, 32–35, 41, 42, 46–48]. The method has been also recently used to characterise the lump solutions of the KPI equation with a self-consistent source [43].

In this work, we employ Maple symbolic computation, to present two general classes of lump solutions of the mKPI equation (1.2). This equation (1.2) has a Hirota bilinear form and we use special ansatz to find real rational solutions. The solutions obtained contain free parameters, a special choice of which covers lump solutions generated from the IST. In addition, they also generate plane bounded lumps, which do not decay in all directions in the space. Finally, a few concluding remarks are given at the end of the paper.

## 2. Lump Solutions of mKPI Equation

Using the variable transformation  $U = 2i(\ln(G/F))_x$ , one can write the mKPI equation (1.2) as

$$\begin{aligned} (D_t + D_x^3 + 3iD_x D_y) G \cdot F &= 0, \\ (D_x^2 - iD_y) G \cdot F &= 0 \end{aligned} \quad (2.1)$$

with the  $D$ -operators

$$D_t^m D_x^n G \cdot F = \left( \frac{\partial}{\partial t} - \frac{\partial}{\partial t'} \right)^m \left( \frac{\partial}{\partial x} - \frac{\partial}{\partial x'} \right)^n G(x, t) F(x', t') \Big|_{x'=x, t'=t}.$$

In order to compute real solutions to the mKPI equation (1.2), we take  $G$  as the complex conjugation of  $F$ , so that

$$U = 2i \left( \ln \frac{F^*}{F} \right)_x = 4 \frac{(\Re F)(\Im F)_x - (\Re F)_x(\Im F)}{(\Re F)^2 + (\Im F)^2}, \quad (2.2)$$

where  $\Re F$  and  $\Im F$  are the real and imaginary parts of  $F$ , respectively. In order to obtain rational solutions, we assume that

$$F = X^T AX + C_1 X + a + i(X^T BX + C_2 X + b), \quad X = (x, y, t)^T, \quad (2.3)$$

where  $a$  and  $b$  are real constants,  $A = (a_{jk})_{3 \times 3}$  and  $B = (b_{jk})_{3 \times 3}$  real symmetric matrixes, and  $C_m = (c_{mn})_{1 \times 3}$ ,  $m = 1, 2$ , real row vectors. These are also parameters we would like to determine.

Substituting the Eq. (2.3) into (2.1) and extracting the coefficients at  $x, y, t$ , we obtain an algebraic system for the parameters. Firstly, we notice that the conditions  $a_{jk}b_{jk} - a_{mn}b_{mn} = 0$  hold for any subscripts. Without loss of generality, we can take  $A = 0$  and reduce  $F$  as

$$F = C_1 X + a + i(X^T BX + C_2 X + b). \quad (2.4)$$

This implies that  $\Re F$  is a linear function and  $\Im F$  is at most a quadratic function of independent variables. Moreover, the non-singularity condition  $F \neq 0$  must be considered. After detailed analysis, we found that two solutions of the determining equations — viz.

### Case 1.

$$B = C_1 = 0, \quad c_{22} = -\frac{c_{21}^2}{k_1}, \quad c_{23} = \frac{3c_{21}^3}{k_1^2}.$$

### Case 2.

$$\begin{aligned} b_{11} &= \frac{24b_{12}^3}{b_{22}(18b_{12} - c_{13})}, & b_{13} &= \frac{b_{22}(6b_{12} - c_{13})}{4b_{12}}, \\ b_{23} &= \frac{b_{22}^2(18b_{12} - c_{13})}{8b_{12}^2}, & b_{33} &= \frac{3b_{22}^3(18b_{12} - c_{13})}{8b_{12}^3}, \\ c_{11} &= \frac{-48b_{12}^4}{b_{22}^2(18b_{12} - c_{13})}, & c_{12} &= \frac{-4b_{12}^2(6b_{12} - c_{13})}{b_{22}(18b_{12} - c_{13})}, \\ c_{23} &= \frac{b_{22}(2b_{12}c_{22} - b_{22}c_{21})(18b_{12} - c_{13})}{8b_{12}^3}, \\ k_1 &= \frac{24b_{12}^3c_{22}}{b_{22}^2(18b_{12} - c_{13})} - \frac{2c_{21}b_{12}}{b_{22}}, \\ k_2 &= \frac{\Delta}{b_{12}^2b_{22}^3(6b_{12} + c_{13})(18b_{12} - c_{13})}, \end{aligned}$$

where

$$\begin{aligned}\Delta = & 2304b_{12}^8 + 432c_{22}^2b_{22}^2b_{12}^4 - 24c_{13}b_{12}^3c_{22}^2b_{22}^2 - 648c_{21}c_{22}b_{12}^3b_{22}^3 + c_{21}^2c_{13}^2b_{22}^4 \\ & + 72c_{13}c_{21}c_{22}b_{12}^2b_{22}^3 + 324b_{12}^2c_{21}^2b_{22}^4 - 36b_{12}c_{13}c_{21}^2b_{22}^4 - 2b_{12}c_{21}c_{22}b_{22}^3c_{13}^2,\end{aligned}$$

and the other parameters are arbitrary provided that the solutions are well defined.

Until now, we can conclude that these two cases of solutions for the parameters lead to two classes of lump solutions defined by (2.4), to the mKPI equation (1.2) through the transformation (2.2).

In Case 1, we obtain the plane bounded lump solution

$$U = \frac{4k_1c_{21}}{(c_{21}x - c_{21}^2y/k_1 + 3c_{21}^3t/k_1^2 + k_2)^2 + k_1^2}, \quad (2.5)$$

where  $k_1, k_2$  and  $c_{21}$  are arbitrary real constants. If we further set  $c_{21} = 1$  and  $k_1 = \lambda/2$ , this produces the plane lump solution from [15]. However, it does not tend to zero in the direction  $c_{21}x - c_{21}^2y/k_1 + 3c_{21}^3t/k_1^2 + k_2 = \text{const}$ .

In Case 2, we set

$$b_{12} = b_{22} = 1, \quad c_{13} = c_{21} = c_{22} = 2,$$

and obtain the lump solution

$$\begin{aligned}U = & 4(4y^2 - 18x^2 + 88t^2 - 12xy + 24xt + 56yt - 12x + 8y + 56t + 58)/ \\ & (4(3x + y - 2t + 1)^2 + (3x^2 + 4xy + 4xt + 2y^2 + 8yt + 12t^2 + 4x + 4y + 8t + 11)^2),\end{aligned} \quad (2.6)$$

which decays in all directions in the  $(x, y)$ -plane. This solution is analytic, since the denominator becomes  $[9(x - 2t)^2 + 9]^2$  if  $3x + y - 2t + 1 = 0$ . Fig. 1 shows three-dimensional profiles of the two classes of plane lump and lump solutions. Their plots when  $y = 0$  for different times are depicted in Fig. 2, respectively.

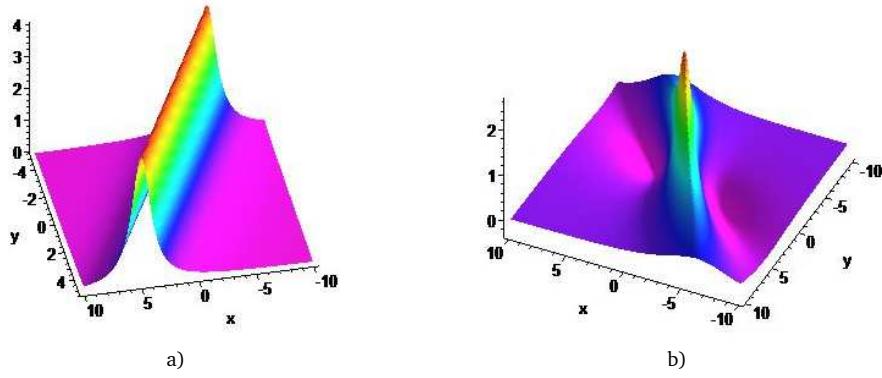


Figure 1: Lump solutions (2.5) and (2.6),  $t = 0$ . a) Plane lump. b) Lump.

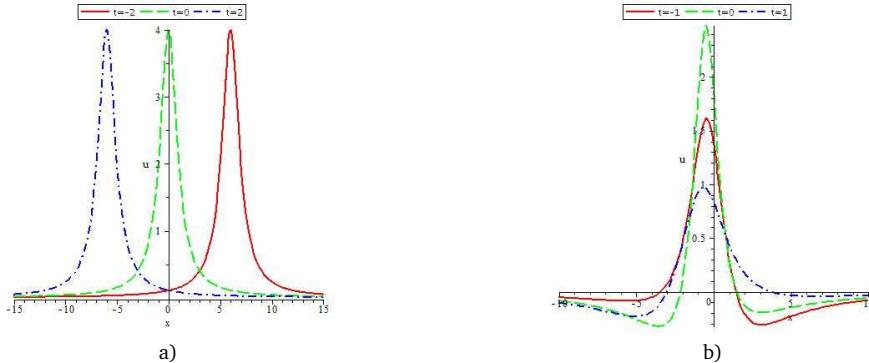


Figure 2: Profiles of lump solutions (2.5) and (2.6) for  $y = 0$ . a) Plane lump: solid,  $t = -2$ ; dash,  $t = 0$ ; dashdot,  $t = 2$ . b) Lump: solid,  $t = -1$ ; dash,  $t = 0$ ; dashdot,  $t = 1$ .

### 3. Conclusion

We study lump solutions for the mKPI equation. Constraint conditions for the existence of such polynomial solutions are given. The solutions presented include plane bounded lumps, which do not decay in all directions in the space. Note that in general high-order equations such as the (3+1)-dimensional Jimbo-Miwa equation and the (3+1)-dimensional potential YTSF equation [4, 40] have bounded plane lumps. It is known that linear partial differential equations have lump solutions [27] and it will be interesting to find lump solutions of nonlinear partial differential equations.

### Acknowledgments

This work is supported by the 13th Five Year National Key Research and Development Program of China (Grant No. 2016YFC0401406) and by the Fundamental Research Funds of the Central Universities with the Grant No. 2019MS050. Dr. Ma is supported in part by the 111 Project of China (B16002), by the NSF (Grant DMS-1664561), by the NSF of China (Grant Nos. 11975145, 11972291), and by the Distinguished Professorships at Shanghai University of Electric Power, China and North-West University, South Africa.

### References

- [1] M.J. Ablowitz and P.A. Clarkson, *Solitons, nonlinear evolution equations and inverse scattering*, Cambridge University Press (1991).
- [2] Y. Cheng and Y.S. Li, *Constraints of the 2+1 dimensional integrable soliton systems*, J. Phys. A: Math. Gen. **25**, 419-431 (1992).
- [3] A.S. Fokas and M.J. Ablowitz, *On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane*, J. Math. Phys. **25**, 2494-2505 (1984).
- [4] M. Foroutan, J. Manafian and A. Ranjbaran, *Lump solution and its interaction to (3+1)-D potential-YTSF equation*, Nonlinear Dyn. **92**, 2077-2092 (2018).

- [5] N.C. Freeman and J.J.C. Nimmo, *Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique*, Phys. Lett. A **95**, 1-3 (1983).
- [6] F. Gesztesy and W. Schweiger, *Rational KP and mKP-solutions in Wronskian form*, Rep. Math. Phys. **30**, 205-222 (1991).
- [7] C.R. Gilson and J.J.C. Nimmo, *Lump solutions of the BKP equation*, Phys. Lett. A **147**, 472-476 (1990).
- [8] D. Guo, S.F. Tian, X.B. Wang and T.T. Zhang, *Dynamics of lump solutions, rogue wave solutions and traveling wave solutions for a (3+1)-dimensional VC-BKP equation*, East. Asia. J. Appl. Math. **9**, 780-796 (2019).
- [9] R. Hirota, *The direct method in soliton theory*, Cambridge University Press (2004).
- [10] K. Imai, *Dromion and lump solutions of the Ishimori-I equation*, Prog. Theor. Phys. **98**, 1013-1023 (1997).
- [11] M. Jimbo and T. Miwa, *Solitons and infinite-dimensional Lie algebras*, Publ. Res. I. Math. Sci. **19**, 943-1001 (1983).
- [12] D.J. Kaup, *The lump solutions and the Bäcklund transformation for the three-dimensional three-wave resonant interaction*, J. Math. Phys. **22**, 1176-1181 (1981).
- [13] B.G. Konopelchenko, *On the gauge-invariant description of the evolution equations integrable by Gelfand-Dikij spectral problems*, Phys. Lett. A **92**, 323-327 (1982).
- [14] B.G. Konopelchenko, *Some new integrable nonlinear evolution equations in 2 + 1 dimensions*, Phys. Lett. A **102**, 15-17 (1984).
- [15] B.G. Konopelchenko and V.G. Dubrovsky, *Inverse spectral transform for the modified Kadomtsev-Petviashvili equation*, Stud. Appl. Math. **86**, 219-268 (1992).
- [16] B.A. Kupershmidt, *Canonical property of the Miura maps between the MKP and KP hierarchies, continuous and discrete*, Commun. Math. Phys. **167**, 351-371 (1995).
- [17] X.J. Liu, R.L. Lin, B. Jin and Y.B. Zeng, *A generalized dressing approach for solving the extended KP and the extended mKP hierarchy*, J. Math. Phys. **50**, 053506 (2009).
- [18] Z. Lu, E.M. Tian and R. Grimshaw, *Interaction of two lump solitons described by the Kadomtsev-Petviashvili I equation*, Wave Motion **40**, 123-135 (2004).
- [19] X. Lü, W.X. Ma, S.T. Chen and M.K. Chaudry, *A note on rational solutions to a Hirota-Satsuma-like equation*, Appl. Math. Lett. **58**, 13-18 (2016).
- [20] W.X. Ma, *Lump solutions to the Kadomtsev-Petviashvili equation*, Phys. Lett. A **379**, 1975-1978 (2015).
- [21] W.X. Ma and Y. Zhou, *Lump solutions to nonlinear partial differential equations via Hirota bilinear forms*, J. Differ. Equations **264**, 2633-2659 (2018).
- [22] W.X. Ma and Y. You, *Rational solutions of the Toda lattice equation in Casoratian form*, Chaos Solitons Fractals **22**, 395-406 (2004).
- [23] W.X. Ma and Y. You, *Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions*, Trans. Amer. Math. Soc. **357**, 1753-1778 (2005).
- [24] W.X. Ma, C.X. Li and J.S. He, *A second Wronskian formulation of the Boussinesq equation*, Nonlinear Anal.: Theor. **70**, 4245-4258 (2009).
- [25] W.X. Ma, R.K. Bullough and P.J. Caudrey, *Graded symmetry algebras of time-dependent evolution equations and application to the modified KP equations*, J. Nonlinear Math. Phys. **4**, 293-309 (1997).
- [26] W.X. Ma, X.L. Yong and H.Q. Zhang, *Diversity of interaction solutions to the (2+1)-dimensional Ito equation*, Comput. Math. Appl. **75**, 289-295 (2018).
- [27] W.X. Ma, *Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs*, J. Geom. Phys. **133**, 10-16 (2018).
- [28] S.V. Manakov, V.E. Zakharov, L.A. Bordag, A.R. Its and V.B. Matveev, *Two-dimensional solitons*

of the Kadomtsev-Petviashvili equation and their interaction, *Phys. Lett. A* **63**, 205-206 (1977).

[29] I.S. O'Keir and E. J. Parkes, *The derivation of a modified Kadomtsev-Petviashvili equation and the stability of its solutions*, *Phys. Scripta* **55**, 135-142 (1997).

[30] J.C. Pu and H.C. Hu, *Mixed lump-soliton solutions of the (3+1)-dimensional soliton equation*, *Appl. Math. Lett.* **85**, 77-81 (2018).

[31] J. Satsuma and M.J. Ablowitz, *Two-dimensional lumps in nonlinear dispersive systems*, *J. Math. Phys.* **20**, 1496-1503 (1979).

[32] H.Q. Sun and A.H. Chen, *Lump and lump-kink solutions of the (3+1)-dimensional Jimbo-Miwa and two extended Jimbo-Miwa equations*, *Appl. Math. Lett.* **68**, 55-61 (2017).

[33] H. Wang, *Lump and interaction solutions to the (2+1)-dimensional Burgers equation*, *Appl. Math. Lett.* **85**, 27-34 (2018).

[34] X.B. Wang, S.F. Tian, C.Y. Qin and T.T. Zhang, *Dynamics of the breathers, rogue waves and solitary waves in the (2+1)-dimensional Ito equation*, *Appl. Math. Lett.* **68**, 40-47 (2017).

[35] X.B. Wang, S.F. Tian, C.Y. Qin and T.T. Zhang, *Characteristics of the solitary waves and rogue waves with interaction phenomena in a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation*, *Appl. Math. Lett.* **72**, 28-64 (2017).

[36] X.B. Wang, S.F. Tian and T.T. Zhang, *Characteristics of the breather and rogue waves in a (2+1)-dimensional nonlinear Schrödinger equation*, *Proc. Amer. Math. Soc.* **146**, 3353-3365 (2018).

[37] X.B. Wang, S.F. Tian, L.L. Feng and T.T. Zhang, *On quasi-periodic waves and rogue waves to the (4+1)-dimensional nonlinear Fokas equation*, *J. Math. Phys.* **59**, 073505 (2018).

[38] X.B. Wang and B. Han, *The three-component coupled nonlinear Schrödinger equation: Rogue waves on a multi-soliton background and dynamics*, *Euro. Phys. Lett.* **126**, 15001 (2019).

[39] X.B. Wang and B. Han, *Characteristics of rogue waves on a soliton background in a coupled nonlinear Schrödinger equation*, *Math. Meth. Appl. Sci.* **42**, 2586-2596 (2019).

[40] J.Y. Yang and W.X. Ma, *Abundant lump-type solutions of the Jimbo-Miwa equation in (3+1)-dimensions*, *Comput. Math. Appl.* **73**, 220-225 (2017).

[41] J.Y. Yang, W.X. Ma and Z.Y. Qin, *Lump and lump-soliton solutions to the (2+1)-dimensional Ito equation*, *Anal. Math. Phys.* **8**, 427-436 (2018).

[42] J.Y. Yang, W.X. Ma and Z.Y. Qin, *Abundant mixed lump-soliton solutions to the BKP equation*, *East Asian J. Appl. Math.* **8**, 224-232 (2018).

[43] X.L. Yong, W.X. Ma, Y.H. Huang and Y. Liu, *Lump solutions to the Kadomtsev-Petviashvili I equation with a self-consistent source*, *Comput. Math. Appl.* **75**, 3414-3419 (2018).

[44] V. Zakharov, S. Manakov, S. Novikov and L. Pitaevskii, *Theory of solitons: The inverse scattering method*, Plenum (1984).

[45] A.I. Zenchuk, *On the dressing method in multidimension*, *Phys. Lett. A* **277**, 25-30 (2000).

[46] J.B. Zhang and W.X. Ma, *Mixed lump-kink solutions to the BKP equation*, *Comput. Math. Appl.* **74**, 591-596 (2017).

[47] X. Zhang and Y. Chen, *Rogue wave and a pair of resonance stripe solitons to a reduced (3+1)-dimensional Jimbo-Miwa equation*, *Commun. Nonlinear Sci. Numer. Simulat.* **52**, 24-31 (2017).

[48] H.Q. Zhao and W.X. Ma, *Mixed lump-kink solutions to the KP equation*, *Comput. Math. Appl.* **74**, 1399-1405 (2017).