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a b s t r a c t

In this paper, a (3+1)-dimensional nonlinear evolution equation and its reduction is studied
by use of the Hirota bilinear method and the test function method. With symbolic compu-
tation, diversity of exact solutions is obtained by solving the under-determined nonlinear
system of algebraic equations for the associated parameters. Finally, analysis and graphical
simulation are given to reveal the propagation and dynamical behavior of the solutions.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear evolution equations (NLEEs) play an important role inmathematical physics [1–7]. Variousmechanical features
in fluid dynamics, optical communications and nonlinear vibration are described by NLEEs [8–11]. Generally speaking, it is
very difficult to find exact solutions to NLEEs [12–14]. With the development of symbolic computation, it is reasonable to
employ test function method in constructing exact solutions to NLEEs [15,16]. Further, it is of importance to solve high-
dimensional NLEEs to study the associated spatiotemporal features [17–23].

In this paper, we will study a (3 + 1)-dimensional NLEE [24–30] as

3 uxz − (2 ut + uxxx − 2 u ux)y + 2 (ux ∂−1
x uy)x = 0, (1)

where ∂−1
x stands for an inverse operator of ∂x =

∂
∂x . Eq. (1) was originally introduced as a model for the study of

algebraic-geometrical solutions [24], and its integrability and large classes of exact solutions have been studied, e.g., the
soliton, positon, negaton and rational solutions [25–29]. Further, two types of resonant solutions are obtained by the
parameterization for wave numbers and frequencies for linear combinations of exponential traveling waves [30].

Through the following transformation

u = −3 [lnf (x, y, z, t)] xx, (2)
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Eq. (1) can be cast into the bilinear form as

(3Dx Dz − 2Dy Dt − D3
x Dy) f · f = 0, (3)

where Dx Dz , Dy Dt and D3
x Dy are bilinear operators [12] defined by

Dα
xD

β
yD

γ
z D

δ
t (f · g) =

( ∂

∂x
−

∂

∂x′

)α( ∂

∂y
−

∂

∂y′

)β( ∂

∂z
−

∂

∂z ′

)γ ( ∂

∂t
−

∂

∂t ′

)δ

× f (x, y, z, t)g(x′, y′, z ′, t ′)
⏐⏐⏐
x′=x,y′=y,z′=z,t ′=t.

We assume that the solution to Eq. (3) is in the form of

f = e−ξ
+ δ1 cos(η) + δ2 cosh(γ ) + δ3 eξ , (4)

or

f = e−ξ
+ δ1 sin(η) + δ2 sinh(γ ) + δ3 eξ , (5)

where ξ = a1 x + b1 y + c1 z + d1 t , η = a2 x + b2 y + c2 z + d2 t , γ = a3 x + b3 y + c3 z + d3 t and ai, bi, ci, di, and δi (i =
1,2,3) are some constants to be determined later. Based on Eq. (4) or Eq. (5), we can derive exact solutions to Eq. (1).

The structure of this paper is as follows: In Section 2, we will solve Eq. (3) and obtain the exact solutions to Eq. (1). In
Section 3, we will give analysis and discussion on our solutions. Some figures describing the characteristics of our solutions
will be presented. In Section 4, we will conclude our results.

2. Diversity of exact solutions

2.1. Case I: based on the test function (4)

Substituting Eq. (4) into Eq. (3), we can obtain a large expression in terms of cos(η)eξ , cos(η)e−ξ , sin(η)eξ , sin(η)e−ξ ,
cosh(γ )eξ , sinh(γ )eξ , cosh(γ )e−ξ , sinh(γ )e−ξ , cos(η) cosh(γ ), sin(η) sinh(γ ), etc., which generate a list of algebraic equations
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1c1 − 3a2c2 − 2b1d1 + 2b2d2 − a31b1 − a32b2 + 3a21a2b2 + 3a1a22b1 = 0,

3a1c1 + 3a3c3 − 2b1d1 − 2b3d3 − a31b1 − a33b3 − 3a21a3b3 − 3a1a23b1 = 0,

3a1c2 + 3a2c1 − 2b1d2 − 2b2d1 − a31b2 + a32b1 − 3a21a2b1 + 3a1a22b2 = 0,

3a1c3 + 3a3c1 − 2b1d3 − 2b3d1 − a31b3 − a33b1 − 3a21a3b1 − 3a1a23b3 = 0,

3a3c3 − 3a2c2 − 2b3d3 + 2b2d2 − a32b2 − a33b3 + 3a22a3b3 + 3a2a23b2 = 0,

3a2c3 + 3a3c2 − 2b2d3 − 2b3d2 + a32b3 − a33b2 + 3a22a3b2 − 3a2a23b3 = 0,

δ3(12a1c1 − 8b1d1 − 16a31b1) + δ22(3a3c3 − 2b3d3 − 4a33b3) + δ21(2b2d2 − 3a2c2 − 4a32b2) = 0.

(6)

With symbolic computation, we solve two sets of parameters from Eq. (6):
The first set in this case is{

a1 = 1, a2 = 0, b1 = −
4
3a23

, b2 = −2, b3 = −
4
3a3

,

c1 = −
8(2a33 + 1)

9a3
, c2 = −

2(3a43 + 6a3 − 4)
9a23

, c3 = −
4(a23 + 3a3 + 2)

9a23
,

d1 =
a33 − a3 + 2

2a3
, d2 = −1, d3 = 1, δ3 =

a23δ
2
1

4(a23 − 1)
+

a23δ
2
2

4

}
, (7)

where a3, δ1 and δ2 are real constants.
Substituting parameters of Eq. (7) into Eq. (4), we have f = e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1 , which

leads to the exact solutions to Eq. (1) as

u = − 3
e−A1 + δ2a23 cosh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1

e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21
4(a23−1)

+
a23δ22
4 )eA1

+ 3
(−e−A1 + a3δ2 sinh(C1) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA1 )2

(e−A1 + δ1 cos(B1) + δ2 cosh(C1) + ( a23δ21
4(a23−1)

+
a23δ22
4 )eA1 )2

(8)
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with

A1 = x −
4
3a23

y −
8(2a33 + 1)

9a3
z +

a33 − a3 + 2
2a3

t,

B1 = −2y −
2(3a43 + 6a3 − 4)

9a23
z − t,

C1 = a3x −
4
3a3

y −
4(a23 + 3a3 + 2)

9a23
z + t.

The second set in this case is{
a1 = 1, a2 = 0, b1 =

9a43 − 9a23 − 16
12a23

, b2 = −2, b3 =
−9a43 + 9a23 − 16

12a3
,

c1 =
−9a73 + 36a53 + 36a43 − 107a33 − 36a23 − 48a3 − 64

72a33
, c2 =

−3a43 − 9a23 − 24a3 + 16
18a23

,

c3 =
−9a73 + 9a53 − 18a43 − 16a33 + 18a23 − 48a3 − 32

36a23
,

d1 =
−a33 + a3 + 4

4a3
, d2 = −1, d3 = 1, δ3 =

4a23δ
2
1

9a43 + 7a23 − 16
+

(9a83 − 9a63 + 16a43 − 16a23)δ
2
2

4(9a43 + 7a23 − 16)

}
, (9)

where a3, δ1 and δ2 are real constants.
Substituting parameters of Eq. (9) into Eq. (4), we have f = e−A2 + δ1 cos(B2) + δ2 cosh(C2) + ( 4a23δ21

9a43+7a23−16
+

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA2 , which gives rise to the exact solutions to Eq. (1) as

u = − 3
e−A2 + δ2a23 cosh(C2) + ( 4a23δ21

9a43+7a23−16
+

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA2

e−A2 + δ1 cos(B2) + δ2 cosh(C2) + ( 4a23δ21
9a43+7a23−16

+
(9a83−9a63+16a43−16a23)δ

2
2

4(9a43+7a23−16)
)eA2

+ 3
(−e−A2 + a3δ2 sinh(C2) + ( 4a23δ21

9a43+7a23−16
+

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA2 )2

(e−A2 + δ1 cos(B2) + δ2 cosh(C2) + ( 4a23δ21
9a43+7a23−16

+
(9a83−9a63+16a43−16a23)δ

2
2

4(9a43+7a23−16)
)eA2 )2

(10)

with

A2 = x +
9a43 − 9a23 − 16

12a23
y +

−9a73 + 36a53 + 36a43 − 107a33 − 36a23 − 48a3 − 64
72a33

z +
−a33 + a3 + 4

4a3
t,

B2 = −2y +
−3a43 − 9a23 − 24a3 + 16

18a23
z − t,

C2 = a3x +
−9a43 + 9a23 − 16

12a3
y +

−9a73 + 9a53 − 18a43 − 16a33 + 18a23 − 48a3 − 32
36a23

z + t.

2.2. Case II: based on the test function (5)

Substituting Eq. (5) into Eq. (3), we can obtain a large expression in terms of cos(η)eξ , cos(η)e−ξ , sin(η)eξ , sin(η)e−ξ ,

cosh(γ )eξ , sinh(γ )eξ , cosh(γ )e−ξ , sinh(γ )e−ξ , cos(η) cosh(γ ), sin(η) sinh(γ ), etc., which generate a list of algebraic equa-
tions as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3a1c1 − 3a2c2 − 2b1d1 + 2b2d2 − a31b1 − a32b2 + 3a21a2b2 + 3a1a22b1 = 0,

3a1c1 + 3a3c3 − 2b1d1 − 2b3d3 − a31b1 − a33b3 − 3a21a3b3 − 3a1a23b1 = 0,

3a1c2 + 3a2c1 − 2b1d2 − 2b2d1 − a31b2 + a32b1 − 3a21a2b1 + 3a1a22b2 = 0,

3a1c3 + 3a3c1 − 2b1d3 − 2b3d1 − a31b3 − a33b1 − 3a21a3b1 − 3a1a23b3 = 0,

3a3c3 − 3a2c2 − 2b3d3 + 2b2d2 − a32b2 − a33b3 + 3a22a3b3 + 3a2a23b2 = 0,

3a2c3 + 3a3c2 − 2b2d3 − 2b3d2 + a32b3 − a33b2 + 3a22a3b2 − 3a2a23b3 = 0,

δ3(12a1c1 − 8b1d1 − 16a31b1) − δ22(3a3c3 − 2b3d3 − 4a33b3) + δ21(2b2d2 − 3a2c2 − 4a32b2) = 0.

(11)
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With symbolic computation, we solve two sets of parameters from Eq. (11):
The first set in this case is{

a1 = 1, a2 = 0, b1 = −
4
3a23

, b2 = −2, b3 = −
4
3a3

,

c1 = −
8(2a33 + 1)

9a3
, c2 = −

2(3a43 + 6a3 − 4)
9a23

, c3 = −
4(a23 + 3a3 + 2)

9a23
,

d1 =
a33 − a3 + 2

2a3
, d2 = −1, d3 = 1, δ3 =

a23δ
2
1

4(a23 − 1)
−

a23δ
2
2

4

}
, (12)

where a3, δ1 and δ2 are real constants.
Substituting the parameters of Eq. (12) into Eq. (5), we have f = e−A3 + δ1 sin(B3) + δ2 sinh(C3) + ( a23δ21

4(a23−1)
+

a23δ22
4 )eA3 ,

which generates the exact solutions to Eq. (1) as

u = − 3
e−A3 + δ2a23 sinh(C3) + ( a23δ21

4(a23−1)
−

a23δ22
4 )eA3

e−A3 + δ1 sin(B3) + δ2 sinh(C3) + ( a23δ21
4(a23−1)

−
a23δ22
4 )eA3

+ 3
(−e−A3 + a3δ2 cosh(C3) + ( a23δ21

4(a23−1)
−

a23δ22
4 )eA3 )2

(e−A3 + δ1 sin(B3) + δ2 sinh(C3) + ( a23δ21
4(a23−1)

−
a23δ22
4 )eA3 )2

(13)

with

A3 = x −
4
3a23

y −
8(2a33 + 1)

9a3
z +

a33 − a3 + 2
2a3

t,

B3 = −2y −
2(3a43 + 6a3 − 4)

9a32 z − t,

C3 = a3x −
4
3a3

y −
4(a23 + 3a3 + 2)

9a23
z + t.

The second set in this case is{
a1 = 1, a2 = 0, b1 =

9a43 − 9a23 − 16
12a23

, b2 = −2, b3 =
−9a43 + 9a23 − 16

12a3
,

c1 =
−9a73 + 36a53 + 36a43 − 107a33 − 36a23 − 48a3 − 64

72a33
, c2 =

−3a43 − 9a23 − 24a3 + 16
18a23

,

c3 =
−9a73 + 9a53 − 18a43 − 16a33 + 18a23 − 48a3 − 32

36a23
,

d1 =
−a33 + a3 + 4

4a3
, d2 = −1, d3 = 1, δ3 =

4a23δ
2
1

9a43 + 7a23 − 16
−

(9a83 − 9a63 + 16a43 − 16a23)δ
2
2

4(9a43 + 7a23 − 16)

}
, (14)

where a3, δ1 and δ2 are real constants.
Substituting the parameters of Eq. (14) into Eq. (5), we have f = e−A4 + δ1 sin(B4) + δ2 sinh(C4) + ( 4a23δ21

9a43+7a23−16
+

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA4 , which gives rise to the exact solutions to Eq. (1) as

u = − 3
e−A4 + δ2a23 sinh(C4) + ( 4a23δ21

9a43+7a23−16
−

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA4

e−A4 + δ1 sin(B4) + δ2 sinh(C4) + ( 4a23δ21
9a43+7a23−16

−
(9a83−9a63+16a43−16a23)δ

2
2

4(9a43+7a23−16)
)eA4

+ 3
(−e−A4 + a3δ2 cosh(C4) + ( 4a23δ21

9a43+7a23−16
−

(9a83−9a63+16a43−16a23)δ
2
2

4(9a43+7a23−16)
)eA4 )2

(e−A4 + δ1 sin(B4) + δ2 sinh(C4) + ( 4a23δ21
9a43+7a23−16

−
(9a83−9a63+16a43−16a23)δ

2
2

4(9a43+7a23−16)
)eA4 )2

(15)
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with

A4 = x +
9a43 − 9a23 − 16

12a23
y +

−9a73 + 36a53 + 36a43 − 107a33 − 36a23 − 48a3 − 64
72a33

z +
−a33 + a3 + 4

4a3
t,

B4 = −2y +
−3a43 − 9a23 − 24a3 + 16

18a23
z − t,

C4 = a3x +
−9a43 + 9a23 − 16

12a3
y +

−9a73 + 9a53 − 18a43 − 16a33 + 18a23 − 48a3 − 32
36a23

z + t.

2.3. Dimensionally reduced case with z = x

By taking z = x, Eq. (3) reduces to

(3D2
x − 2Dy Dt − D3

x Dy) f · f = 0, (16)

which is assumed to possess the exact solutions in the form of

f = e−ξ
+ δ1 cos(η) + δ2 cosh(γ ) + δ3 eξ , (17)

where ξ = a1 x + b1 y + c1 t , η = a2 x + b2 y + c2 t , γ = a3 x + b3 y + c3 t and ai, bi, ci, δi (i = 1, 2, 3) are some constants to
be determined later.

Substituting Eq. (17) into Eq. (16) and equating all the coefficients of different powers of eξ , e−ξ , cos(η), sin(η), cosh(γ ),
sinh(γ ) and constant term to zero, we can obtain a set of algebraic equations for ai, bi, ci, and δi (i = 1, 2, 3). We solve this
set of algebraic equations and obtain the parameters as{

b1 =
1
a1

, b2 = −
1
a2

, b3 =
1
a3

, c1 = −
a31 + 1

2
, c2 =

a32
2

, c3 = −
a33
2

}
, (18)

where a1, a2, a3, δ1 , δ2 and δ3 are real constants.
Corresponding to Eq. (17), we have

f = e−(a1x+
1
a1

y−
a31
2 t)

+ δ1 cos(a2x −
1
a2

y +
a32
2
t) + δ2 cosh(a3x +

1
a3

y −
a33
2
t) + δ3 e

(a1x+
1
a1

y−
a31
2 t)

,

and the exact solutions to Eq. (1) with z = x as

u = − 3
a21e

−A
− δ1a22 cos(B) + δ2a23 cosh(C) + δ3a21e

A

e−A + δ1 cos(B) + δ2 cosh(C) + δ3eA

+ 3
(−a1e−A

− δ1a2 sin(B) + a3δ2 sinh(C) + δ3a1eA)2

(e−A + δ1 cos(B) + δ2 cosh(C) + δ3eA)2
, (19)

where

A = a1x +
1
a1

y −
a31
2
t,

B = a2x −
1
a2

y +
a32
2
t,

C = a3x +
1
a3

y −
a33
2
t.

3. Analysis and discussion

In this section,wewill study the propagation and dynamical behavior of the exact solutionswith graphical simulation. It is
clear that Eqs. (6) and (11) are under-determined nonlinear systems of algebraic equations, among which, there are fifteen
unknown variables and seven equations. Generally speaking, it is very difficult to solve the under-determined nonlinear
systems of algebraic equations. With symbolic computation, we have derived four sets of special solutions to Eq. (1), as seen
as, Eqs. (8), (10), (13) and (15). The 3-dimensional plots and contour plots of these solutions can be found in Figs. 1 to 4.
The plots of solution to the dimensionally reduced case of Eq. (1) with z = x can be seen in Fig. 5.

Based on the expressions of u, we have

lim
t→±∞

u = 0,
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Fig. 1. (a) The 3-dimensional plots of u via Eq. (8) at the time t = −6, t = −3, t = 0, t = 3 and t = 6 with a3 = 2, z = 0, δ1 = 3 and δ2 = 1; (b) The
corresponding contour plots of (a).

where the solutionsu are given by Eqs. (8), (10), (13), (15) and (19). From the 3-dimensional plots and contour plots, it can be
seen that the peaks of waves via Eqs. (10), (13) and (15) rise and fall periodically along the vertical direction of the propaga-
tion. The solutions via Eqs. (8) and (19) describe the interaction between twowaves, which can be seen respectively in Figs. 1
and 5. Parallel face-to-face interaction occurs between two dark-typewaves in Fig. 1, while oblique interaction between two
dark-type waves is given in Fig. 5 (the detailed interaction process is revealed with selection of different values of the time).

In Fig. 2, the waves are dark-type, propagate to the negative direction of the x-axis and the peaks periodically rise and
fall, while the waves in Figs. 3 and 4 are bright-type.
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Fig. 2. (a) The 3-dimensional plots of u via Eq. (10) at the time t = 0, t = 3 and t = 6 with a3 =
2

√
3
, z = 0, δ1 = 1 and δ2 =

3
2
√
2
; (b) The corresponding

contour plots of (a).

Fig. 3. The 3-dimensional plots of u via Eq. (13) at the time t = 0, t = 3 and t = 6 with a3 = 2, z = 0, δ1 = 3 and δ2 = 1.

Fig. 4. The 3-dimensional plots of u via Eq. (15) at the time t = 0, t = 3 and t = 6 with a3 =
2

√
3
, z = 0, δ1 = 1 and δ2 = 1.
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Fig. 5. (a) The 3-dimensional plots of u via Eq. (19) at the time t = −12, t = −6, t = 0, t = 6 and t = 12 with a1 = 1, a2 = 2, a3 = 2, δ1 = 1, δ2 = 1 and
δ3 = 1; (b) The corresponding contour plots of (a).

4. Concluding remarks

Based on theHirota bilinearmethod, the test functionmethod is powerful in finding exact solutions to nonlinear evolution
equations. In this paper, a (3 + 1)-dimensional nonlinear evolution equation and its reduction have been studied as an
example [see Eq. (1)]. With symbolic computation, diversity of exact solutions has been obtained by solving the under-
determined nonlinear system of algebraic equations [see Eqs. (6) and (11)] for the associated parameters. In our future
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work, other types of test function will be considered to find exact solutions to some higher-dimensional nonlinear evolution
equations.
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