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Abstract Under investigation in this paper is a (3+1)-
dimensional nonlinear evolution equation, which was
proposed and analyzed to study features and properties
of nonlinear dynamics in higher dimensions. Using the
Hirota bilinear method, we construct a bilinear Bäck-
lund transformation, which consists of four equations
and involves six free parameters. With test function
method and symbolic computation, three sets of lump–
kink solutions and new types of interaction solutions
are derived, and figures are presented to reveal the
interaction behaviors. Setting constraints to the new
interaction solution via the test function expressed by
“polynomial-cos-cosh,” we simulate the periodic inter-
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action phenomenon. Pfaffian solutions to the (3+1)-
dimensional nonlinear evolution equation are obtained
based on a set of linear partial differential conditions.
According to our results, the diversity of solutions to
the (3+1)-dimensional nonlinear evolution equation is
revealed.

Keywords Bäcklund transformation · Symbolic
computation · Lump–kink solutions · Interaction
behaviors · Pfaffian solutions

1 Introduction

Nonlinear evolution equations (NLEEs) play a sig-
nificant role in the fields of engineering and math-
ematical physics involving fluid mechanics, plasma
physics, optical fibers and nonlinear traffic flow the-
ory [1–12]. As there are a variety of properties related
to NLEEs, exact solutions have become more crucial
and have attracted much attention [13–23]. In the past
few decades, abundant effective methods have been
proposed to solve NLEEs, such as the Hirota bilin-
ear method [12], the inverse scattering method [12,24],
the Darboux transform [12,25] and the Bäcklund trans-
form [9,26]. Soliton solutions is a kind of special solu-
tion which are exponentially localized in certain direc-
tions [12]. Multi-soliton solutions generated from a
combination of exponential waves to certain integrable
nonlinear equations have been deduced, including the
Korteweg–de Vries (KdV) equation, the Boussinesq
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equation and the Kadomtsev–Petviashvili (KP) equa-
tion [19,22,23,26–28]. Unlike soliton solutions, lump
solutions are rationally localized in all directions of the
space [19]. Using the Hirota bilinear method, Ablowitz
and Satsuma firstly derived lump solutions to the KP
equation in 1978 [20]. In 2015, Ma derived lump solu-
tions to the (2+1)-dimensional KP equation through
symbolic computation [19]. In recent years, inter-
action solutions including lump–kink solutions and
lump–soliton solutions have become a hot topic [13–
18,20,22]. Based on interaction solutions to NLEEs,
a variety of complex interaction behaviors have been
revealed, among which rogue wave is an important
phenomenon [29–32]. According to research results in
fields of oceanography, physics and engineering sci-
ences, rogue wave gets its name from large sponta-
neous and unexpected water wave excitations which
are great threat even to big ships [29,30]. It is implied
by some researchers that rogue waves are the results of
the interaction between a lump wave and a two-soliton
wave [31,32].With the application of symbolic compu-
tation and data processing techniques, the test function
method has become a powerful way to investigate inter-
action solutions to NLEEs [13,14,16,17]. Using sym-
bolic computation, we can construct test functions and
obtain diverse exact solutions toNLEEs [13,14,16,17].

Multi-soliton solutions of many integrable bilin-
ear equations can generally be expressed as deter-
minants, such as Wronskian determinant and Gram-
mian determinant [33–35]. Nevertheless, not all soli-
ton equations have solutions of determinant-type and
some equations have Pfaffian solutions [36,37]. For
example, Wronskian solutions and Grammian solu-
tions to the KP equation, Jimbo–Miwa (JM) equation
and Sawada–Kotera (SK) equation have been deduced,
while Pfaffian solutions to the B-type Kadomtsev–
Petviashvili (B-KP) equation were firstly presented by
Hirota [36,38–41].We set A as an antisymmetric deter-
minant of order 2n,

A = det(a jk), 1 ≤ j, k ≤ 2n, (1)

where a jk = −akj . A can be expressed as the square
of a Pfaffian which is of order n and can be denoted as
(1, 2, . . . , 2n). Using Maya charts designed by Mikio
Sato [12], we can illustrate Pfaffian identities vividly.
Moreover, Pfaffian identities have a richer structure
than determinants and are of great help to understand

the algebraic properties and the structure of multi-
soliton solutions [36].

In this paper, we will study a (3+1)-dimensional
NLEE as

uyt − uxxxy − 3 (ux uy)x − 3 uxx + 3 uzz = 0, (2)

which was firstly proposed in Ref. [42] The reso-
nant behavior of multiple wave solutions has been dis-
cussed [19,42], and interaction solutions to the dimen-
sionally reduced equation have been studied [43]. The
KP equation has been fully analyzed and is widely
applied in fluid mechanics, including researches on
shallowwaterwaves and roguewaves [44–46].Accord-
ing to the composition structure ofEq. (2),which is sim-
ilar to that of the KP equation, we can regard Eq. (2) as
a generalized (3+1)-dimensional KP equation to study
the complex and diverse characteristics. In order to
studymore properties of this (3+1)-dimensionalNLEE,
it is of vital importance to construct Bäcklund transfor-
mation (BT) and exact solutions.

The structure of this paper is as follows: In Sect. 2,
we will transform Eq. (2) into bilinear form and a
BT will be constructed. Based on the constructed BT,
the one-soliton solution to Eq. (2) will be deduced.
In Sect. 3, a new-type test function expressed by
“polynomial-cos-cosh” will be constructed to derive
exact solutions to Eq. (2). With the aid of maple,
we aim at obtaining abundant interaction solutions
to Eq. (2), including lump–kink solutions, periodic-
rational solutions and double kinky-periodic-rational
solutions. Based on the expression of the exact solu-
tions, figures will be plotted and analysis will be made
to display interaction phenomena among lump waves,
kinky waves and periodic waves. In Sect. 4, Pfaffian
solutions will be deduced and figures of one-, two- and
three-soliton solutions will also be presented. Section 5
will be the concluding remarks.

2 Bilinear representation and BT

2.1 Bilinear Bäcklund transformation

Using the dependent variable transformation

u = 2(ln f )x , f = f (x, y, z, t), (3)
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, we transform Eq. (2) into the bilinear form

(Dt Dy − D3
x Dy − 3D2

x + 3D2
z ) f · f = 0, (4)

where Dt Dy , D3
x Dy , D2

x and D2
z are all bilinear deriva-

tive operators [12] defined by

Dα
x D

β
y D

γ
z D

δ
t ( f · g) =

( ∂

∂x
− ∂

∂x ′
)α( ∂

∂y
− ∂

∂y′
)β

×
( ∂

∂z
− ∂

∂z′
)γ ( ∂

∂t
− ∂

∂t ′
)δ

× f (x, y, z, t)g(x ′, y′, z′, t ′)
∣∣∣
x ′=x,y′=y,z′=z,t ′=t.

(5)

Based on the bilinear form Eq. (4), we consider

P ≡ f 2(Dt Dy − D3
x Dy − 3D2

x + 3D2
z )g · g

− g2(Dt Dy − D3
x Dy − 3D2

x + 3D2
z ) f · f, (6)

where g = g(x, y, z, t) is another solution to Eq. (4).
Using the bilinear operator identities

(DyDt g · g) f 2 − (DyDt f · f )g2 = 2Dy(Dtg · f ) · (g f ),

(D2
x g · g) f 2 − (D2

x f · f )g2 = 2Dx (Dxg · f ) · (g f ),

(D2
z g · g) f 2 − (D2

z f · f )g2 = 2Dz(Dzg · f ) · (g f ),

(D3
x Dyg · g) f 2 − (D3

x Dy f · f )g2 = 2Dy(D
3
x g · f ) · (g f )

− 6Dx (Dx Dyg · f ) · (Dxg · f ),

Dz(D
2
x g · f ) · (g f ) = Dx [(Dx Dzg · f ) · (g f )

+ (Dxg · f ) · (Dyg · f )], (7)

we can rewrite Eq. (6) as

P =2Dy(Dt g · f − D3
x g · f + λ1g f ) · (g f )

+ 6Dx (Dx Dyg · f + λ2Dxg · f + λ3g f ) · (Dxg · f )

+ 6λ3Dx (Dxg · f ) · (g f ) − 6Dx (Dxg · f + λ4g f ) · (g f )

+ 6Dz(Dzg · f − λ5D
2
x g · f + λ6g f ) · (g f )

+ 6λ5Dx (Dx Dzg · f ) · (g f )

+ 6λ5Dx (Dxg · f ) · (Dzg · f )

= 2Dy((Dt − D3
x + λ1)g · f ) · (g f )

+ 6Dz((Dz − λ5D
2
x + λ6)g · f ) · (g f )

+ 6Dx ((Dx Dy + λ2Dx − λ5Dz + λ3)g · f ) · (Dxg · f )

+ 6Dx ((λ5Dx Dz + λ3Dx − Dx − λ4)g · f ) · (g f ), (8)

where we have introduced six arbitrary coefficients λi
(i = 1, 2, 3, 4, 5, 6). Then, aBTassociatedwithEq. (4)
can be constructed as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B1g · f = (Dt − D3
x + λ1)g · f = 0,

B2g · f = (Dz − λ5D
2
x + λ6)g · f = 0,

B3g · f = (Dx Dy + λ2Dx + λ3 − λ5Dz)g · f = 0,

B4g · f = (λ5Dx Dz + (λ3 − 1)Dx − λ4)g · f = 0.

(9)

2.2 Soliton solution to Eq. (2)

Obviously, f = 1 is a solution to Eq. (4). Substitut-
ing f = 1 into Eq. (9), we obtain four linear partial
differential equations as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gt − gxxx + λ1g = 0,

gz − λ5gxx + λ6g = 0,

gxy + λ2gx − λ5gz + λ3g = 0,

λ5gxz + (λ3 − 1)gx − λ4g = 0.

(10)

We assume that exponential solutions to Eq. (10) are
as follows

g = 1 + εem1x+m2 y+m3z+m4t , (11)

where m1,m2,m3 and m4 are all constants.
Selecting λ1 = λ3 = λ4 = λ6 = 0 and solving

Eq. (10), we have

m4 = m3
1, λ2 = m2

3

m3
1

− m2, λ5 = m3

m2
1

. (12)

Now, exponential solutions to Eq. (10) are derived
as

g = 1 + εem1x+m2 y+m3z+m3
1t (13)

and the soliton solution to Eq. (2) can be written as

u = 2(ln g)x = 2m1εem1x+m2 y+m3z+m3
1t

1 + εem1x+m2 y+m3z+m3
1t

. (14)

Selecting appropriate parameters, we obtain the fig-
ure of the one-soliton solution to Eq. (2) as plotted in
Fig. 1.

123



4184 Y.-H. Yin et al.

Fig. 1 The one-soliton solution to Eq. (2) via Eq. (14) with
m1 = 1,m2 = 3,m3 = 2, z = 0, t = 0 and ε = 1

3 Interaction solutions and interaction behaviors

3.1 Lump–kink solutions to Eq. (2)

In this section,we aimat obtaining lump–kink solutions
to Eq. (2). According to the structure of lump–kink
solutions, we assume the solution to Eq. (4) is in the
form of

f = g2 + h2 + eη + a16, (15)

where g = a1x+a2y+a3z+a4t+a5, h = a6x+a7y+
a8z + a9 + a10, η = a11x + a12y + a13z + a14t + a15,
a16 ≥ 0 and ai (1 ≤ i ≤ 16) are some constants to be
determined.

With symbolic computation, we directly substitute
Eq. (15) into Eq. (4) and derive the following three sets
of ai (1 ≤ i ≤ 16).

Case 1

{a1 = a1, a2 = 0, a3 = −a1, a4 = 6a1a8
a7

, a5 = a5,

a6 = 0, a7 = a7, a8 = a8, a9 = −3a28
a7

, a10 = a10,

a11 = a11, a12 = 0, a13 = −a11,

a14 = −a11(a211a7 − 6a8)

a7
, a15 = a15, a16 = a16},

(16)

where a1, a5, a7, a8, a10, a11, a15, a16 are real con-
stants and conditions are given as

{a1a7a11 �= 0 , a16 ≥ 0} (17)

to guarantee the well-definedness of f .
Substituting parameters of Eq. (16) into Eq. (15), we

have

f = (a1x − a1z + 6a1a8
a7

t + a5)
2

+ (a7y + a8z − 3a28
a7

t + a10)
2

+ e
a11x−a11z− a11(a211a7−6a8)

a7
t+a15 + a16, (18)

which leads to the lump–kink solution to Eq. (2) as

u = 2(2a1A1 + a11eC1)

A2
1 + B2

1 + eC1 + a16
, (19)

where A1 = a1x−a1z+ 6a1a8
a7

t+a5, B1 = a7y+a8z−
3a28
a7

t+a10 andC1 = a11x−a11z− a11(a211a7−6a8)
a7

t+a15.
Case 2

{a1 = a1, a2 = 0, a3 = a1, a4 = −6a1a8
a7

, a5 = a5,

a6 = 0, a7 = a7, a8 = a8, a9 = −3a28
a7

, a10 = a10,

a11 = a11, a12 = 0, a13 = a11,

a14 = −a11(a211a7 + 6a8)

a7
, a15 = a15, a16 = a16},

(20)

where a1, a5, a7, a8, a10, a11, a15, a16 are real con-
stants and conditions are given as

{a1a7a11 �= 0 , a16 ≥ 0} (21)

to guarantee the well-definedness of f .
Substituting parameters of Eq. (20) into Eq. (15), we

have
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f = (a1x + a1z − 6a1a8
a7

t + a5)
2

+ (a7y + a8z − 3a28
a7

t + a10)
2

+ e
a11x+a11z− a11(a211a7+6a8)

a7
t+a15 + a16, (22)

which leads to the lump–kink solution to Eq. (2) as

u = 2(2a1A2 + a11eC2)

A2
2 + B2

2 + eC2 + a16
, (23)

where A2 = a1x+a1z− 6a1a8
a7

t+a5, B2 = a7y+a8z−
3a28
a7

t+a10 andC2 = a11x+a11z− a11(a211a7+6a8)
a7

t+a15.
Case 3

{a1 = 0, a2 = 0, a3 = a3, a4 = 6a33a8
a212a

3
6

, a5 = a5,

a6 = a6, a7 = −a212a
3
6

a23
, a8 = a8,

a9 = −3a23(a
2
3 + a26 − a28)

a212a
3
6

, a10 = a10,

a11 = − a23
a12a26

, a12 = a12, a13 = − a8a23
a12a36

,

a14 = a43(a
2
3 + 3a26 − 3a28)

a312a
6
6

, a15 = a15, a16 = a16},
(24)

wherea3, a5, a6, a8, a12, a15,a16 are real constants and
conditions are given as

{a3a6a12 �= 0 , a16 ≥ 0} (25)

to guarantee the well-definedness of f .
Substituting parameters of Eq. (24) into Eq. (15), we

have

f = (a3z + 6a33a8
a212a

3
6

t + a5)
2 + (a6x − a212a

3
6

a23
y

+ a8z − 3a23(a
2
3 + a26 − a28)

a212a
3
6

t + a10)
2

+ e
− a23

a12a
2
6
x+a12 y− a8a

2
3

a12a
3
6
z+ a43 (a23+3a26−3a28 )

a312a
6
6

t+a15 + a16,
(26)

which leads to the lump–kink solution to Eq. (2) as

u =
2(2a6B3 − a23

a12a26
eC3)

A2
3 + B2

3 + eC3 + a16
, (27)

where A3 = a3z + 6a33a8
a212a

3
6
t + a5, B3 = a6x − a212a

3
6

a23
y +

a8z− 3a23 (a
2
3+a26−a28 )

a212a
3
6

t+a10 andC3 = − a23
a12a26

x+a12y−
a8a23
a12a36

z + a43(a
2
3+3a26−3a28 )

a312a
6
6

t + a15.

Based on the expression of u given by Eq. (19), we
take a selection of the parameters ai (1 ≤ i ≤ 16) and
obtain figures of lump–kink solutions.

When
a11(a211a7−6a8)

a7
> 0, we obtain lim

t→+∞u = 0,

lim
t→+∞

eC1
A2
1+B2

1
= 0, lim

t→−∞u = 2a11 and lim
t→−∞

A2
1+B2

1
eC1

=
0. In this case,when t → −∞, the kinkywave plays the
dominant role and the lump wave plays the dominant
role when t → +∞.

When
a11(a211a7−6a8)

a7
< 0, we obtain lim

t→−∞u = 0,

lim
t→−∞

eC1
A2
1+B2

1
= 0, lim

t→+∞u = 2a11 and lim
t→+∞

A2
1+B2

1
eC1

=
0. In this case,when t → +∞, the kinkywave plays the
dominant role and the lump wave plays the dominant
role when t → −∞.

As we can see in Fig. 2, there are interaction behav-
iors between lump and kink. The wave consists of two
parts, including the lump wave and the kinky wave.
With the increase of t , the lumpfirst appears on one side
of the kinky wave, and then, it begins to move toward
the other one and is gradually swallowed. Finally, only
the kinky wave exists.

3.2 New interaction solutions to Eq. (2)

In this section, we construct a test function expressed
by “polynomial-cos-cosh” to study diverse exact solu-
tion to Eq. (2) and abundant interaction behaviors. It is
assumed that solutions to Eq. (4) are in the form of

f = p2 + q2 + k cosh(ξ) + l cos(γ ) + b21, (28)

where p = b1x+b2y+b3z+b4t+b5, q = b6x+b7y+
b8z+b9+b10, ξ = b11x+b12y+b13z+b14t+b15, γ =
b16x + b17y + b18z + b19t + b20, b21 ≥ |l|, k > 0
and bi (1 ≤ i ≤ 21), k, l are some constants to be
determined.
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Fig. 2 The 3-dimensional plot of u via Eq. (19) at a t = −30, b t = −20, c t = −10, d t = −5, e t = 0, f t = 5, g t = 10, h t = 20
and i t = 30 with y = 0, a1 = 1, a5 = 1, a7 = 3, a8 = 2, a10 = 1, a11 = 1, a15 = 1 and a16 = 1

With symbolic computation, we directly substitute
Eq. (28) into Eq. (4) and derive the following set of bi
(1 ≤ i ≤ 21), k and l.

{b1 = b1, b2 = 0, b3 = b1, b4 = −6b1b8
b7

, b5 = b5,

b6 = 0, b7 = b7, b8 = b8, b9 = −3b28
b7

, b10 = b10,

b11 = b11, b12 = 0, b13 = b11,

b14 = −b11(b211b7 + 6b8)

b7
, b15 = b15,

b16 = b16, b17 = 0, b18 = b16,

b19 = b16(b216b7 − 6b8)

b7
, b20 = b20,

b21 = b21, k = k, l = l}, (29)

where b1, b5, b7, b8, b10, b11, b16, b20, b21, k, l are real
constants and conditions are given as

{b7l �= 0, k > 0, b21 ≥ |l|}. (30)
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Substituting parameters of Eq. (29) into Eq. (28), we
have

f = (b1x + b1z − 6b1b8
b7

t + b5)
2

+ (b7y + b8z − 3b28
b7

t + b10)
2

+ k cosh(b11x + b11z − b11(b211b7 + 6b8)

b7
t + b15)

+ l cos(b16x + b16z + b16(b216b7 − 6b8)

b7
t + b20) + b21,

(31)

which leads to the exact solution to Eq. (2) as

u = 2(2b1A4 + b11k cosh(C4) + b16 cos(D))

A2
4 + B2

4 + k cosh(C4) + cos(D) + b21
, (32)

where A4 = b1x+b1z− 6b1b8
b7

t+b5, B4 = b7y+b8z−
3b28
b7

t + b10,C4 = b11x + b11z − b11(b211b7+6b8)
b7

t + b15

and D = b16x + b16z + b16(b216b7−6b8)
b7

t + b20.
Based on the expression of u given by Eq. (32), we

can obtain lim
t→±∞u = 2b11 and lim

t→±∞
A2
4+B2

4+cos(D)

cosh(C4)
= 0. Taking a selection of the parame-

ters bi (1 ≤ i ≤ 21), k and l, figures of the constructed
solutions are derived.

As we can see in Figs. 3 and 4, the interaction
phenomenon involves three kinds of different waves,
including the two-kinky wave, the lump wave and
the trigonometric-type wave. With the increase of t ,
the lump wave first appears on one side of the two-
kinky wave; then, it begins to move to the other side,
and finally, the lump wave is swallowed. The wave-
form presented in Fig. 3 is different from that of the
lump-2-kink solution and it reveals the existence of the
trigonometric-type wave.

For further investigation on the new-type interac-
tion solution, we set different values to parameters and
rewrite Eq. (31) and Eq. (32) as

f = b25 + (b7y + b8z − 3b28
b7

t + b210)
2 + k cosh(b11x

+ b11z − b11(b211b7 + 6b8)

b7
+ b15)

+ l cos(b16x + b16z + b16(b216b7 − 6b8)

b7
t + b20) + b21,

u = 2(b11k cosh(C4) + b16 cos(D))

A2
4 + B2

4 + k cosh(C4) + cos(D) + b21
, (33)

where b1 = 0, A4 = b1x + b1z − 6b1b8
b7

t +
b5, B4 = b7y + b8z − 3b28

b7
t + b10,C4 = b11x +

b11z − b11(b211b7+6b8)
b7

t + b15 and D = b16x + b16z +
b16(b216b7−6b8)

b7
t + b20.

When b5 = 1, b7 = 3, b8 = 2, b10 = 1, b11 =
1, b15 = 1, b16 = 1, b20 = 1, b21 = 3, k = 0.01, l =
2 and z = 0, the solution to Eq. (2) is deduced as

u= 2(−0.01 sinh(−x + 5t − 1) + 2 sin(−x + 3t − 1))

(3y−4t+1)2+0.01 cosh(x−5t+1)+2 cos(x−3t+1)+4
.

(34)

Based on the expression of u given by Eq. (34), we
select different values of t and figures of the exact solu-
tions to Eq. (2) are presented in Fig. 5.

As we can see in Fig. 5, there are interaction behav-
iors between the x-periodic-rationalwave and the kinky
wave. The x-periodic-rationalwavefirst appears on one
side of the two-kinky wave; then, it begins to move to
the other side, and finally, the x-periodic-rational wave
is swallowed. The value of the period on the x-axis is

T = 2π

b16
= 2π. (35)

4 Pfaffian solutions

The Pfaffian entry (i, j) is defined by

(i, j) = ci j +
∫ x

φi,xφ j − φiφ j,x dx, (36)

where ci j (1 ≤ i, j ≤ 2N ) are constants and satisfy the
condition ci j = −c ji , and φi is a function of the scaled
space coordinates x , y, z and time t . φi ’s satisfy the
following linear partial differential condition

∂

∂y
φi = (k2 − 1)

∫ x

φi dx,
∂

∂z
φi = k

∂

∂x
φi ,

∂

∂t
φi = ∂3

∂x3
φi , (37)

where k �= 0 and k �= ±1.

Theorem 4.1 If φi meets the linear partial differential
condition Eq. (37), then the Pfaffian fN is the solution
to Eq. (4). Using the transformation u = 2(ln fN )x , we
can obtain the solution to Eq. (2).
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Fig. 3 The 3-dimensional plot of u via Eq. (32) at a t = −30,
b t = −20, c t = −10, d t = −5, e t = 0, f t = 5, g t = 10,
h t = 20 and i t = 30 with y = 0, a1 = 1, a5 = 1, a7 = 3,

a8 = 2, a10 = 1, a11 = 1, a15 = 1, a16 = 1, a20 = 1, a21 = 10,
k = 0.01 and l = 8

Proof Using the linear partial differential condition
presented in Eq. (37), we obtain derivatives of the
entries (i, j) as

∂

∂x
(i, j) = φi,xφ j − φiφ j,x = (d0, d1, i, j),

∂

∂y
(i, j) =

∫ x

(φi,xyφ j + φi,xφ j,y − φi,y

× φ j,x − φiφ j,xy)dx = φiφ j,y − φi,yφ j

= (k2 − 1)(d−1, d0, i, j),

∂

∂z
(i, j) = k(φi,xφ j − φiφ j,x ) = k(d0, d1, i, j),

∂

∂t
(i, j) =

∫ x

(φi,xtφ j + φi,xφ j,t − φi,tφ j,x − φiφ j,xt )

= k(φi,xxxφ j − φiφ j,xxx

− 2(φi,xxφ j,x − φi,xφ j,xx ))

= k[(d0, d3, i, j) − 2(d1, d2, i, j)], (38)

where

(d−1, i) =
∫ x

φi dx, (dn, i) = ∂n

∂xn
φi ,

(dm, dn) = 0, (m, n = −1, 0, 1, 2, 3). (39)
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Fig. 4 The contour plot of u via Eq. (32) at a t = −30, b t = −20, c t = −10, d t = −5, e t = 0, f t = 5, g t = 10, h t = 20 and i
t = 30 with y = 0, a1 = 1, a5 = 1, a7 = 3, a8 = 2, a10 = 1, a11 = 1, a15 = 1, a16 = 1, a20 = 1, a21 = 10, k = 0.01 and l = 8

Based on the differential rules of Pfaffian [38,39],
the derivatives of fN are deduced as

fN ,x = (d0, d1, •),

fN ,xx = (d0, d2, •),

fN ,xxx = (d1, d2, •) + (d0, d3, •),

fN ,y = (k2 − 1)(d−1, d0, •),

fN ,xy = (k2 − 1)(d−1, d1, •),

fN ,xxy = (k2 − 1)[(d0, d1, •) + (d−1, d2, •)],
fN ,xxxy = (k2 − 1)[2(d0, d2, •) + (d−1, d3, •)

+ (d−1, d0, d1, d2, •)],
fN ,z = k(d0, d1, •),

fN ,zz = k2(d0, d2, •),

fN ,t = k[(d0, d3, •) − 2(d1, d2, •)],
fN ,yt = (k2 − 1)[(d−1, d3, •) − (d0, d2, •)

− 2(d−1, d0, d1, d2, •)], (40)

where fN = (1, 2, . . . 2N ) = (•).

Substituting the results in Eq. (40) into Eq. (4), we
can obtain
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Fig. 5 The 3-dimensional plots of u via Eq. (34) at a t = −30, b t = −10, c t = −2, d t = 0, e t = 2 and f t = 20

( fN ,x,x,x,y − fN ,y,t + 3 fN ,x,x − 3 fN ,z,z) fN

= 3(k2 − 1)(d−1, d0, d1, d2, •)(•),

− 3 fN ,x,x,y fN ,x − 3 f 2N ,x

= −3(k2 − 1)(d0, d1, •)(d−1, d2, •),

fN ,y fN ,t − fN ,y fN ,x,x,x = −3(k2 − 1)(d−1, d0, •)

(d1, d(2), •),

3 fN ,x,y fN ,x,x + 3 f 2N ,z = 3(k2 − 1)(d0, d2, •)

(d−1, d1, •), (41)

and further, we have

(Dt Dy − D3
x Dy − 3D2

x + 3D2
z ) fN · fN

= − 6(k2 − 1)[(d−1, d0, d1, d2, •)(•)

− (d−1, d0, •)(d1, d2, •)

+ (d−1, d1, •)(d0, d2, •)

− (d−1, d2, •)(d0, d1, •)] = 0, (42)

which is a Pfaffian identity.
Thus, we can see that fN is the solution to Eq. (4)

and u = 2(ln f )x is the solution to Eq. (2). So far, the
proof of Theorem 4.1 is finished.

Identically, the bilinear form Eq. (4) can be repre-
sented by the following Maya chart.

In order to get exact solutions of Eq. (2), we set

φi = eξi , ξi = pi x + (k2 − 1)p−1
i y + kpi z + pi t

+ ξ0i , i = 1, 2, · · · , 2N , (43)

where pi and ξ0i are free parameters.
Now, we set different values to N and various exact

solutions to Eq. (2) are obtained.
Setting N = 1, c12 = 1 and φ j = eξ j ( j = 1, 2), we

have

f1 = (1, 2) = 1 + eη1 , (44)
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where η1 = ξ1 + ξ2 + δ1, eδ1 = p1−p2
p1+p2

.
Based on the expression Eq. (44), the one-soliton

solution to Eq. (2) can be written as

u = 2(ln f1)x = 2(p21 − p22)e
ξ1+ξ2

(p1 + p2) + (p1 − p2)eξ1+ξ2
. (45)

Setting N = 2 and taking c12 = c34 = 1, c13 =
c14 = c23 = c24 = 0 and φ j = eξ j ( j = 1, 2, 3, 4), we
can obtain

f2 = (1, 2, 3, 4)

= (1, 2)(3, 4) − (1, 3)(2, 4) + (1, 4)(2, 3)

= 1 + eη1 + eη2 + w12e
η1+η2 , (46)

where η1 = ξ1+ξ2+δ1, η2 = ξ3+ξ4+δ2, eδ1 = p1−p2
p1+p2

and eδ2 = p3−p4
p3+p4

.
The nonlinear dispersion relation is satisfied auto-

matically, and the phase shift w12 is

w12 = (p1 − p3)(p1 − p4)(p2 − p3)(p2 − p4)

(p1 + p3)(p1 + p4)(p2 + p3)(p2 + p4)
.

(47)

It is not difficult to find that the form of two-soliton
solution is consistentwith that obtained by perturbation
method [12], where u is expanded as

u = εu1 + ε2u2 + ε3u3 + · · · . (48)

Further, the two-soliton solution to Eq. (2) is given
as

u = 2(ln f2)x = 2((p1 − p2)eξ1+ξ2 + (p3 − p4)eξ3+ξ4 + w12(p1 + p2 + p3 + p4)eη1+η2)

1 + eη1 + eη2 + w12eη1+η2
. (49)

We can obtain the three-soliton solution to Eq. (2)
in a similar way. Setting N = 3,c12 = c34 = c56 = 1,

the rest of ci j = 0 (i, j = 1, 2, · · · , 6) and φ j = eξ j

( j = 1, 2, · · · , 6), f3 is deduced as

f3 = (1, 2, 3, 4, 5, 6)

= (1, 2)(3, 4, 5, 6) − (1, 3)(2, 4, 5, 6)

+ (1, 4)(2, 3, 5, 6) − (1, 5)(2, 3, 4, 6)

+ (1, 6)(2, 3, 4, 5)

= (1, 2)(3, 4)(5, 6) − (1, 2)(3, 5)(4, 6)

+ (1, 2)(3, 6)(4, 5) − (1, 3)(2, 4)(5, 6)

+ (1, 3)(2, 5)(4, 6) − (1, 3)(2, 6)(4, 5)

+ (1, 4)(2, 3)(5, 6) − (1, 4)(2, 5)(3, 6)

+ (1, 4)(2, 6)(3, 5) − (1, 5)(2, 3)(4, 6)

+ (1, 5)(2, 4)(3, 6) − (1, 5)(2, 6)(3, 4)

+ (1, 6)(2, 3)(4, 5) − (1, 6)(2, 4)(3, 5)

+ (1, 6)(2, 5)(3, 4). (50)

Likewise, we may rewrite f3 as

f3 = 1 + eη1 + eη2 + eη3 + w12e
η1+η2 + w13e

η1+η3

+ w23e
η2+η3 + w12w13w23e

η1+η2+η3 , (51)

where

η3 = ξ5 + ξ6 + δ3, e
δ3 = p5 − p6

p5 + p6
,

w13 = (p1 − p5)(p1 − p6)(p2 − p5)(p2 − p6)

(p1 + p5)(p1 + p6)(p2 + p5)(p2 + p6)
,

w23 = (p3 − p5)(p3 − p6)(p4 − p5)(p4 − p6)

(p3 + p5)(p3 + p6)(p4 + p5)(p4 + p6)
,

(52)

and the three-soliton solution to Eq. (2) can be derived
as u = 2(ln f3)x . Selecting appropriate parameters,
the one-, two- and three-soliton solutions are given in

Fig. 6. The contour plots of one-, two- and three-soliton
solutions are plotted in Fig. 7.
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Fig. 6 One-, two- and three-soliton solutions to Eq. (2) at t = 0 with z = 0, p1 = 6, p2 = 5, p3 = 4, p4 = 3, p5 = 2, p6 = 1, ξ01 = 0,
ξ02 = 0, ξ03 = 0, ξ04 = 0, ξ05 = 0, ξ06 = 0 and k = 2

Fig. 7 Contour plots of one-, two- and three-soliton solutions to Eq. (2) at t = 0 with z = 0, p1 = 6, p2 = 5, p3 = 4, p4 = 3, p5 = 2,
p6 = 1, ξ01 = 0, ξ02 = 0, ξ03 = 0, ξ04 = 0, ξ05 = 0, ξ06 = 0 and k = 2

5 Conclusions

In this paper, a (3+1)-dimensional nonlinear par-
tial differential equation has been transformed into
Hirota bilinear form by applying a transformation [see
Eq. (3)]. A bilinear BT Eq. (9) which consists of four
bilinear equations and involves six arbitrary parame-
ters was then constructed. Based on the constructed
BT, one-soliton solution to Eq. (2) was derived. Using
the test function method, we have obtained three sets
of lump–kink solutions and have investigated new-type
interaction solutions via the test function expressed by
“polynomial-cos-cosh.” Analyzing the complex inter-
action phenomena of waves is evocative and delight-
ful. Based on the solutions Eqs. (19), (32) and (34),
abundant interaction phenomena related to lump wave,

trigonometric-type wave and kinky wave have been
displayed and the periodic phenomenon has also been
revealed. In the meantime, we have obtained the inter-
action wave combined by x-periodic lump wave and
two-kinkywave.Moreover, Pfaffian solutions toEq. (2)
have been constructed based on Theorem (4.1). Set-
ting different values to N and selecting appropriate
parameters, one-, two- and three-soliton solutions are
derived. In general, various exact solutions to a (3+1)-
dimensional NLEE have been obtained and discussed
in this paper, which provides useful methods for ref-
erence. It is worth noticing that more exact solu-
tions which possess crucial properties can be deduced
through symbolic computation in future study and the
application of the Bäcklund transformation provides
approaches to deriving new solutions based on known
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ones. The result of our research helps explain nonlinear
phenomena and can be applied in fluid mechanics.
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