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A B S T R A C T

A Darboux transformation and general vector dark soliton solutions are constructed for multi-component
complex modified Korteweg–de Vries (mKdV) system. Dark soliton solutions exist when nonlinearities are
either defocusing or mixed focusing and defocusing. Single-dark–dark–dark and two-dark–dark–dark soliton
solutions of three component complex mKdV system are explicitly presented, whose properties and dynamics
are illustrated. It is also shown during the interaction between those solitons, energies in different components
completely transmit through. Moreover, we perform an asymptotic analysis for the 𝑛-dark soliton solutions
rigorously. Our results can be applicable to the study of dark solitons in different physical fields.
. Introduction

During the past decades, it has been a difficult and significant
roblem to construct exact solutions to nonlinear systems of differen-
ial equations. Among integrable systems, the nonlinear Schrödinger
NLS) equation1–5 has been recognized as an omnipresent mathemat-
cal model, which can be adopted to describe the dynamics of local-
zed waves in many physical fields, such as Bose–Einstein condensate,
onlinear fibers, plasma physics, etc. Another interesting example is
he mKdV equation, which has been studied extensively, due to its
implicity and physical essentiality. Some remarkable progresses are
eneralizations of the 2 × 2 AKNS matrix eigenvalue problem to 3 × 3,
ven more generally 𝑛 × 𝑛, in the recent literature.6–9 In 1997, Iwao
nd Hirota10 proposed a coupled version of the mKdV equation and
onstructed multi-soliton solutions of that system by using the Hirota
ilinear method. Later, Tsuchida and Wadati11 introduced a Lax repre-
entation for the matrix mKdV equation. Meanwhile, they presented
he matrix NLS equation and performed an extension of the inverse
cattering transformation to solve both the matrix mKdV equation and
he matrix NLS equation.

Recently, one of the authors (Ma)12,13 considered a 3 × 3 matrix
patial spectral problem and rederived the AKNS soliton hierarchy
ith four components. A typical nonlinear system in the corresponding

∗ Corresponding author.
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soliton hierarchy is

𝑝𝑗,𝑡 +
𝛽
𝛼3

[𝑝𝑗,𝑥𝑥𝑥 + 3(𝑝1𝑞1 + 𝑝2𝑞2)𝑝𝑗,𝑥 + 3(𝑝1,𝑥𝑞1 + 𝑝2,𝑥𝑞2)𝑝𝑗 ] = 0,

𝑞𝑗,𝑡 +
𝛽
𝛼3

[𝑞𝑗,𝑥𝑥𝑥 + 3(𝑝1𝑞1 + 𝑝2𝑞2)𝑞𝑗,𝑥 + 3(𝑝1𝑞1,𝑥 + 𝑝2𝑞2,𝑥)𝑞𝑗 ] = 0,

1 ≤ 𝑗 ≤ 2,

(1.1)

which contains various mKdV equations, and constructed the multiple
soliton solutions through a specific Riemann–Hilbert problem with an
identity jump matrix.

In this work, we would like to discuss the following general multi-
component complex mKdV integrable system

𝐩𝐭 + 𝐩𝐱𝐱𝐱 + 𝟑𝐩𝐱𝐩†𝐘𝐩 + 𝟑𝐩𝐩†𝐘𝐩𝐱 = 𝟎, (1.2)

where

𝐩 = (𝑝1, 𝑝2,… , 𝑝𝑁 )𝑇 , 𝑌 = 𝑑𝑖𝑎𝑔(𝑦1, 𝑦2,… , 𝑦𝑁 ),

𝑦𝑖 =

{

1, 1 ≤ 𝑖 ≤ 𝑘,

−1, 𝑘 + 1 ≤ 𝑖 ≤ 𝑁,

where the symbol 𝑇 denotes the transpose. It should be noted that when
𝑘 = 0 and 𝑌 = −𝐼𝑁 , this system is the defocusing model that supports
𝑛-dark vector soliton solutions; when 𝑘 = 𝑁 and 𝑌 = 𝐼𝑁 , this system
becomes the focusing model that supports 𝑛-bright soliton solutions;
when 1 ≤ 𝑘 ≤ 𝑁 − 1, this system is the mixed focusing and defocusing
system that supports 𝑛-dark vector soliton solutions, where 𝐼𝑁 is the
𝑁 ×𝑁 identity matrix.
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The Darboux transformation (DT) is a powerful method to construct
exact solutions for integrable systems.14–18 In the present paper, by
iterating a standard DT, dark vector soliton solutions for system (1.2)
with the defocusing case and the mixed focusing and defocusing case
are derived.

A brief outline of this paper is as follows. In Section 2, we present a
Lax pair and construct a DT for the above multi-component complex
mKdV system. In Section 3, we choose some plane-wave solutions
as seed solutions to derive explicit formulas for one- and multi-dark
soliton solutions in the defocusing case and the mixed focusing and
defocusing case by a limiting process. Based on the obtained multi-dark
soliton solutions, we analyze dynamics of single-dark–dark–dark and
two-dark–dark–dark soliton solutions of the three-component system
through detailed examination. The results are then summarized in
Section 4.

2. Darboux transformation

In this section, we would like to construct a DT for the multi-
component complex mKdV system (1.2). Firstly, we declare that the
system (1.2) has the following Lax pair

𝛷𝑥 = 𝑈 (𝜆;𝑃 )𝛷, 𝑈 (𝜆;𝑃 ) = 1
2
𝑖𝜆𝐽 + 𝑖𝐽𝑃 ,

𝛷𝑡 = 𝑉 (𝜆;𝑃 )𝛷, 𝑉 (𝜆;𝑃 ) = 1
2
𝑖𝜆3𝐽 + 𝑖𝜆2𝐽𝑃 + 𝜆𝑉1 + 𝑉0,

(2.1)

ith
𝑉1 = 𝑖𝐽𝑃 2 + 𝑃𝑥, 𝑉0 = 𝑃𝑥𝑃 − 𝑃𝑃𝑥 + 2𝑖𝐽𝑃 3 − 𝑖𝐽𝑃𝑥𝑥,

𝐽 =
(

1 𝟎
𝟎𝐓 −𝐼𝑁

)

, 𝑃 =
(

0 𝐩𝑇
−𝑌 𝐩∗ 𝐎

)

,

here 𝛷 = (𝜙1, 𝜙2,… , 𝜙𝑁+1)𝑇 is a vector eigenfunction, 𝜆 is the spectral
arameter, 𝟎 is the 1 ×𝑁 zero vector and 𝐎 is the 𝑁 ×𝑁 zero matrix.
t is straightforward to check that the compatibility condition 𝑈𝑡 −𝑉𝑥 +
[𝑈, 𝑉 ] = 0 exactly gives rise to the system (1.2).

It is evidently that the matrices 𝑈 (𝜆;𝑃 ) and 𝑉 (𝜆;𝑃 ) possess the
reduction condition

𝑈†(𝜆;𝑃 ) = −𝑆𝑈 (𝜆∗;𝑃 )𝑆, 𝑉 †(𝜆;𝑃 ) = −𝑆𝑉 (𝜆∗;𝑃 )𝑆, (2.2)

where † denotes the Hermitian conjugation, and 𝑆 = 𝑑𝑖𝑎𝑔(𝑠1, 𝑠2,… ,
𝑠𝑁+1) with 𝑠𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑘 + 1 and 𝑠𝑖 = −1 for 𝑘 + 2 ≤ 𝑖 ≤ 𝑁 + 1.

The adjoint problem of the Lax pair (2.1) reads

𝛹𝑥 = −𝛹𝑈 (𝜆;𝑃 ), 𝛹𝑡 = −𝛹𝑉 (𝜆;𝑃 ), (2.3)

where 𝛹 = (𝜓1, 𝜓2,… , 𝜓𝑁+1). Due to the relation (2.2), a simple ob-
servation is that 𝛷†𝑆 satisfies the adjoint problem (2.3). Thus, through
the loop group method,19 we can find a Darboux matrix as follows:

𝑇 = 𝐼𝑁+1 −
𝜆1 − 𝜆∗1
𝜆 − 𝜆∗1

𝑀, 𝑀 =
𝛷1𝛷

†
1𝑆

𝛷†
1𝑆𝛷1

, (2.4)

where 𝛷1 is a special solution for the Lax pair (2.1) at 𝜆 = 𝜆1 and 𝐼𝑁+1
s the (𝑁 + 1) × (𝑁 + 1) identity matrix.

heorem 1. The eigenfunction transformation

𝛷(𝜆, 𝑃 ) → 𝛷[1](𝜆, 𝑃 [1]) = 𝑇𝛷(𝜆, 𝑃 ),

where 𝑇 is defined by (2.4), converts the system (1.2) into a new system

𝛷[1]𝑥 = 𝑈 [1]𝛷[1],

𝛷[1]𝑡 = 𝑉 [1]𝛷[1],
(2.5)

where 𝑈 [1] = 𝑈 (𝜆;𝑃 [1]) and 𝑉 [1] = 𝑉 (𝜆;𝑃 [1]) with

𝑃 [1] =
(

0 𝐩[𝟏]𝑇
−𝑌 𝐩[𝟏]∗ 𝐎

)

,𝐩[𝟏] = (𝑝1[1], 𝑝2[1],… , 𝑝𝑁 [1])𝑇 , (2.6)

and the associated Bäcklund transformation for the potential matrix is

𝑃 [1] = 𝑃 − 1
2
(𝜆1 − 𝜆∗1)[𝐽 ,𝑀𝐽 ]. (2.7)
2

Proof. We merely need to prove

𝑇𝑥𝑇
−1 + 𝑇𝑈 (𝜆)𝑇 −1 = 𝑈 [1], (2.8a)

𝑡𝑇
−1 + 𝑇𝑉 (𝜆)𝑇 −1 = 𝑉 [1], (2.8b)

irstly, we consider Eq. (2.8a) and use the residue analysis method to
erify it. Expanding 𝑇 and 𝑇 −1 as the power series of 𝜆 at 𝜆 = ∞:

𝑇 = 𝐼𝑁+1 −𝑀(𝜆1 − 𝜆∗1)(
1
𝜆
+
𝜆∗1
𝜆2

+
𝜆∗21
𝜆3

+⋯),

𝑇 −1 = 𝐼𝑁+1 +𝑀(𝜆1 − 𝜆∗1)(
1
𝜆
+
𝜆1
𝜆2

+
𝜆21
𝜆3

+⋯).

(2.9)

et

𝐺1(𝑥, 𝑡; 𝜆) =𝑇𝑥𝑇 −1 + 𝑇𝑈 (𝜆)𝑇 −1 − 𝑈 [1]. (2.10)

hen, we want to show that the matrix function 𝐺1(𝑥, 𝑡; 𝜆) is holomor-
phic on the compact Riemann surface 𝑆2 = C ∪ {∞}. Obviously, the
residues for the matrix function 𝐺1(𝑥, 𝑡; 𝜆) at 𝜆 = 𝜆∗1 and 𝜆 = 𝜆1 can be
computed as follows:

𝑅𝑒𝑠𝜆=𝜆∗1𝐺1(𝑥, 𝑡; 𝜆) = (𝜆∗1 − 𝜆1)[𝑀𝑥𝑇
−1 +𝑀𝑈 (𝜆)𝑇 −1]|𝜆=𝜆∗1 = 0,

and

𝑅𝑒𝑠𝜆=𝜆1𝐺1(𝑥, 𝑡; 𝜆) = (𝜆1 − 𝜆∗1)[−𝑀𝑥𝑀 + 𝑇𝑈 (𝜆)𝑀]|𝜆=𝜆1 = 0.

Moreover, we can calculate the residue for the matrix function 𝐺1(𝑥, 𝑡; 𝜆)
at 𝜆 = ∞ as follows:

1(𝑥, 𝑡;∞) = 𝑖𝐽𝑃 − 𝑖𝐽𝑃 [1] + 1
2
𝑖(𝜆1 − 𝜆∗1)(𝐽𝑀 −𝑀𝐽 ) = 0.

Therefore, 𝐺1(𝑥, 𝑡; 𝜆) is a holomorphic function on 𝑆2. It follows from
the above asymptotical behavior analysis that 𝐺1(𝑥, 𝑡; 𝜆) = 0. So
Eq. (2.8a) holds. On the other hand, we continue to discuss the time
evolution part (2.8b). A direct analysis can show that

𝐺2(𝑥, 𝑡; 𝜆) = 𝑇𝑡𝑇
−1 + 𝑇𝑉 (𝜆)𝑇 −1 − 𝑉 = 0, (2.11)

where

𝑉 =1
2
𝑖𝜆3𝐽 + 𝑖𝜆2𝐽𝑃 [1] + 𝜆𝑉1 + 𝑉0,

𝑉1 =𝑖𝐽𝑃 2 + 𝑃𝑥 +
1
2
𝑖(𝜆∗1 − 𝜆1)(𝜆

∗
1𝑀𝐽 − 𝜆1𝐽𝑀) + 𝑖(𝜆∗1 − 𝜆1)[𝑀,𝐽𝑃 ],

𝑉0 =𝑃𝑥𝑃 − 𝑃𝑃𝑥 + 2𝑖𝐽𝑃 3 − 𝑖𝐽𝑃𝑥𝑥 + 𝑖(𝜆∗1 − 𝜆1)[𝑀,𝐽𝑃 2] + (𝜆∗1 − 𝜆1)[𝑀,𝑃𝑥]

+ 𝑖(𝜆∗1 − 𝜆1)(𝜆
∗
1𝑀𝐽𝑃 − 𝜆1𝐽𝑃𝑀) + 1

2
𝑖(𝜆∗1 − 𝜆1)(𝜆

∗2
1 𝑀𝐽 − 𝜆21𝐽𝑀).

ence, our aim is turned to verify that 𝑉 = 𝑉 [1]. In view of the relation
1(𝑥, 𝑡; 𝜆) = 𝐺2(𝑥, 𝑡; 𝜆) = 0, we achieve

𝑈 [1]𝑡 − 𝑉𝑥 + [𝑈 [1], 𝑉 ] = 0. (2.12)

By comparing the coefficients of 𝜆, we get

𝜆2 ∶ 𝑃 [1]𝑥 = 1
2
[𝐽 , 𝐽𝑉1],

𝜆1 ∶ 𝑉1,𝑥 = 1
2
𝑖[𝐽 , 𝑉0] + 𝑖[𝐽𝑃 [1], 𝑉1],

𝜆0 ∶ 𝑉0,𝑥 = 𝑖𝐽𝑃 [1]𝑡 + 𝑖[𝐽𝑃 [1], 𝑉0].

(2.13)

ased on the first equation of (2.13), one can derive

1̂
𝑜𝑓𝑓 = 𝑃 [1]𝑥, (2.14)

here 𝑜𝑓𝑓 represents the (1, 2), . . . , (1, 𝑁 + 1), (2, 1), . . . , (𝑁 + 1, 1)
elements for the matrix. Moreover, with the help of the second equation
of (2.13), one can find that

𝑉 𝑑𝑖𝑎𝑔
1,𝑥 = 𝑖[𝐽𝑃 [1], 𝑃 [1]𝑥], (2.15)

where 𝑑𝑖𝑎𝑔 denotes the other elements except the 𝑜𝑓𝑓 ones. Thus, one
has

𝑉 𝑑𝑖𝑎𝑔 = 𝑖𝐽𝑃 [1]2 + 𝑔(𝑡). (2.16)
1
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Without loss of generality, we can take 𝑔(𝑡) = 0, and thus, we have
𝑉1 = 𝑖𝐽𝑃 [1]2 + 𝑃 [1]𝑥. Similarly, we have 𝑉0 = 𝑃 [1]𝑥𝑃 [1] − 𝑃 [1]𝑃 [1]𝑥 +
𝑖𝐽𝑃 [1]3 − 𝑖𝐽𝑃 [1]𝑥𝑥. This completes the proof. ■

For the sake of easy calculation, we set |𝑦𝑗⟩ = 𝜈𝑗𝛷𝑗 , where 𝜈𝑗 =
𝑗 (𝑥, 𝑡, 𝜆𝑗 ) is the appropriate function. Then the elementary Darboux
atrix can be rewritten as

= 𝐼𝑁+1 −
𝜆1 − 𝜆∗1
𝜆 − 𝜆∗1

|𝑦1⟩⟨𝑦1|𝑆
⟨𝑦1|𝑆|𝑦1⟩

, ⟨𝑦1| = |𝑦1⟩
†. (2.17)

It follows that 𝑃 [1] can be written as

𝑃 [1] = 𝑃 − 1
2
(𝜆1 − 𝜆∗1)[𝐽 ,

|𝑦1⟩⟨𝑦1|𝑆
⟨𝑦1|𝑆|𝑦1⟩

𝐽 ]. (2.18)

Through the standard iterated step for the above-mentioned Dar-
boux matrix, we can establish a general 𝑛-fold Darboux matrix for the
multi-component complex mKdV system (1.2).

Theorem 2. Suppose that 𝛷𝑖 (𝑖 = 1, 2,… , 𝑛) are n linearly independent
solutions of the spectral problem (2.1), corresponding to 𝜆 = 𝜆𝑖, respectively,
and denote |𝑦𝑖⟩ = 𝜈𝑖𝛷𝑖 and ⟨𝑦𝑖| = |𝑦𝑖⟩†. Then, the 𝑛-fold Darboux matrix
can be represented as

𝑇𝑛 = 𝐼𝑁+1 − 𝑌𝑊 −1(𝜆𝐼𝑛 − 𝐺)−1𝑌 †𝑆, (2.19)

where 𝑌 = (|𝑦1⟩, |𝑦2⟩,… , |𝑦𝑛⟩), 𝑊 = [ ⟨𝑦𝑖|𝑆|𝑦𝑗 ⟩𝜆𝑗−𝜆∗𝑖
]𝑛×𝑛, and 𝐺 = 𝑑𝑖𝑎𝑔(𝜆∗1 , 𝜆

∗
2 ,

, 𝜆∗𝑛). The associated Bäcklund transformation for the potential matrix
eads

[𝑛] = 𝑃 − 1
2
[𝐽 , 𝑌𝑊 −1𝑌 †𝑆𝐽 ]. (2.20)

3. One- and multi-dark soliton solutions

In this section, we derive general multi-dark soliton solutions for
the complex mKdV system (1.2) through the presented DT and explore
dynamics of single-dark–dark–dark and two-dark–dark–dark soliton
solutions graphically.

We begin with a seed solution in the form of plane waves

𝑝𝑗 = 𝑐𝑗𝑒
𝑖𝜃𝑗 (𝑗 = 1, 2,… , 𝑁), (3.1)

with

𝜃𝑗 = 𝑎𝑗𝑥 + [𝑎3𝑗 − 3𝑎𝑗
𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙 − 3

𝑁
∑

𝑙=1
𝜎𝑙𝑎𝑙𝑐

2
𝑙 ]𝑡,

where 𝑎𝑗 , 𝑐𝑗 (𝑗 = 1, 2,… , 𝑁) are all real parameters, and 𝜎𝑙 = 1, when
≤ 𝑙 ≤ 𝑘, 𝜎𝑙 = −1, when 𝑘 + 1 ≤ 𝑙 ≤ 𝑁 . In order to find the proper

igenfunction of the Lax pair (2.1), we make the gauge transformation

= 𝐷𝛹, 𝐷 = 𝑑𝑖𝑎𝑔(1, 𝑒−𝑖𝜃1 , 𝑒−𝑖𝜃2 ,… , 𝑒−𝑖𝜃𝑁 ), (3.2)

and then the linear system (2.1) becomes

𝛹𝑥 = 𝑖𝑈̃𝛹 ,

𝛹𝑡 = 𝑖[𝑈̃3 + 3
2
𝜆𝑈̃2 + (3

4
𝜆2 − 3

𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙 )𝑈̃ − (3

8
𝜆3 + 3

2
𝜆

𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙

+ 3
𝑁
∑

𝑙=1
𝜎𝑙𝑎𝑙𝑐

2
𝑙 )𝐼𝑁+1]𝛹,

(3.3)

where

𝑈̃ =

(

1
2𝜆 𝑐𝑇

𝑌 𝑐 − 1
2𝜆𝐼𝑁 + 𝐴

)

, 𝑐 = (𝑐1, 𝑐2,… , 𝑐𝑁 )𝑇 ,

𝐴 = 𝑑𝑖𝑎𝑔(𝑎1, 𝑎2,… , 𝑎𝑁 ).

Substituting the seed solution (3.1) into the spectral problem (2.1),
we can determine its fundamental solution as follows:

𝛷 = 𝐷𝐻𝐹, (3.4)
3

where

𝐻 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 ⋯ 1
𝑐1

𝜒1−𝑎1
𝑐1

𝜒2−𝑎1
⋯ 𝑐1

𝜒𝑁+1−𝑎1
⋮ ⋮ ⋯ ⋮
𝑐𝑘

𝜒1−𝑎𝑘
𝑐𝑘

𝜒2−𝑎𝑘
⋯ 𝑐𝑘

𝜒𝑁+1−𝑎𝑘−𝑐𝑘+1
𝜒1−𝑎𝑘+1

−𝑐𝑘+1
𝜒2−𝑎𝑘+1

⋯ −𝑐𝑘+1
𝜒𝑁+1−𝑎𝑘+1

⋮ ⋮ ⋯ ⋮
−𝑐𝑁
𝜒1−𝑎𝑁

−𝑐𝑁
𝜒2−𝑎𝑁

⋯ −𝑐𝑁
𝜒𝑁+1−𝑎𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

𝐹 = 𝑑𝑖𝑎𝑔(𝑒𝑖𝜉(𝜒1), 𝑒𝑖𝜉(𝜒2),… , 𝑒𝑖𝜉(𝜒𝑁+1)),

𝜉(𝑧) = (𝑧 − 1
2
𝜆)𝑥 + (𝑧3 − 3𝑧

𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙 − 3

𝑁
∑

𝑙=1
𝜎𝑙𝑎𝑙𝑐

2
𝑙 −

1
2
𝜆3)𝑡,

and 𝜒1, 𝜒2,… , 𝜒𝑁+1 are 𝑁 + 1 distinct roots of the following (𝑁 + 1)-th
order algebraic equation
𝑁
∏

𝑙=1
(𝜒 − 𝑎𝑙)(𝜒 − 𝜆 −

𝑁
∑

𝑙=1

𝜎𝑙𝑐2𝑙
𝜒 − 𝑎𝑙

) = 0. (3.5)

It is readily to see when 𝜎𝑙 = 1 (1 ≤ 𝑙 ≤ 𝑁), which corresponds to the
ocusing case, the constraint (3.5) cannot be satisfied, and thus 𝑛-dark
ector soliton solutions cannot exist. When 𝜎𝑙 = −1 (1 ≤ 𝑙 ≤ 𝑁), which
orresponds to the defocusing type, the constraint (3.5) can be satisfied,
nd thus 𝑛-dark soliton solutions can exist. When the system (1.2) has
he mixed focusing and defocusing nonlinearities, the constraint (3.5)
till can be satisfied, and hence, 𝑛-dark vector soliton solutions can
xist. This phenomenon will be demonstrated in more detail in the next
ection.

.1. Single-dark soliton solutions

Taking 𝜈1 = 𝑒𝑖[
1
2 𝜆1𝑥+(3

∑𝑁
𝑙=1 𝜎𝑙𝑎𝑙𝑐

2
𝑙 +

1
2 𝜆

3
1)𝑡], we can choose

|𝑦1⟩ = 𝐷

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
𝑐1

𝜒1−𝑎1
𝑐1

𝜒∗1−𝑎1
⋮ ⋮
𝑐𝑘

𝜒1−𝑎𝑘
𝑐𝑘

𝜒∗1−𝑎𝑘−𝑐𝑘+1
𝜒1−𝑎𝑘+1

−𝑐𝑘+1
𝜒∗1−𝑎𝑘+1

⋮ ⋮
−𝑐𝑁
𝜒1−𝑎𝑁

−𝑐𝑁
𝜒∗1−𝑎𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

𝑒𝑖𝜅1
𝛼1(𝜆1 − 𝜆∗1)𝑒

𝑖𝜅∗1

)

, (3.6)

here 𝛼1 is a real constant and 𝜅1 = 𝜒1𝑥 + (𝜒3
1 − 3𝜒1

∑𝑁
𝑙=1 𝜎𝑙𝑐

2
𝑙 )𝑡. In

rder to derive single-dark soliton solutions,3,20 we need to take a limit
rocess 𝜆1 → 𝜆∗1. After tedious calculations, we can have ⟨𝑦1|𝑆|𝑦1⟩

𝜆1−𝜆∗1
=

𝑒−2𝐼𝑚(𝜅1)+𝛽1
𝜒1−𝜒∗1

, where 𝛽1 = −4𝛼1𝐼𝑚(𝜒1)𝐼𝑚(
∑𝑁
𝑙=1

𝜎𝑙𝑐2𝑙
(𝜒∗1−𝑎𝑙 )

2 ) > 0.
Based on Eq. (2.18), the corresponding single-dark soliton solution

reads

𝑝𝑗 [1] = 𝑝𝑗 [1 +
𝜒1 − 𝜒∗

1
2(𝜒∗

1 − 𝑎𝑗 )
−

𝜒1 − 𝜒∗
1

2(𝜒∗
1 − 𝑎𝑗 )

𝑡𝑎𝑛ℎ(𝑋1)], (𝑗 = 1, 2,… , 𝑁), (3.7)

with

𝑋1 = 𝐼𝑚(𝜒1)(𝑥 + 𝜂1𝑡) +
1
2
𝑙𝑛𝛽1,

𝜂1 = 3𝑅𝑒2(𝜒1) − 𝐼𝑚2(𝜒1) − 3
𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙 .

In the following, we investigate the asymptotic property of the
olution. We assume 𝐼𝑚(𝜒1) < 0 without loss of generality. When 𝑡 is
egarded as an evolution variable, we have |𝑝𝑗 [1]| → |𝑝𝑗 | as 𝑥 → −∞,
hereas one finds 𝑝𝑗 [1] →

𝜒1−𝑎𝑗
𝜒∗1−𝑎𝑗

𝑝𝑗 as 𝑥 → +∞. Since |

𝜒1−𝑎𝑗
𝜒∗1−𝑎𝑗

| = 1, one
as |𝑝𝑗 [1]| → |𝑝𝑗 | as 𝑥 → ±∞. When 𝑥 moves from −∞ to +∞, the
hases of the components 𝑝𝑗 [1] acquire some shifts in the amount of
, where 𝜑 is the constant −𝑖𝑙𝑛( 𝜒1−𝑎𝑗∗ ). It is important to notice that
𝑗 𝑗 𝜒1−𝑎𝑗
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the intensity functions move at velocity −𝜂1, to the right for 𝜂1 > 0 and
the left for 𝜂1 < 0.

In addition, the trough of the single-dark soliton 𝑝𝑗 [1] is along the
line

𝑥 + 𝜂1𝑡 +
𝑙𝑛𝛽1

2𝐼𝑚(𝜒1)
= 0, (3.8)

and the depth of cavity |𝑝𝑗 [1]|
2 is

𝑐2𝑗 𝐼𝑚
2(𝜒1)

(𝑅𝑒(𝜒1) − 𝑎𝑗 )2 + 𝐼𝑚2(𝜒1)
.

Note that through the above expression, one can see the intensity
ips at the centers of |𝑝𝑗 [1]| are characterized by the involved param-
ters of 𝑐𝑗 , 𝑎𝑗 and 𝜒1 and these parameters determine how dark the
enter is. In a similar way, we can also verify that |𝑝𝑗 [1]| approaches
he constant amplitude |𝑝𝑗 | as 𝑡 → ±∞ when 𝑥 is the evolution variable.

We find the velocity is − 1
𝜂1

and the center is still along the line given
y Eq. (3.8) clearly.

In what follows, we take a system of three-component complex
KdV equations as an example to exhibit the dynamics property ex-
licitly. If 𝑎1 = 𝑎2 = 𝑎3, then 𝜑1 = 𝜑2 = 𝜑3, and hence the 𝑝1[1], 𝑝2[1]
nd 𝑝3[1] components are proportional to each other, i.e. 𝑝1[1] ∶ 𝑝2[1] ∶
3[1] = 𝑐1 ∶ 𝑐2 ∶ 𝑐3. Indeed, dark–dark–dark soliton solutions of the
hree-component complex mKdV system are equivalent to a scalar dark
oliton of the single-component complex mKdV system, and thus are
egenerate. In order to obtain non-degenerate single-dark–dark–dark
oliton solutions, we pick 𝑎1 ≠ 𝑎2 ≠ 𝑎3 to keep 𝜑1 ≠ 𝜑2 ≠ 𝜑3, and

thus the 𝑝1[1], 𝑝2[1] and 𝑝3[1] components are not proportional to each
other. Under this condition, they are not reducible to scalar single-dark
soliton solutions in the system (1.2).

Due to the fact that degenerate and non-degenerate single-dark–
dark–dark soliton solutions in the mixed focusing and defocusing case
qualitatively resemble the defocusing type, here we merely consider the
non-degenerate case of the defocusing system while making plots.

Solving the algebraic equation (3.5), we can obtain all of the
parameters for the single dark soliton. For instance, we consider the
three-component complex mKdV equation with the defocusing case
(i.e. 𝑁 = 3, 𝜎1 = 𝜎2 = 𝜎3 = −1). We choose the parameters:

𝑎1 = 0, −𝛽1 = −𝑎2 = 𝑎3 = −𝑐1 = −𝑐2 = −𝑐3 = −1,

𝜆1 =
1
2
, 𝜒1 ≈ 0.301755798158048 − 1.54163830779653𝑖.

(3.9)

The resulting single-dark–dark–dark soliton solutions are plotted in
Fig. 1, which shows that solutions |𝑝1[1]|, |𝑝2[1]|, |𝑝3[1]| have different
degrees of darkness at the centers and their trajectories are along the
same line. Meanwhile, it indicates that the |𝑝1[1]| component is black,
but the |𝑝3[1]| component is only gray at its center.

3.2. Multi-dark soliton solutions

In this subsection, we present multi-dark soliton solutions and their
asymptotic analysis. Similar to the process of obtaining single-dark
soliton solutions, we take

|𝑦𝜄⟩ = 𝐷

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1
𝑐1

𝜒𝜄−𝑎1
𝑐1

𝜒∗𝜄 −𝑎1
⋮ ⋮
𝑐𝑘

𝜒𝜄−𝑎𝑘
𝑐𝑘

𝜒∗𝜄 −𝑎𝑘−𝑐𝑘+1
𝜒𝜄−𝑎𝑘+1

−𝑐𝑘+1
𝜒∗𝜄 −𝑎𝑘+1

⋮ ⋮
−𝑐𝑁
𝜒𝜄−𝑎𝑁

−𝑐𝑁
𝜒∗𝜄 −𝑎𝑁

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(

𝑒𝑖𝜅𝜄
𝛼𝜄(𝜆𝜄 − 𝜆∗𝜄 )𝑒

𝑖𝜅∗𝜄

)

,

here

𝜄 = 𝜒𝜄𝑥 + (𝜒3
𝜄 − 3𝜒𝜄

𝑁
∑

𝜎𝑙𝑐
2
𝑙 )𝑡,
𝑙=1

4

nd 𝛼𝜄 is a real constant. To obtain multi-dark soliton solutions, taking
limit process 𝜆𝜄 → 𝜆∗𝜄 (𝜄 = 1, 2⋯ , 𝑛) is needed. Via the iterative

algorithm, together with Theorem 2, general multi-dark vector soliton
solutions of Eq. (1.2) can be represented as follows:

Theorem 3. The 𝑛-fold Darboux matrix for dark soliton solutions of the
system (1.2) can be rewritten as

𝑇𝑛 = 𝐼𝑁+1 − 𝑌 𝑍−1(𝜆𝐼𝑛 − 𝐺)−1𝑌 †𝑆,

𝑝𝑗 [𝑛] = 𝑐𝑗𝑒
𝑖𝜃𝑗

|𝑍𝑗 |
|𝑍|

, (𝑗 = 1, 2,… , 𝑁),
(3.10)

here

𝑗 =

(

𝑍 𝑁†
𝑗

𝑅 1

)

, 𝑁𝑗 = ( −𝑒𝑖𝜅1
𝜒1 − 𝑎𝑗

, −𝑒𝑖𝜅2
𝜒2 − 𝑎𝑗

,… , −𝑒𝑖𝜅𝑛
𝜒𝑛 − 𝑎𝑗

),

= (𝑒𝑖𝜅1 , 𝑒𝑖𝜅2 ,… , 𝑒𝑖𝜅𝑛 ),

nd

= (
𝑒𝑖(𝜅𝑗−𝜅

∗
𝑖 ) + 𝛿𝑖𝑗𝛽𝑗

𝜒𝑗 − 𝜒∗
𝑖

)1≤𝑖,𝑗≤𝑛, 𝛽𝑖 = −4𝛼𝑖𝐼𝑚(𝜒𝑖)𝐼𝑚(
𝑁
∑

𝑙=1

𝜎𝑙𝑐2𝑙
(𝜒∗
𝑖 − 𝑎𝑙)2

) > 0,

𝑖𝑗 being the Kronecker’s delta.

Based on the 𝑛-dark soliton solution (3.10), we investigate the
ollision dynamics between two vector dark soliton solutions for the
hree-component complex mKdV system. For an illustrative purpose,
e investigate the three-component complex mKdV equation with the
ixed of focusing and defocusing case (i.e. 𝑁 = 3, 𝜎1 = 𝜎2 = −𝜎3 = 1).
y solving the algebraic equation (3.5), the parameters are chosen as
ollows:

𝑎1 =
1
2
, 𝑎3 =

3
2
, 𝛽1 = 𝛽2 = 𝑎2 = 𝑐1 = 𝑐2 = 𝑐3 = 1, 𝜆1 = −2, 𝜆2 = 0,

𝜒1 ≈ 1.33924933170325 − 0.369190128736683𝑖,

𝜒2 ≈ 1.54243168261534 − 0.537284734536601𝑖.

(3.11)

raphs of two-dark–dark–dark soliton solutions are displayed in Fig. 2.
e can see that after collision, the two solitons pass through each

ther without any change of shape, darkness or velocity in its three
omponents, and hence there is no energy transfer between the two
olitons after collision. In addition, since the parameters 𝛽1 and 𝛽2
etermine the initial position of solitons, we can adjust different values
o distinguish two solitons.

To elucidate the interaction of multi-component soliton solutions,
y introducing the following Cauchy’s determinant identity

(𝜒1, 𝜒2,… , 𝜒𝑛) = 𝑑𝑒𝑡( 1
𝜒𝑖 − 𝜒∗

𝑗
)1≤𝑖,𝑗≤𝑛 =

∏𝑛
𝑖=2

∏𝑖−1
𝑗=1(𝜒𝑖 − 𝜒𝑗 )(𝜒

∗
𝑗 − 𝜒∗

𝑖 )
∏𝑛

𝑖=1
∏𝑛

𝑗=1(𝜒𝑖 − 𝜒
∗
𝑗 )

,

(3.12)

e give an asymptotic property and its proof below.

roposition 1. As 𝑡→ ±∞, 𝑝𝑗 [𝑛] can be expressed as a sum of single-dark
soliton solutions

𝑝𝑗 [𝑛] = 𝑐𝑗𝑒
𝑖𝜃𝑗 [1 + 𝑆[𝑗]±

1 + (𝑆[𝑗]±
2 − 𝐺[𝑗]±

1 ) +⋯ + (𝑆[𝑗]±
𝑛 − 𝐺[𝑗]±

𝑛−1 )] + 𝑂(𝑒
−𝛿|𝑡|),

(3.13)

where 𝛿 = min(|𝜒𝑖|)min𝑖≠𝑗 (|𝜅𝑖 − 𝜅𝑗 |), and

𝑆 [𝑗]−
𝜏 =

∑𝜏
𝑙=1(−1)

𝜏+1 1
𝜒∗
𝑙 −𝑎𝑗

𝑒𝑖(𝜅𝜏−𝜅∗𝜏 )𝐴(𝜏, 𝑙) +
∑𝜏−1
𝑙=1 (−1)

𝜏 1
𝜒∗
𝑙 −𝑎𝑗

𝛽𝜏
𝜒𝜏−𝜒∗

𝜏
𝐴(𝜏 − 1, 𝑙)

𝑒𝑖(𝜅𝜏−𝜅∗𝜏 )𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝜏 ) +
𝛽𝜏

𝜒𝜏−𝜒∗
𝜏
𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝜏−1)

,

𝑆 [𝑗]+
𝜏 =

∑𝑛
𝑙=𝜏 (−1)

𝑛−𝜏 1
𝜒∗
𝑙 −𝑎𝑗

𝑒𝑖(𝜅𝜏−𝜅∗𝜏 )𝐷(𝜏, 𝑙) +
∑𝑛
𝑙=𝜏+1(−1)

𝑛−𝜏+1 1
𝜒∗
𝑙 −𝑎𝑗

𝛽𝜏
𝜒𝜏−𝜒∗

𝜏
𝐷(𝜏 + 1, 𝑙)

𝑒𝑖(𝜅𝜏−𝜅∗𝜏 )𝐶(𝜒𝜏 , 𝜒𝜏+1 ,… , 𝜒𝑛) +
𝛽𝜏

𝜒𝜏−𝜒∗
𝜏
𝐶(𝜒𝜏+1 , 𝜒𝜏+2 ,… , 𝜒𝑛)

,

𝐺[𝑗]− =

∑𝜏
𝑙=1(−1)

𝜏+1 1
𝜒∗
𝑙 −𝑎𝑗

𝐴(𝜏, 𝑙)
, 𝐺[𝑗]+ =

∑𝑛
𝑙=𝜏+1(−1)

𝑛−𝜏+1 1
𝜒∗
𝑙 −𝑎𝑗

𝐷(𝜏 + 1, 𝑙)
,
𝜏 𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝜏 ) 𝜏 𝐶(𝜒𝜏+1 , 𝜒𝜏+2 ,… , 𝜒𝑛)
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r

𝐴

Fig. 1. Single-dark–dark–dark soliton solutions: Parameters 𝜎1 = 𝜎2 = 𝜎3 = −𝛽1 = −𝑎2 = 𝑎3 = −𝑐1 = −𝑐2 = −𝑐3 = −1, 𝑎1 = 0, 𝜆1 =
1
2
, 𝜒1 = 0.301755798158048 − 1.54163830779653𝑖. Upper

ow: 𝑡 is the evolution variable; lower row: 𝑥 is the evolution variable.
r
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t
A

(𝜏, 𝑙) = 𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝑛)

∏𝜏
𝑗=1(𝜒𝑗 − 𝜒

∗
𝑙 )

∏𝜏
𝑗=1,𝑗≠𝑙(𝜒

∗
𝑙 − 𝜒∗

𝑗 )
,

𝐷(𝜏, 𝑙) = 𝐶(𝜒𝜏 , 𝜒𝜏+1 ,… , 𝜒𝑛)

∏𝑛
𝑗=𝜏 (𝜒𝑗 − 𝜒

∗
𝑙 )

∏𝑛
𝑗=𝜏,𝑗≠𝑙(𝜒

∗
𝑙 − 𝜒∗

𝑗 )
.

Proof. We only consider the case 𝑡 → −∞ here, and the asymptotical
behavior as 𝑡 → +∞ is similarly. Fix the value of 𝐼𝑚(𝜅𝜏 ),

𝐼𝑚(𝜅𝜏 ) = 𝐼𝑚(𝜒𝜏 )(𝑥+𝑚𝜏 𝑡) = 𝑐𝑜𝑛𝑠𝑡, 𝑚𝜏 = 3𝑅𝑒2(𝜒𝜏 ) − 𝐼𝑚2(𝜒𝜏 ) − 3
𝑁
∑

𝑙=1
𝜎𝑙𝑐

2
𝑙 .

(3.14)

Without loss of generality, we assume 𝐼𝑚(𝜒𝜄) < 0 and 𝑚1 < 𝑚2 < ⋯ <
𝑚𝑛. From 𝐼𝑚(𝜅𝜄) = 𝐼𝑚(𝜒𝜄)(𝑥 +𝑚𝜏 𝑡 + (𝑚𝜄 −𝑚𝜏 )𝑡), we obtain 𝐼𝑚(𝜅𝜄) → −∞
for 1 ≤ 𝜄 ≤ 𝜏 − 1 and 𝐼𝑚(𝜅𝜄) → +∞ for 𝜏 + 1 ≤ 𝜄 ≤ 𝑛. The determinants
𝑍 and 𝑍𝑗 of Theorem 3 are given explicitly by

𝑑𝑒𝑡(𝑍) = 𝑒−2𝐼𝑚(𝜅1+𝜅2+⋯+𝜅𝜏−1)[𝑑𝑒𝑡(𝑍𝜏 ) + 𝑂(𝑒−𝛿|𝑡|)],

𝑑𝑒𝑡(𝑍𝑗 ) = 𝑒−2𝐼𝑚(𝜅1+𝜅2+⋯+𝜅𝜏−1)[𝑑𝑒𝑡(𝑍𝑗,𝜏 ) + 𝑂(𝑒−𝛿|𝑡|)],
(3.15)

where

𝑑𝑒𝑡(𝑍𝜏 ) =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝜒1−𝜒∗

1
⋯ 1

𝜒𝜏−1−𝜒∗
1

𝑒𝑖𝜅𝜏
𝜒𝜏−𝜒∗

1
0 ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
1

𝜒1−𝜒∗
𝜏−1

⋯ 1
𝜒𝜏−1−𝜒∗

𝜏−1

𝑒𝑖𝜅𝜏
𝜒𝜏−𝜒∗

𝜏−1
0 ⋯ 0

𝑒−𝑖𝜅∗𝜏
𝜒1−𝜒∗

𝜏
⋯ 𝑒−𝑖𝜅∗𝜏

𝜒𝜏−1−𝜒∗
𝜏

𝑒𝑖(𝜅𝜏 −𝜅∗𝜏 )+𝛽𝜏
𝜒𝜏−𝜒∗

𝜏
0 ⋯ 0

0 ⋯ 0 0 𝛽𝜏+1
𝜒𝜏+1−𝜒∗

𝜏+1
⋯ 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮
𝛽𝑛

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

,

|

|

0 ⋯ 0 0 0 ⋯
𝜒𝑛−𝜒∗

𝑛
|

|

d
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𝑑𝑒𝑡(𝑍𝑗,𝜏 ) =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

1
𝜒1−𝜒

∗
1

⋯ 1
𝜒𝜏−1−𝜒

∗
1

𝑒𝑖𝜅𝜏
𝜒𝜏−𝜒∗1

0 ⋯ 0 −1
𝜒∗1 −𝑎𝑗

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

𝜒1−𝜒
∗
𝜏−1

⋯ 1
𝜒𝜏−1−𝜒

∗
𝜏−1

𝑒𝑖𝜅𝜏
𝜒𝜏−𝜒∗𝜏−1

0 ⋯ 0 −1
𝜒∗𝜏−1−𝑎𝑗

𝑒−𝑖𝜅
∗
𝜏

𝜒1−𝜒
∗
𝜏

⋯ 𝑒−𝑖𝜅
∗
𝜏

𝜒𝜏−1−𝜒
∗
𝜏

𝑒𝑖(𝜅𝜏−𝜅
∗
𝜏 )+𝛽𝜏

𝜒𝜏−𝜒∗𝜏
0 ⋯ 0 −𝑒−𝑖𝜅

∗
𝜏

𝜒∗𝜏 −𝑎𝑗

0 ⋯ 0 0
𝛽𝜏+1

𝜒𝜏+1−𝜒
∗
𝜏+1

⋯ 0 0

⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 ⋯ 0 0 0 ⋯ 𝛽𝑛
𝜒𝑛−𝜒∗𝑛

0

1 ⋯ 1 𝑒𝑖𝜅𝜏 0 ⋯ 0 1

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

.

Finally, the asymptotic behavior when 𝑡 → −∞ along 𝜃𝑗 can be
epresented as follows

𝑝𝑗 [𝑛] =𝑐𝑗𝑒
𝑖𝜃𝑗 [1 +

∑𝜏
𝑙=1(−1)

𝜏+1 1
𝜒∗𝑙 −𝑎𝑗

𝑒𝑖(𝜅𝜏−𝜅
∗
𝜏 )𝐴(𝜏, 𝑙) +

∑𝜏−1
𝑙=1 (−1)

𝜏 1
𝜒∗𝑙 −𝑎𝑗

𝛽𝜏
𝜒𝜏−𝜒∗𝜏

𝐴(𝜏 − 1, 𝑙)

𝑒𝑖(𝜅𝜏−𝜅
∗
𝜏 )𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝜏 ) +

𝛽𝜏
𝜒𝜏−𝜒∗𝜏

𝐶(𝜒1 , 𝜒2 ,… , 𝜒𝜏−1)
]

+ 𝑂(𝑒−𝛿|𝑡|).

(3.16)

he proof is completed. ■

. Conclusions

In this paper, we have investigated a multi-component complex
KdV system and constructed a Darboux transformation for the system.
ith a nonzero seed solution, we have presented a single-dark soliton

olution and multi-dark soliton solutions in the defocusing case and the
ixed focusing and defocusing case. Moreover, we have shown that

he energies in two components of the resulting solitons completely
ransmit through when those two solitons pass through each other.

detailed dynamical analysis has also been provided for the single-
ark–dark–dark and two-dark–dark–dark soliton solutions. Based on
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0

Fig. 2. Two-dark–dark–dark soliton solutions: Parameters 𝜎1 = 𝜎2 = −𝜎3 = 𝛽1 = 𝛽2 = 𝑎2 = 𝑐1 = 𝑐2 = 𝑐3 = 1, 𝑎1 = 1

2
, 𝑎3 = 3

2
, 𝜆1 = −2, 𝜆2 = 0, 𝜒1 = 1.33924933170325 −

.369190128736683𝑖, 𝜒2 = 1.54243168261534 − 0.537284734536601𝑖. Upper row: 𝑡 is the evolution variable; lower row: 𝑥 is the evolution variable.
the compact determinant form of the solutions, we have performed an
asymptotic analysis for the 𝑛-dark soliton solutions. The results would
further enrich our understanding of dark solitons in integrable models.
It is an interesting topic to study soliton solutions of other types for the
coupled complex mKdV equation, including breathers and rogue waves.
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