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A Darboux transformation and general vector dark soliton solutions are constructed for multi-component
complex modified Korteweg—de Vries (mKdV) system. Dark soliton solutions exist when nonlinearities are
either defocusing or mixed focusing and defocusing. Single-dark-dark—dark and two-dark-dark-dark soliton
solutions of three component complex mKdV system are explicitly presented, whose properties and dynamics

are illustrated. It is also shown during the interaction between those solitons, energies in different components
completely transmit through. Moreover, we perform an asymptotic analysis for the n-dark soliton solutions
rigorously. Our results can be applicable to the study of dark solitons in different physical fields.

1. Introduction

During the past decades, it has been a difficult and significant
problem to construct exact solutions to nonlinear systems of differen-
tial equations. Among integrable systems, the nonlinear Schrodinger
(NLS) equation'=> has been recognized as an omnipresent mathemat-
ical model, which can be adopted to describe the dynamics of local-
ized waves in many physical fields, such as Bose-Einstein condensate,
nonlinear fibers, plasma physics, etc. Another interesting example is
the mKdV equation, which has been studied extensively, due to its
simplicity and physical essentiality. Some remarkable progresses are
generalizations of the 2 x 2 AKNS matrix eigenvalue problem to 3 x 3,
even more generally n X n, in the recent literature.®= In 1997, Iwao
and Hirota'® proposed a coupled version of the mKdV equation and
constructed multi-soliton solutions of that system by using the Hirota
bilinear method. Later, Tsuchida and Wadati!! introduced a Lax repre-
sentation for the matrix mKdV equation. Meanwhile, they presented
the matrix NLS equation and performed an extension of the inverse
scattering transformation to solve both the matrix mKdV equation and
the matrix NLS equation.

Recently, one of the authors (Ma)'*!® considered a 3 x 3 matrix
spatial spectral problem and rederived the AKNS soliton hierarchy
with four components. A typical nonlinear system in the corresponding
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soliton hierarchy is

B
pjst ;[p,—,xxx +3P141 + P292)pj x + 31 xq1 + P2xa2)P;1 =0,

B .
g+ a—3[q,-,m +3(p14) + P242)4j  +3(P191x + P292)9;1 =0, a.n

1<j<2,

which contains various mKdV equations, and constructed the multiple
soliton solutions through a specific Riemann-Hilbert problem with an
identity jump matrix.

In this work, we would like to discuss the following general multi-
component complex mKdV integrable system

Pt + Pxxx + 3PP  Yp + 3pp’ Yp, =0, (1.2)
where
P=@1 PPN Y =diagyy,ya, ... YN

1, 1<i<k,
y.:
! -1, k+1<i<N,

where the symbol T denotes the transpose. It should be noted that when
k=0 and Y = —I, this system is the defocusing model that supports
n-dark vector soliton solutions; when k = N and Y = I, this system
becomes the focusing model that supports n-bright soliton solutions;
when 1 < k < N — 1, this system is the mixed focusing and defocusing
system that supports n-dark vector soliton solutions, where Iy is the
N x N identity matrix.
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The Darboux transformation (DT) is a powerful method to construct
exact solutions for integrable systems.!“"!® In the present paper, by
iterating a standard DT, dark vector soliton solutions for system (1.2)
with the defocusing case and the mixed focusing and defocusing case
are derived.

A brief outline of this paper is as follows. In Section 2, we present a
Lax pair and construct a DT for the above multi-component complex
mKdV system. In Section 3, we choose some plane-wave solutions
as seed solutions to derive explicit formulas for one- and multi-dark
soliton solutions in the defocusing case and the mixed focusing and
defocusing case by a limiting process. Based on the obtained multi-dark
soliton solutions, we analyze dynamics of single-dark-dark-dark and
two-dark-dark—dark soliton solutions of the three-component system
through detailed examination. The results are then summarized in
Section 4.

2. Darboux transformation

In this section, we would like to construct a DT for the multi-
component complex mKdV system (1.2). Firstly, we declare that the
system (1.2) has the following Lax pair

O, =UUAP)D, U(AP)= %M] +iJP,

(2.1)
@, =V P)®, V(iP)= %iﬁJ +iAl2JP + AV, + V,
with
Vi=iJP?+ P, Vy=P,P—PP +2iJP —iJP,,

1 0 0 p’
(o) = 6)

where @ = (¢, by, ..., PN ) is a vector eigenfunction, A is the spectral
parameter, 0 is the 1 X N zero vector and ¢ is the N X N zero matrix.
It is straightforward to check that the compatibility condition U, -V, +
[U,V] =0 exactly gives rise to the system (1.2).

It is evidently that the matrices U(4; P) and V(4; P) possess the
reduction condition

U'(4; P) = —SUA*; P)S, V'(4;P)=-SV(1*; P)S, (2.2)

where T denotes the Hermitian conjugation, and S = diag(s;,s,, ...,
syyp) With s, =1forl1 <i<k+lands;=-1fork+2<i<N+1.
The adjoint problem of the Lax pair (2.1) reads

¥, =-WUP), ¥, =-PV(iP), (2.3)

where ¥ = (y,y,,...,¥y41)- Due to the relation (2.2), a simple ob-
servation is that @S satisfies the adjoint problem (2.3). Thus, through
the loop group method,'® we can find a Darboux matrix as follows:
A=A o0
T = IN+1 - W > = —t— 5
) P s,

(2.4)

where @, is a special solution for the Lax pair (2.1) at A = 4; and Iy,
is the (N + 1) X (N + 1) identity matrix.

Theorem 1. The eigenfunction transformation

D(A, P) —» D[1](4, P[1]) = TD(4, P),

where T is defined by (2.4), converts the system (1.2) into a new system
o[1], =U[1@[1],

(1], = V[l]@[1],

where U[1] = U(4; P[1]) and V[1] = V(4; P[1]) with

(2.5)

0 17
Pm:( _Yputl o ),pm=(m[u,pz[u,...,pN[u)T, (2.6)

and the associated Bdcklund transformation for the potential matrix is

P[l]=P— %(Jl = AP, MJ]. (2.7)
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Proof. We merely need to prove

T.T-' +TUWT™ = U[1], (2.8a)

T,T' +TV(W)T™! = V(1] (2.8b)

Firstly, we consider Eq. (2.8a) and use the residue analysis method to
verify it. Expanding T and T~! as the power series of A at 1 = co:

* *2
sy 1 1 1
T = Iyt = MUy = 3D + 55+ 5+ )
1 /12 (2.9)
- sy, 1 1
T ! =]N+1+M(Al _AT)(EJFﬁJrﬁ'F)

Let
G(x,; ) =T, T~ + TUM)T™! = U[1]. (2.10)

Then, we want to show that the matrix function G,(x,t; 1) is holomor-
phic on the compact Riemann surface S> = C U {o0}. Obviously, the
residues for the matrix function G,(x,#; 1) at A = /IT and A = 4, can be
computed as follows:

Res;_;: Gy (x.1:4) = (A} = ADIM, T + MU(A)T—'HMT =0,
and
Res;_; Gy(x.t:4) = (A = AD[=M M + TU()M]| ., =0.

Moreover, we can calculate the residue for the matrix function G (x,t; )
at A = oo as follows:

G(x,t;00) =iJP —iJP[1]+ %i(}»] —AT)(JM— MJ)=0.
Therefore, G,(x,t; 4) is a holomorphic function on S2. It follows from
the above asymptotical behavior analysis that G,(x,1;4) = 0. So

Eq. (2.8a) holds. On the other hand, we continue to discuss the time
evolution part (2.8b). A direct analysis can show that

Gy, ) =T, T +TV()T™' =V =0, (2.11)
where
v =%i/13J +i2TP[1]+ AV, + V,
V, =iJP>+ P+ %i(lf —AAMT = A T M) + (A} = A)IM, T P],
Vo =P.P — PP, +2iJ P’ —iJ P, +i(A} — ))[M,JP*]+ (A} — A)IM, P,]
+ (A = 4)AMJIP - A4, JPM) + %i()ﬁf —AAPMI - BIM).

Hence, our aim is turned to verify that ¥ = V[1]. In view of the relation
G (x,1; 1) = Gy(x,1; 1) = 0, we achieve

Ulll, -V, +[U[1],V] =0. (2.12)
By comparing the coefficients of 1, we get

2P, = %[J, IV,

AoV, = %i[J, Vol +i[J P[11, V1, (2.13)
20 Yy, =i P[], +ilJ P[1], V.

Based on the first equation of (2.13), one can derive

v = P, (2.14)
where °// represents the (1,2), ..., (I, N + 1), 2,1), ..., (N + 1,1)

elements for the matrix. Moreover, with the help of the second equation
of (2.13), one can find that

Py = ilJ P[1), PL11,], (2.15)

where 9% denotes the other elements except the °// ones. Thus, one
has

v, = i P11 + (o). (2.16)
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Without loss of generality, we can take g(rf) = 0, and thus, we have
Vi = iJ P[1]? + P[1],. Similarly, we have V; = P[1],P[1] - P[1]P[1], +
2iJ P[1]® — iJ P[1],. This completes the proof. W

For the sake of easy calculation, we set |y;) = v;®;, where v; =
vj(x,t,4;) is the appropriate function. Then the elementary Darboux
matrix can be rewritten as

AL - AT oIS

T=1y, — _ , =y (2.17)
N+1 PEVERTAKTE) il=1y
It follows that P[1] can be written as
1 y)yilS
P[l]=P— (A = ADJ, ———J]. (2.18)
277 T (IS )

Through the standard iterated step for the above-mentioned Dar-
boux matrix, we can establish a general n-fold Darboux matrix for the
multi-component complex mKdV system (1.2).

Theorem 2. Suppose that @; (i = 1,2,...,n) are n linearly independent
solutions of the spectral problem (2.1), corresponding to A = A;, respectively,
and denote |y;) = v;®; and (y;| = |y;)’. Then, the n-fold Darboux matrix
can be represented as

T,=1Iy, -YWGI,-6)7'Y's (2.19)

ilS| . * gr
where Y = (1y1).132). .. Iy, W = [558], and G = diag(4;. 43,

., A%). The associated Backlund transformaaon for the potential matrix
reads

Plnl=P— %[J,YW"Y*SJ]. (2.20)

3. One- and multi-dark soliton solutions

In this section, we derive general multi-dark soliton solutions for
the complex mKdV system (1.2) through the presented DT and explore
dynamics of single-dark-dark-dark and two-dark-dark-dark soliton
solutions graphically.

We begin with a seed solution in the form of plane waves

p/.:cjem/ (G=12,....,N), 3.1
with
N N
0, =a;x+ [aj. —3aq; Zalclz -3 Z JIa,clz]t,
I=1 I=1
where a;, ¢; (j = 1,2,..., N) are all real parameters, and ¢, = 1, when

1 <1<k, 0, =-1,when k+1 </ < N. In order to find the proper
eigenfunction of the Lax pair (2.1), we make the gauge transformation

@ =DV, D=diag(l,e”1, e %2 . e7N), (3.2)
and then the linear system (2.1) becomes
=iUv,
. 3.~ 3 J ~ 3 3 ul
¥, =i[0° + E/lU2 + (Z,P -3 1; o0 - (g/ﬁ +354 1; oc?

3.3)
N

+3 ) g cHIy ¥,
i=1

where

1 T

_ A c

U= 2 . . e=(cp ey
Ye —JAIy+A

A =diag(a,ay,...,ay).

Substituting the seed solution (3.1) into the spectral problem (2.1),
we can determine its fundamental solution as follows:

@®=DHF, 3.9
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where
1 1 1
J J —_—a
X179 1—q) AN+179]
Sk Ck Ck
H= —aq —a —-a >
X1~ X2=ak AN+179%
—Ckt1 —Chkt1 “Chktl
X1~ Ak+1 X2~ k+1 AN+1"+1
—°N —CN —CN
X1—an x—an AN+174N

F= diag(eié(l‘), e!f(lz)’ ’e'f(lNH))’

N N
1 1
£@)= (= Ax+ (=32 Y o] =3 Y ojac] = 520,
=1 I=1
and yy, 15,..., ¥n4+1 are N + 1 distinct roots of the following (N + 1)-th
order algebraic equation

N
[1
1=1

It is readily to see when 6, = 1 (1 <1 < N), which corresponds to the
focusing case, the constraint (3.5) cannot be satisfied, and thus n-dark
vector soliton solutions cannot exist. When ¢, = —=1 (1 <! < N), which
corresponds to the defocusing type, the constraint (3.5) can be satisfied,
and thus n-dark soliton solutions can exist. When the system (1.2) has
the mixed focusing and defocusing nonlinearities, the constraint (3.5)
still can be satisfied, and hence, n-dark vector soliton solutions can
exist. This phenomenon will be demonstrated in more detail in the next
section.

(3.5)

3.1. Single-dark soliton solutions

Taking v, = 3RO EL qae+34) e can choose
1 1
J P
xn-ap n-a
c‘k L“k eix1
y)=D| 7i-a Xy —ax A — et ) (3.6)
~Cktl —Chl ay (4 — ADe
=1 Xkt
X1—aN II*—HN

where «; is a real constant and x; = yyx + (x; — 31 Y ocht In
order to derive single-dark soliton solutions,>?° we need to take a limit

process 4, — /IT. After tedious calculations, we can have % =
=%

e—ZInx(Kl)+ﬁl

= where f; = —4qa, Im()(l)lm(ZI LG a)Z)

Based on Eq. (2.18), the corresponding smgle dark soliton solution
reads

5

xn-—x = x
2(,}’?—01-) 2()(1*_“,')

p,l11=p;[1+ tanh(X))], (G =1,2,....N), (3.7)

with

X1 =Im(y))(x+nt)+ %lnﬁl,

N
n = 3Rez()(1) - Imz()(l) -3 Z a,clz.

I=1

In the following, we investigate the asymptotic property of the

solution. We assume Im(y;) < 0 without loss of generality. When ¢ is
regarded as an evolution variable, we have |p;[1]| — | pll as x - —oo,
whereas one finds p;[1] - az Lp; as x — +oo. Since | 4 —~| =1, one
has |p;[1]] — |p;| as x — +loo When x moves from o0 to +o0, the
phases of the components p;[1] acquire some shifts in the amount of
?) where ¢ ; is the constant —iln( 2‘:: ). It is important to notice that
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the intensity functions move at velocity —#,, to the right for #;, > 0 and
the left for #, < 0.
In addition, the trough of the single-dark soliton p;[1] is along the
line
Inp

L, 3.8
2Im(y) 38

xX+nt+

and the depth of cavity |p j[1]|2 is
i Im(xy)
(Re(y) —a;)? + Im2(y)

Note that through the above expression, one can see the intensity
dips at the centers of |p,[1]| are characterized by the involved param-
eters of ¢;,a; and y, and these parameters determine how dark the
center is. In a similar way, we can also verify that |p;[1]| approaches
the constant amplitude |p;| as r — +oco when x is the evolution variable.
We find the velocity is —+ and the center is still along the line given
by Eq. (3.8) clearly.

In what follows, we take a system of three-component complex
mKdV equations as an example to exhibit the dynamics property ex-
plicitly. If a; = a, = a3, then ¢, = ¢, = @3, and hence the p[1], p,[1]
and p;[1] components are proportional to each other, i.e. p;[1] : p,[1] :
P31l = ¢; : ¢y @ c3. Indeed, dark-dark-dark soliton solutions of the
three-component complex mKdV system are equivalent to a scalar dark
soliton of the single-component complex mKdV system, and thus are
degenerate. In order to obtain non-degenerate single-dark—-dark-dark
soliton solutions, we pick a; # a, # a3 to keep ¢, # ¢, # @3, and
thus the p,[1], p,[1] and p;[1] components are not proportional to each
other. Under this condition, they are not reducible to scalar single-dark
soliton solutions in the system (1.2).

Due to the fact that degenerate and non-degenerate single-dark—
dark—dark soliton solutions in the mixed focusing and defocusing case
qualitatively resemble the defocusing type, here we merely consider the
non-degenerate case of the defocusing system while making plots.

Solving the algebraic equation (3.5), we can obtain all of the
parameters for the single dark soliton. For instance, we consider the
three-component complex mKdV equation with the defocusing case
(i.e. N =3, 6y = 0, = 63 = —1). We choose the parameters:

a =0, —fi=—-ay=a3=—c|=—-c,=—-c3=-1,
1 ) (3.9
A= 5 11 ~ 0.301755798158048 — 1.54163830779653i.

The resulting single-dark-dark-dark soliton solutions are plotted in
Fig. 1, which shows that solutions |p;[11,|p,[1]l, |p3[1]] have different
degrees of darkness at the centers and their trajectories are along the
same line. Meanwhile, it indicates that the |p,[1]| component is black,
but the |p;[1]| component is only gray at its center.

3.2. Multi-dark soliton solutions
In this subsection, we present multi-dark soliton solutions and their

asymptotic analysis. Similar to the process of obtaining single-dark
soliton solutions, we take

1 1

c <1

n—a x-a

[ [ eiki

|y1> =D Xi—ag 25 —ag a(h — l*)eikl* >

—Ckt1 —Cktl (A4 1
X1 2=

N N
X—aN x'—ay

where

N
K, =xx+ ()(l3 -3x Z a,c[z)t,
I=1
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and q, is a real constant. To obtain multi-dark soliton solutions, taking
a limit process 4, — A G = 1,2 ,n) is needed. Via the iterative
algorithm, together with Theorem 2, general multi-dark vector soliton
solutions of Eq. (1.2) can be represented as follows:

Theorem 3. The n-fold Darboux matrix for dark soliton solutions of the
system (1.2) can be rewritten as

T,=1Iyn, -YZ7'(AI, - G)'YTS,

0 1Z;] 12 N (3.10)
. =c.e'li —— = e, s
pjlnl=c;e Vih (G=L2 )
where
+ : ) )
Z N/ —eiK1 _eik2 _oikp
Z,= i), Ny=( S
R 1 X1—4; X2—a; Xn—4;
R= (eil(l,eil(z’ ,eikn)’
and
oK) +6;;8; N olclz
Z =(———— icijenr B = A Im()Im( ), ———) >0,

X=X & & -ay?

6;; being the Kronecker’s delta.

Based on the n-dark soliton solution (3.10), we investigate the
collision dynamics between two vector dark soliton solutions for the
three-component complex mKdV system. For an illustrative purpose,
we investigate the three-component complex mKdV equation with the
mixed of focusing and defocusing case (i.e. N =3, o) =0, = —03 = 1).
By solving the algebraic equation (3.5), the parameters are chosen as
follows:

a =%,a3= % hh=bh=a=g=g=g=1 14=-214=0,
71 ~ 1.33924933170325 — 0.369190128736683i,
X = 1.54243168261534 — 0.537284734536601i.
(3.11)

Graphs of two-dark-dark-dark soliton solutions are displayed in Fig. 2.
We can see that after collision, the two solitons pass through each
other without any change of shape, darkness or velocity in its three
components, and hence there is no energy transfer between the two
solitons after collision. In addition, since the parameters f;, and f,
determine the initial position of solitons, we can adjust different values
to distinguish two solitons.

To elucidate the interaction of multi-component soliton solutions,
by introducing the following Cauchy’s determinant identity

I, T2 G = ) = 20
H,'-l=1 H;‘l=1()(i - Z;)

1
COris xas v Xn) = dET(Tf)lsi,jsn =

P4
(3.12)
we give an asymptotic property and its proof below.

Proposition 1. Ast — +oo, p;[n] can be expressed as a sum of single-dark
soliton solutions

pyln) = c;ei[1 + SV 4 (UM — GUI) 4o (ST - GUIE)) 4 o0,
(3.13)
where & = min(| z;|)min;;(Ix; — x;1), and

D e B iy e e (R R
_ T 5o

X9y

Kyl
e IC (10 e e ) + xli}' Cis Ao Xomt)
To (=D eI p D+ X (=1 B pr 41,1
SU* — Ll 44 Xk
’ ECTEIC( s Hegts oo Xa) + ﬁc()(m,lﬁzw,h)
DHNC By CN)) S (=D L Dr 41,1
GU- = a7 G+ = Ll
T T ’

CCr 220+ 42) CXep1s Xewar s Xn)
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p1[1]| |p2[1]] ps[1]|
1 N < prd A ~ F 1 < < 7
w 2 Y ) \ b i
i 1, L / Lo \ Yo
08 ! ’ [ 08 / ) 084 A | L
(| b5l J i v Vi
b 48 | : \ i3
1] bl ti Y
| 2 I ¢ :
06 | ! ) 06 i L1 0.6
\! [ b ul
|7 11 1} '
(! 1 | ] 1
04 i N o ! 04
Je i
02 { ' 024
02
0 0 T T
-10 -3 0 s 10 0 ; ; ; -10 -5 0 5 10
x -10 a8 0 5 10 x
x
|p1[1]| p2[1]| |ps[1]]
1 v < 1 S L t T i
{ youq 1y w VoI
$ ] 1 | A 1y 1!
0.84 ; ‘ 1 0.84 1 () 08 1 v
(I i | i 1 U
| ! P i i ! i
0.1 I 1 0.1 | 1 06
4 1" " i1
[ i ! i
i b 1 4
0.4 ! (! 0.4 : ¥ 04
i b
{ W
X :
0.29 ‘ v 0.24 02
o T T T 04 T T T 0 T T T
5 4 0 1 3 1 E 0 1 3 2 1 0 1 2
t t

Fig. 1. Single-dark—dark—dark soliton solutions: Parameters 6, =6, =03 =—f, = —a, =a; = —¢, = —¢; = —¢c3 =—1l,a; =0,4, = %,;{1 =0.301755798158048 — 1.54163830779653i. Upper

row: ¢ is the evolution variable; lower row: x is the evolution variable.

I = 2)
ety = 2
| CTE)
M. =2

Az, D) = C1s 22+ X)

D(z. 1) = C(xes Xeg1s s X))

Proof. We only consider the case t - —oo here, and the asymptotical
behavior as t - +oo is similarly. Fix the value of I'm(x,),

N

Im(x,) = Im(y )(x+m.t) = const, m, = 3Re2()(r) - Imz(j(f) -3 Z 0'1612.
I=1

(3.149)

Without loss of generality, we assume Im(y,) <0 and m; < my < --- <
m,. From I'm(x,) = Im(y,)(x + m_t + (m, — m)t), we obtain Im(k,) - —oo
for 1 <:<7-1and Im(x) - +o for  + 1 <1 < n. The determinants
Z and Z; of Theorem 3 are given explicitly by

det(Z) = eIV de(Z,) + O],

(3.15)
det(Z;) = eIt ¥ D[den(Z, ) + O(e™*M)],
where
! P s 0 0
0=z o1 =X} Yy
i 1 o ('] (')
n-x, Leo1 =X, o
—ix —ix? T~
da(z)=| <= .. L LA 0 w0
N—x Ko =X X=X
0 0 0 e 0
Les1= X0y
0 0 0 0 D

i _
1=z Hr—1-7] 11 1-aj

1 1 Pla —1

. 0 0 =

n-r_ teoi~Z, A Pl
P S I G 2 0 S S
defZj )= y=yF Yeo1 17 Aoty 17 -aj

0 0 0 Pet1_ 0 0

Hrtl " ogy
0 0 0 0 . 0
. Xn—Xn
1 1 eirr 0 w0 1

Finally, the asymptotic behavior when r — —co along 6; can be
represented as follows

L b g—1,

Tyt L kD) A )+ Y (1) —
DIHRC) 2 @+ X ( )lf—a,- P

1 -qj

.
oyl =¢;e% 1+ i ]

=17

XTI e ) + C(t1- 220+ Homt)

+ 0(e70M.
(3.16)

The proof is completed. [ ]
4. Conclusions

In this paper, we have investigated a multi-component complex
mKdV system and constructed a Darboux transformation for the system.
With a nonzero seed solution, we have presented a single-dark soliton
solution and multi-dark soliton solutions in the defocusing case and the
mixed focusing and defocusing case. Moreover, we have shown that
the energies in two components of the resulting solitons completely
transmit through when those two solitons pass through each other.
A detailed dynamical analysis has also been provided for the single-
dark-dark-dark and two-dark-dark-dark soliton solutions. Based on
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Fig. 2. Two-dark-dark-dark soliton solutions: Parameters ¢, = 0, = —03 = f, = f, = a, = ¢, = ¢, = ¢; = l,a; = %,a3 = %,11 = -2,4 = 0,y = 1.33924933170325 —

0.369190128736683i, y, = 1.54243168261534 — 0.537284734536601i. Upper row: ¢ is the evolution variable; lower row: x is the evolution variable.

the compact determinant form of the solutions, we have performed an
asymptotic analysis for the n-dark soliton solutions. The results would
further enrich our understanding of dark solitons in integrable models.
It is an interesting topic to study soliton solutions of other types for the
coupled complex mKdV equation, including breathers and rogue waves.
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