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Abstract

Multi-dark vector soliton solutions in the N-coupled complex modified Korteweg-de Vries
(N-ccmKdV) equations are derived by the binary Darboux transformation. Dark solitons
exist when nonlinearities are either defocusing or mixed focusing and defocusing. From
obtained multi-dark vector soliton solutions, dark-dark-soliton bound states of 3-ccmKdV
equations are provided graphically and it is shown that two dark solitons repel each other and
all components of solitons have a double pole. Our results might be useful for applications
about vector dark soliton solutions in other N-coupled integrable system.

Keywords Matrix spectral problem - Darboux transformation - Dark soliton solution -
Bound states

Mathematics Subject Classification 37K15 - 37K35 - 37K40

1 Introduction

As we all known, there are many efficient solution generating approaches to integrable non-
linear evolution equations in soliton theory [1-9]. One of the powerful methods to construct
soliton solutions is the binary Darboux transformation (bDT), which is based on the si-
multaneous analysis of spectral problem and the corresponding adjoint spectral problem
[2, 10-13]. A key idea of bDT is to keep the both spectral problems and adjoint spectral
problems associated with given equations invariant.

In 2018, one of the authors (Ma) considered a 3 x 3 matrix spatial spectral problem and
rederived the AKNS soliton hierarchy with four components. A typical nonlinear system in
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the corresponding soliton hierarchy is

B
P+ + g[pj,m +3(p1g1 + p2g2) pj.x +3(P1xq1 + P2xq2) P;j1 =0,

P (1)
qj:+ E[‘]j,xxx +3(p1g1 + P292)qj.x +3(P1g1,x + P2g2x)g;1 =0, 1=<j<2,

which contains various modified Korteweg-de Vries (mKdV) equations, where o, 8 are con-
stants. Multi-soliton solutions of equations (1) were generated by Riemann-Hilbert method
[14]. Quite recently, soliton solutions for matrix mKdV equations and their reductions by
using bDT with a new type of Darboux matrices have been derived in [12].

In this paper, we consider the following N -coupled complex mKdV (N-ccmKdV) equa-
tions

4 + g +39Yq'q: +3¢.Yq'q =0, @)
where
qa=(q1,92 - ,qn), Y=diag(yi,y2, -+, yn), 3
and
yy=1forl=1,2,--- ,k,
=—1forl=k+1,k+2,---,N,

“

where the symbol 1 denotes the Hermitian conjugate. When k = 0 and Y = — Iy, this system
becomes the defocusing model that supports multi-dark vector soliton solutions. When k =
N and Y = Iy, this system is the focusing model that supports multi-bright soliton solutions.
When 1 <k < N — 1, this system is the mixed focusing and defocusing system that supports
multi-dark vector soliton solutions, where Iy is the N x N identity matrix.

A brief outline of this paper is as follows. In Sect. 2, we present a Lax pair and con-
struct a bDT for the N-ccmKdV equations (2). In Sect. 3, we choose plane wave solutions
as seed solutions, multi-dark vector soliton solutions in compact determinant forms are pre-
sented. In terms of introducing velocity resonance conditions, we analyze dynamics of dark-
dark-soliton bound states of the 3-ccmKdV equations graphically. Section 4 contains some
conclusions.

2 Binary Darboux Transformation for N-Coupled Complex Modified
Korteweg-de Vries Equations

The Lax pair of N-ccmKdV equations (2) can be presented as follows
1 .
P, = (EZ)J +iJO)P,

Q)
o, = (%iﬁ] +iX?JQ+ A0+ Q)+ 0.0 — 00, +2iJ0° —iJQ.)D,

(1 0 _ 0 q
J_<0T _IN>7 Q_<_YqT ON)’ (6)

with
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where ® = (¢, ¢, --- , dn41)7 is the vector eigenfunction, 0 is the 1 x N zero vector, and
Oy isthe N x N zero matrix.

In what follows, our concern is to construct bDT for N-ccmKdV equations (2). Firstly,
we consider the following lemma.

Lemma1 Suppose ®, and ® are the special solutions of Lax pair (5) with Ay and X, respec-
tively, then we have the total differential

1 1
dQ(d,, d) = EcbeScbdx + (EqﬂJSQ@(AZ FAZ A+ DTISQO( +1F)
+ @1 JSQ*® —idlSQ, d)dr.

In addition, we get

Q@ &)= 215 ®)
PR T
If A1 € R, we obtain
Q(®y, ) = i 0[5¢ + ©
s =1m ——— ,
L= iy 8
where g is a complex constant, and S =diag(1, Sy, -+, Sk, Skv1, -+ » Sn), with S =1 for

1<l<kand S;=—-1fork+1<I<N.

In the following discussions, we choose the constant g as zero to keep the uniqueness.
Based on the above lemma, we have the one-fold bDT for N-ccmKdV equations (2):

D,Q (P, )
oll]=b— ——,
Q(Py, D))
_ (10)
Ol =0 + ~ils (b‘(bw]
2" Q0 @)

The following theorem shows the validity of the transformation (10).

Theorem 1 Let ® and @, be two vector solutions for Lax pair (5) with A and Ay, respectively,
and @}LSCI)l =01if A €R, then we have

1
O[1], Z(EiAJ +iJ Q[N P[1],

P DU R (1)
L1, =(5i2*J +ix*J QU+ QUIF + QI11) + QI11, Q111 — QII1QI11;
+2iJ Q[T —iJ Q[11.)®[1].
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It is easy to prove the above theorem by direct calculations. As an example, we only
consider the first identity in equations (11). It follows from Lemma 1 that we have

D, Q2(D, D) D[QUD, D) | P IQ(P, DPIQ(DP, D),

(b[l]x = (Dx -

Q@ 0) QD ) [, )P
1 GinJ +iTQ)P1Q(Py, D)
=(ZiAJ+iJO)P —
G+ 2@, &)
. (12)
D0/ ISD B QD D) ISP,
2Q(Dy, @y) 2[Q(Py, @2
1 i JD D] ST [ ®, D] S D,Q(P;, @
—rig i HERE | IRRS ,  PiR(PLP)
2 2Q(P1, @y)  22(Py, Py) Q(Dy, Dy)
Thus, we see that the corresponding Darboux matrix can be written in the form
DD S
Dy =lIysi— ! (13)

i =A@, D)

By iterating the above-mentioned bDT # times, we can construct the n-fold bDT for
N-ccmKdV equations (2).

Theorem 2 Suppose ®; (j =1,2,---,n) are n linearly independent solutions of the spec-
tral problem (5) at A =X; (j=1,2,---,n), and @;SQDJ- =0if A; € R. Then, we can get
the n-fold bDT:

Pn]=0— RM'Q, R= (P, Dy,---, D), (14)
where
QP, D) QP D) - QDL D) Q(P, D)
Q(Dy, D)) Q(Dy, DPy) -+ Q(Dy, D) Q(D,, D)
M= : . . , Q2= . (15)
Q(q)nv CDI) Q((Dn, q)2) Q(q)na q)n) Q((Dn, CI))

The relation between the new potential and the old one is given by
1 ~1 pt
Q[I’l]:Q-f-El[J, RM™R'SJ]. (16)
It follows that the n-fold Darboux matrix is
D,=Iyy +iRM '\, — G)'R'S, G =diag(\[, A5, -, 5. (17)
In order to obtain the dark soliton solutions, we propose the limit form of the bDT [15,
16]. Let @; and ¥ be two different solutions of linear problem (5) corresponding to A = A;

such that <I>iS<I>1 =0and <I>}LSl111 = g1 # 0, where g; is a nonzero constant. If the spectral
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parameter A; € R, then we have

(qﬂS@(p) 1

li =—idlJSD,
Jm (S, T e
IRYe) 3 .
lim (17/\@)), - i(EAfQJIJSQCDL +20, P ISQP, + DI JSQ*D, —id[SQ, D)),
P P = A
(18)
with
3(p— A1)
@(p)=d>.<p>+g71wl<m>. (19)
1
Bases on above analysis, we obtain
M—p ODS
O[1] = lim (Iyy, + 2 21212
p—h A=A P1SO(p)
(20)

1. (M —p) D DIST
M=0+ = lim[J, ————].
Q © 2 p—hy dI50(p)

®[5P1(p)
pP—A

It should be mentioned that we require lim,_, ;, + 68 #0 for any (x,1) € R? to

keep the non-singularity of bDT.

3 Multi-Dark Vector Soliton Solutions for N-Coupled Complex
Modified Korteweg-de Vries Equations

To obtain the multi-dark vector soliton solutions of N-ccmKdV equations (2), we choose
the general plane wave as the seed solutions

q;=c;e"%, 1)
with
N N
0;=a;x+ (a; —3a; ZGICIZ -3 Zalalclz)t, (22)
=1 =1
where a;, ¢j(j =1,2,---, N) are all real parameters, and o; = 1, when 1 <[/ <k, 0y =

—1, when k 4+ 1 <1 < N. In order to solve the spectral problem (5), we make the gauge
transformation

& =DV, D=diag(l,e ", e ... i), (23)
then the spectral problem (5) leads to
v, =i0WV,
3., 3 u o3, 3 d u
v, =i[0° + sz + (sz -3 ;a,c})u - (gﬁ + 54 ;mc} +3> o) Ival¥,

- =1
(24)
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where U =iD™'D, —iD"'UD, with U = }irJ +iJ Q.
Substituting seed solution (21) into Lax pair (5), we have the fundamental solution as
follows:
eiw/
. ile—b)
&—ar+ii ¢

‘7k i (w1 —6k)
P, = §1—ar+5 1y (I=12,---,n), (25)
TGkl pi(op=Okt1)
El—ak+1+%)~1

*L—N i(w—6N)
§1—an+3 )»1

where
o =&x+[§ + A,s,+( 23— 32%)& AIZazc,—3Zala,cZ]r (26)

and &; is the root for the following algebraic equation

2
0;C;
E— kY 27)
=5 —at 3
If 1; € R, then we have
N
alcl
=) ————=0. (28)
o & —at 3k
From equations (27)-(28), we can obtain
. o1& + ?»)—(S*+ 221
- b - by a3 2 . =0 @
2 2 =1 (Sl al+2)ﬁ)(%_j _a1+2)‘])
which leads to
G = 3M) = 6 —3%) | o}
e T T =0 60
E+3r)—ET+32) oG —a+ 306 —a+34))
It follows that
S, o)
L < a1

M= (& k) = G+ Ay

Then, we come back to the one-fold bDT (10) and choose § = Gkl

e where o € R. After
1

that, one can get
q)TS@(,O) ei(wl—w’{) 4 e2arIm(Ey)

lim — = . (32)
=k P — A & — &
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Thus, we deduce the Darboux matrix formula

(& —&)P D[S
(r — Al)(ei(wl—wf) + ezallm(sl))'

Dy=1Iyq — (33)

Consequently, we obtain the bDT associated with the single-dark vector soliton solution of
N-ccmKdV equations (2) as follows

(&1 — )P, D)8

O[] = Uy — . - ,
A— A el(wl —wl) + e2a11m($1)
( 1( A ) (34)
o E-g > DIST
Q[l] - Q + 2 ’ ei(w]—wT) + e2enIm(&)) :

Due to the above analysis, the transformations between field variables can be neatly re-
formed

Mecetipt+ L =12,
gjlll=c;e {1+ 55 — Stanh{m@E)(x +me+aplh, (=12, N), (39

with

T — &1 — &
e
§—aj+7

(36)

N

3
M= A7+ 3Re(E)h +3Re &) — Im* (&) =3 o
=1

In what follows, we study the asymptotic property of the solution. We suppose Im(&;) <
0 without loss of generality. It is easy to see that the dark soliton ¢;[1] moves at velocity
—mn1. In addition, as x varies from —oo to oo, we find

q;[1]1— cjeief, X — —00,
, (37
q;[11— c;e %) x — 400,
where
A
—a; + AL
ix; :m‘f‘# (38)

2
§—aj+3

The centre of the single-dark soliton ¢;[1] is along the line x + ;¢ + a; =0, and the
depth of cavity of |g;[1]]* is

cjIm* )
4 —aj+ Re(E))? + Im* (&)

(39)

It follows from expression (39) that we can see that the intensity dips at the centers of
|q_,«[1]|2 (j=1,2,---, N) are characterized by involved parameters of ¢;, a;, A; and &, and
these parameters determine how dark the center is.

Via the iterative algorithm based on the bDT, we give the general multi-dark vector soli-
ton of N-ccmKdV equations (2).
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Theorem 3 The n-fold bDT for dark vector soliton solutions of N-ccmKdV equations can
be represented as

®[n]=[Iys1 — RZ7'(MI, — G)'RTS]®,

i0; |Zj| . (40)
gjlnl=c;e™ —= (j=1,2,--- | N),
|Z]
with
@1=0]) | 20 Im &) A@=0D) J@n—op)
e 4 . ... —e L
-8 @+ -+ Ent+—EF+5H)
J@1=0%) H@2=03) | 2ar In(&y) J@n—o3)
_Eit2 58 (et 2
7—| @+PH-E+P 2 GG+ | (41)
ol —of) el (@ —wp) ol @n—wy) 4 2om Im(En)
3 2 _ ... e
GE+P -G+ @R -G+ §n=bn
E[((ulfwT)_‘_eZallm(Sl) ei(wszf) e;(wawf) _ o}
e 4 . 4 _ ]
S E+F)—-E+3) En+ti-E+3)  E-a+F
ei(w] —w;) ei(n)z—a)§)+eza2]m(gz) ei(wn—n);) _ —iw;
¢ . e _ -
E+H -G+ £2-5 G- E+3) e+ F
Z;=
ei(wl—w:;) ei(wz—w;;) ei(wn—w;lk)+62an1m(5n) _e—iwﬁ
3 3 _ e .
G+ -G+ G P-E+D Sn=ti §i—aj+4
eiwl eiwz . eiwn 1
(42)

In studies of dark solitons, multi-dark-soliton bound states have attracted considerable
attention [17-19]. To obtain dark-dark-soliton bound states, the three dark-dark solitons
in the solution should have the same velocity, i.e. n; = n,, where n; = %A% +3Re(Ej)r; +

3Rez(§j) — Imz("g“_,«) -3 ZIN:I olcl2 (j=1,2,---,n). It follows that the two constituent dark
solitons can stay together for all times. By choosing appropriate parameters Aj, A;, &1, & and
adjusting the parameters o, o>, we can obtain bound states where |g;[2]|(j = 1,2, 3) are
double-dipped (i.e., have a double pole). For an illustrative purpose, we investigate the 3-
ccmKdV equations, i.e. N =3 and we give two examples which correspond to defocusing
case and mixed focusing and defocusing case, respectively.

Example 1 We investigate dark-dark-soliton bound states with the defocusing case (i.e. o1 =

0y = 03 = —1). Solving the algebraic equation (27), the parameter values are chosen as
follows:

a]:—l,azzl,a3:O, C|:C2:C3:1, Ol1:3,0l2:—3,

A1 =—1,§& =—0.102951066822494 + 1.505045593666111, (43)

A =1,6,=0.102951066822494 — 1.50504559366611i.

From (43), we can see that Ay = —X,, §; = —&;. The corresponding dark-dark-soliton bound
state is plotted in Fig. 1. As shown in Fig. 1, we can see that two dark solitons repel each
other and all components |g;[2]|(j = 1, 2, 3) have a double pole.
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Fig. 1 (a)-(c): Dark-dark-soliton bound states with the defocusing case (i.e. o] = o9 = 03 = —1):
Parameters a; = —1, ap =1, a3 =0, ¢y =2 =c3 =1, o =3, ap = =3, & = —1,
£ = —0.102951066822494 + 1.50504559366611i, Arp = 1, & = 0.102951066822494 —

1.50504559366611i.

Fig. 2 (a)-(c): Dark-dark-soliton bound states with the mixed of focusing and defocusing case (i.e.

01 =0y = —03 = —1): Parameters a; = —1, ap =1, a3 =0, c; = =c3 =1, ] =3, ap = -3,
A = —1, & = 1.06612094115595 + 0.458821464672557i, X = 1, & = —1.06612094115595 +
0.458821464672557i.

Example 2 We consider the dark-dark-soliton bound states with the mixed of focusing and
defocusing case (i.e. 0 = 0, = —o3 = —1). By solving the algebraic equation (27), we take
parameter values

a) :—1,02: 1,(13:0,61 26‘2203:1,0!1 :3,0[2:—3,
A =—1,& =1.06612094115595 + 0.458821464672557i, (44)
Ay =1,8& =—1.06612094115595 + 0.458821464672557i.

From (44), one can find that A, = —A,, §; = —&;. The corresponding graph of the dark-dark
soliton bound state is displayed in Fig. 2. Obviously, due to the change of parameters, the
depth of the poles in Fig. 2 has changed compared with that in Fig. 1.

4 Conclusions

In this paper, we have discussed the bDT of N-ccmKdV equations (2). Multi-dark vector
soliton solutions in the compact determinant form are derived. Interesting, we have shown
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that bound states of dark solitons in N-ccmKdV equations (2) can exist when nonlinearities
are either defocusing or mixed focusing and defocusing. By choosing appropriate parame-
ters, two examples of dark-dark-soliton bound states in 3-ccmKdV equations are presented
graphically. Our results might be helpful for understanding bound states of dark solitons in
different physical fields.
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