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1. Introduction

Recently, soliton theory has been widely studied and applied in many natural science branches such
as condense matter physics, quantum field theory, fluid dynamics and nonlinear optics. One of the most
important research fields in soliton theory is to seek for soliton hierarchies, their integrable properties
and exact solutions [1-30]. Many articles have shown that matrix spectral problems associated with the
three-dimensional real special linear Lie algebra sl(2,R) are crucial keys to construct soliton hierarchies.
Typical examples include the AKNS soliton hierarchy, the KN soliton hierarchy, the WKI soliton hierarchy,
the KdV soliton hierarchy, the Benjamin—Ono soliton hierarchy, the coupled Harry-Dym soliton hierarchy
and the Dirac soliton hierarchy. These soliton hierarchies often possess bi-Hamiltonian structures which
guarantee the existence of hereditary recursion operators and Liouville integrability [7-30].
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In this letter, we will present a generalized Dirac soliton hierarchy and construct its bi-Hamiltonian
structure. An important member in the hierarchy reads

1
P =50 + 0’0+ ¢° — dop(ppe + 9a:) — 20° (" + 20%0° + ¢°), 1)
1.1
1

P — pq® — p® — daq(pps + qq2) + 207 (pg* + 2p°* + p°),

where « is an arbitrary constant. Eq. (1.1) can be reduced to the classical Dirac equation with o = 0.

qr =

The remainder of this paper is organized as follows. In Section 2, we present a new matrix spectral
problem associated with the three-dimensional real special linear Lie algebra sl(2,R) and then construct
the generalized Dirac soliton hierarchy by using symbolic computation software (Maple). A bi-Hamiltonian
structure yielding Liouville integrability is furnished by the trace identity in Section 3. The last section is
devoted to conclusions and discussions.

2. Generalized Dirac soliton hierarchy

For the sake of readability, we give a brief description of the procedure for building a generalized Dirac
soliton hierarchy associated with the Lie algebra sl(2, R).

Step 1: We need to construct an appropriate spectral matrix U to form a spatial matrix spectral problem
st = U(b
Step 2: In order to obtain the recursion relations, we need to solve the stationary zero curvature equation
W, = [U,W].
Step 3: We need to construct temporal matrix spectral problems ¢;, = V"¢ so that the zero curvature
equations Uy, — Vz["] + [U, V[”]] = 0 will generate a soliton hierarchy.

It is well-known that sl(2, R) has basis
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Thus the classical Dirac spatial matrix spectral problem [29] is defined as
6. =Up=Ulw,Ng, u= m .= M : (2.1)
q P2
where
U=per+ A+ qlez+ (=A+qes

p A+gq
—A+q —p

and A denotes the spectral parameter. The inverse scattering transformation, the Virasoro symmetry algebra
and the binary nonlinearization of this classical Dirac soliton hierarchy have been studied in Refs. [31-34],
respectively.

Now we present a new spatial matrix spectral problem (2.1) with

U=pe;+A+qg+h)ea+ (—A+q—hes

P A+qg+h
—“A+qg—h —p

. h=a@*+q%).

When a = 0, it degenerates into the classical result, namely, the Dirac spatial matrix spectral problem.
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Next we solve the stationary zero curvature equation W, = [U, W] by setting

c a+b

W—[ab -l (2.2)

Thus we have

az = —2Ac+ 2pb — 2he,
by = 2pa — 2qc, (2.3)
¢y = 2Xa — 2qb + 2ha.

To consider furthermore, substituting a = Y ;o jaxA™, b= 372 (oA ™", ¢ = 377, cxA™F into Egs. (2.3),
we can obtain the recursion relations

1
41 = 5Cha + gb, — hay,

bz = 2pay — 2qcg, k> 0. (2.4)
1
Cht1 = — 5 0ka + pbi, — hek,

To guarantee the uniqueness of {ay, b, cx }, we also need to impose the integration conditions
ak‘u:O = bk‘u:O = Ck‘u:O =0, k>1

Therefore, we can compute {ay, bg, ¢} recursively from the given initial value {ag = 0,by = 1,¢9 = 0} by
using symbolic computation software (Maple). We list the first three sets as follows:

a; = q, by =0, c1=p;

1
ag = §px—a(p2+q2)q7
b _1( 2+ 2
2_2p Q)a

1
€2 = =50 — a(p® + ¢*)p;

11
a5 = =0 + (0" +¢°) = alp(ppr + 44:) + pa (0 + *)] + 0% (* + ¢*)%,

1 1
bs = 5Pad — 5P — a(p® + ¢*)?,

1 1
c3 = =P+ 5P(0° + @) + la(ppe + 902) + 0. (0° + @) + @’ (P + ¢°)°p.

In the third step, we firstly introduce corresponding temporal matrix spectral problems

0 QOéberl

— ylml fm] — (\m
bu, = VMo, V=Wl

] ., m>0, (2.5)

where Py denotes the polynomial part of P in A. Thus the compatibility conditions of the spatial
matrix spectral problem and the temporal matrix spectral problems, namely, the zero curvature equations
Us,, — V™ 4 [U,vIm] = 0 give

Pt,, = 2am+1 + 4agbp 1,
(2.6)

Gt,, = —2Cm+41 — 4apbmt1.
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So we have obtained a generalized Dirac soliton hierarchy

a
w, =P =Kn=2R|"", m>0 (2.7)
q p Cm+1
-1 —1
where operator matrix R is defined as R = [1 +44aq6_1 P ead g ] . The nonlinear example with m = 2 is
—4apd” 'p —1+44apd™ "q

just Eq. (1.1).
3. Bi-Hamiltonian structure
In this section, we consider Hamiltonian structures by using the trace identity [11,14,16,17,19,20,23,24]

) ou 0 oU Ad
1574 e il o =W __ 2= w2
5u/tr(6)\ >dx A 8/\>\ tr(au )’ K 2d)\ln|tr( - (3-1)

It is direct to see

ou = 0 1] , tr (WaU) = —2b,

N -1 0 R\

ou [ 1 2ap ou

% tr (W) = 2¢ — dapb

Op —2ap 1|’ r( 3p) €T R

U [ 0 1+2aq U

- — t — | = 2a — 4aqgb.
dq 1—2aq 0 ’ : (W dq ) @t

Thus Eq. (3.1) becomes

) 0 ¢ — 2apb
— [ —bdx = X\TT )\ .
ou / o 7)) la — 2aqb}

Balancing coefficients of each power of A in the above equality, we have

0

Su —bmy1dz = (y —m) l

Cm — 2apbyy,
Am — 200y, |

Checking a particular case with m = 1 yields v = 0, and so we obtain

K b2 dp = |Em+1 2apbm+1
ou m-+1 Qa1 — 20qbpy 11

] ., m>0. (3.2)

Consequently the generalized Dirac soliton hierarchy (2.7) has a Hamiltonian structure

utm:Km:J(SH—m, m>1

5 >1, (3.3)

with the Hamiltonian operator

J:

—8agd g 1+8agd1p
—1+8apd~tq —8apd~lp

Hm:/<2bm+2>dz.
m+1

and the Hamiltonian functional
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By further calculation, we have corresponding bi-Hamiltonian structure

— K, = JéHm - M(SH’”*I, m>1,
mn ou ou

where the second Hamiltonian operator M = (Mij)gxg is defined as

Ut

My, = %8 —2a0pd~tq + 2q07 1 q[4a?0q0 7 q — 1 — 2% (p* + ¢?)]

+2aq0" ' pd(1 — 4apd~q) + 4a*(p® + ¢*)a0 g

+8a%¢0 7 q(p” + ¢*)(1 — 4apd ™~ q) — 160%™ q0q0~ "¢ + 32a°q0'p(p” + ¢*)q0 ™ 'q,
My = 200pd~'p — 2q0 1 p[4a?Opd~'p — 1 — 202 (p? + ¢%))

+ 200 qO(1 + 4aqd~'p) — a(p® + ¢*)(1 + 4aqd~'p)

—8a2¢0 'p(p* 4+ ¢*)(1 4 4aqd ™' p) 4+ 16a2q0 " pdpd ' p + 32a3q0 1 q(p* + ¢*)pd~p,
Mo = 20090~ q — 2p0~q[4020q0 1 q — 1 — 202 (p* + ¢?)]

—2ap0~pd(1 — 4apdtq) + a(p® + ¢*)(1 — 4apd~q)

—8a’pd~ " q(p* + ¢*)(1 — 4apd ™' q) + 16a°pd~"q0q0~ " q — 32a°pd~'p(p® + ¢*)q0 ¢,
Myy = %8 +2a0q0 ™ 'p + 2p0 " p[4a?0pd~p — 1 — 202 (p* + ¢?)]

—2apd~qd(1 + 4aqd ™ 'p) + 40> (p* + ¢*)pd~'p

+8a?pd ' p(p® + ¢*)(1 + 4aqd ™' p) — 16a°pd~ ' pdpd~'p — 320°pd~ " q(p* + ¢*)pd~'p.

4. Conclusions and discussions

In this paper, we have introduced a new 2 x 2 matrix spectral problem associated with sl(2,R) and get
a new generalized Dirac soliton hierarchy (2.7) with a bi-Hamiltonian structure. These results are reduced
to the classical results when o = 0. We used the Maple software to deal with some complicated symbolic
computations. In fact, the function A has a more general expression h = Z;V:o o (P* +¢%) ja-

We also can construct an so(3,R) counterpart of the generalized Dirac soliton hierarchy (2.7) by using
the following spatial matrix spectral problem [29]

b1
¢z =Ud = U(u, A9, u:m, o= |02,

b3
with
0 A—qg+h —p
U= |-A+q—h 0 “A—q—nh|, h=a®+2¢).
P A+qg+h 0

For convenience, we omit the calculation process.
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