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Associated with 56(3, R), a new matrix spectral problem of 2nd degree in a spectral parameter is proposed and its corresponding
soliton hierarchy is generated within the zero curvature formulation. Bi-Hamiltonian structures of the presented soliton hierarchy
are furnished by using the trace identity, and thus, all presented equations possess infinitely commuting many symmetries and

conservation laws, which implies their Liouville integrability.

1. Introduction
Consider an evolution equation
u,=K®w) =K (wu,,...), (1)

where the field function u(x,t) is in a linear space S and
K(u) = K(u, u,,...) isa suitable C* vector field. Our starting
point is to determine isospectral deformations of a linear
spatial spectral problem

¢ =U (1) ¢ 2)

where U is a square spectral matrix and A is a spectral
parameter [1-3]. With the linear spectral problem (2), let us
associate an auxiliary temporal spectral problem

¢ =V WM, (3)

where V' is a square matrix of the same order as U. The
compatibility condition of (2) and (3) is the zero curvature
equation

U, -V, +[UV]=0. (4)

If an evolution equation (1) can be presented by such a zero
curvature equation, we call it a soliton equation, and U and V/
a Lax pair of (1). In general, for a well-chosen spectral matrix
U, we can obtain, from different particular choices of V, a
hierarchy of soliton equations:

n

Su’ ©)
where ] is a Hamiltonian operator and #’,’s are conserved
functionals [1, 3, 4]. Many well-known examples of such
soliton hierarchies are presented within the zero curvature
formulation, which include the AKNS hierarchy [2, 5], the
Kaup-Newell hierarchy [6, 7], the Wadati-Konno-Ichikawa
hierarchy [8], the coupled Harry-Dym hierarchy [9], and the
Dirac hierarchy [10].

Recently, the three-dimensional real special orthogonal
Lie algebra so(3,R) has been used to construct soliton
hierarchies [11-13]. The Lie algebra so(3, R) consists of 3 x 3
trace-free, skew-symmetric matrices and has the basis

00 -1
=00 0 |,
100

u, =]



2
00 O
e,=(00 -1,
01 0
0-10
;=10 0],
0 0 O
(6)
with the commutator relations:
[61)32] = €3
le.e3] =ey, 7)
[63)31] = €.

The derived algebra [so(3, R), so(3, R)] is so(3, R) itself. This
is one of only two three-dimensional real Lie algebras with a
three-dimensional derived algebra. The other one is sl(2, R),
which has been widely used in studying soliton equations [2,
6, 8,12-15]. The corresponding matrix loop algebra is defined

by
56 (3, R)

. (8)
= <|ZMi/\”_’ | M; €so(3,R),i>0,n¢ Z]» ,

>0

that is, the space of all Laurent series in A with a finite number
of nonzero terms of positive powers of A and coefficient
matrices in so(3, R). Particular examples of this matrix loop
algebra 50(3, R) contain the following linear combinations:

A, + A", + Me, )

with arbitrary integers m, n, L.

Soliton hierarchies possess many nice properties, for
instance, Lax representations or zero curvature representa-
tions, Hamiltonian structures, infinitely many conservation
laws, and infinitely many symmetries. So it is interesting to
search for new soliton hierarchies associated with a particular
Lie algebra. In this paper, we would like to construct a
spectral problem of 2nd degree in a spectral parameter, based
on the matrix loop algebra 56(3,R). A hierarchy of com-
muting bi-Hamiltonian soliton equations will be generated
from associated zero curvature equations. Bi-Hamiltonian
structures will be furnished by using the trace identity, and
thus, the resulting hierarchy possesses infinitely commuting
symmetries and conservation laws. A conclusion will be given
in the last section.
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2. A Spectral Problem and
Its Soliton Hierarchy

To obtain a soliton hierarchy, we introduce a new spectral
problem

» ¢
¢ =Uw )¢, u:< >)¢>= ¢ [, (10)
q
s
where the spectral matrix U is defined by
U= /\qul + Ae, + Apes
2
0 -Ap -Aq )
= Ap 0 -A €50(3,R).
Mg A0

Once a matrix spectral problem is chosen, we apply the
generating procedure [1, 3] to work out a soliton hierarchy
associated with the spectral problem. First, we solve the
stationary zero curvature equation

W, = [U,W]. (12)
If we assume W to be
0 —c -a
W =ae, +be,+ce;=(c 0 -b |, (13)
ab 0
then (12) gives
a, =A(c—pb),
b, = —A’qc + Apa, (14)
¢, = —Aa+A’gb.

Further, let a, b, and ¢ possess the Laurent expansions:

2i
a= Zai)t ,

i20
b= ;@A_Zi_l’ 15)
c= Zci/\—zi—l’

i20

and then, the system (14) leads to
4 =G — pb;
bix = Pai1 — 964>
(16)
Gix = qbi1 — Gisr>

i>0.



Advances in Mathematical Physics

Using the above recursion relations (16) and taking the initial
data

a, =1,
1

b - 7

7 g (17)
p

="
q

the sequences of {a;,b;,,¢; | i > 1} are determined uniquely
provided that we take zero constants of integration. The first
two sets are

1+p?
al = _Z—qz)
b 24P —2Pq:— P’ — 1
1= 2q3 ’
_ qu -p _p3‘
¢ = —2q3 ;
3+6p”+3p* - 8gp,
& = 8q4 i (18)
1
b, = o [3(1 +p2) (1 +p° - 4qp, +4pqx) - 244>
+ 849,

1
G = 8_q5 [6P3 + 3P5 - 12P2‘1x +12 (qux - 1)qx

- 8q2pxx +p (3 - 24qi + Sqqxx)] .
From (16), we have

1 (A2m+lw)+ [U, 1 (/\2'””W)+]

~ Gns1) €2 + A @by = prir) €35 19

m >0,

=1 (pam+1

where p, denotes the polynomial part of p. However, a direct
calculation gives

U, = Ap,es + A2gqe;. (20)

So in order to work out a soliton hierarchy, we should
introduce modification terms A,,,, m > 0. Suppose

A,y = A28 e, + ASye, + A5 e5, m=0;  (21)

% [(1+ £7) (99:x — 30%) — 4 (£% + PPrx) + 4PaP4]

1
? [(2qpx - l)qx +Pq (px + qxx) - pqu - quxx - zpqyzc]

we have

Amx - [U’ Am] = (/\263"1 - A2p82m + A2817mc) €
+ (X8 = V@05 + Ay ) € (22)

+ (1°q0,, = 281, + A3y ) 5.

Based on (19)-(22), 8;,,,» 8,,,,» and 85, should satisfy

1m>

p61m - q83m =0,
q82m - 61m =0,
(23)
62mx + (Pam+1 - qu+1) =0,
m > 0.

The third equation in (23) gives 85, = GCni1 = PAms1 = —bse>
s0 0y, = -b,,, 01,, = —qb,,, and 85, = —pb,; that is,

A,, = 28,6, + AS,,e, + D5, e,

0 Apb, ANgb,

(24)
=| -Apb, 0 Ab, |, m=0
-A’gb,, -Ab, 0

As usual, we define

VI = A (AW) 4 A, m=20, (25)
and then the corresponding zero curvature equations

U, -viMeuvi™] =0, m=0 (26)

tm X > - U = Y

give rise to a soliton hierarchy

p) <me_(Pbm)x> >0
m = = 5 = U. 27
" (q o\ s, )@

Remark 1. The Lax pair for the hierarchy (27) is given by (2)
and (3), where U and V are determined by (11) and (25). This
implies that the hierarchy (27) is integrable in the Lax sense.

The first nonlinear system in this soliton hierarchy (27) is
as follows:

(28)



3. Bi-Hamiltonian Structures and
Liouville Integrability

In this subsection, we will show that the soliton hierarchy
(27) is Liouville integrable [16-18]. First, let us establish bi-
Hamiltonian structures for the hierarchy (27) by using the
trace identity [11, 19] or the variational identity [20, 21]:

& [ L)t 17 L L)
6uJ-tr<a/\W>dx—A a,/\)Ltr aMW,

(29)
Ad 2
y:—zﬁlnhr(w )'
It is easy to find that
0 -p —-2)q
oUu
— = 0 -1
n <P ’
Agq 1 0
0 -A0
oUu
—=|A 0 0|,
ap < (30)
0 0 O
0 0 -A?
a—U: 00 O .
9q
A2 0 0
Thus, we have
oUu
— | =—4 —2pc —2b,
tr(Wa/\> Aga —2pc—2b
t <W%—U> = -2)c, 31)

Plugging these quantities into the trace identity (29) gives

L j (carga—2pc-w)dx =272 [ ) o)
Su - 2p A )

Balancing the coefficients of A7

leads to

in the above equation

2 [ Gttt s = G-2m (7).

A1 (33)
m 2 0.
The identity with m = 1 yields y = 0 and thus we have
9 Gn
Ou A1
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with the Hamiltonian functions being defined by

1 2
%Ozj ;pdx,
q

%m — _J 2qam+1 +pCm +bmd
2m

(35)

x, mz=1.

From (16), we have

bm = _a_lqcmﬂ + a_lpamﬂ
= _a*lq (aam+1 + pbm+1) + ailpaerl
(36)
= _a*lqaaerl - 3711’ (me + um+1) + ailpaerl’

m > 0.

Thus the hierarchy (27) can be written as

e ()

Cnx + OpO~'q0a,,,, + 0pd~" poc,, 37)
' 09907'qoa,,,, + 990" poc,,

C,
:]( " ) m >0,
am+1

where

0+ 0p0Lpd 0pd g0
:<+pp pq>‘ 38)

0q0~'pd 990 'q0

It can be verified that ] is skew symmetry and satisfies the
Jacobi identity, so it is a Hamiltonian operator. It now follows
that the soliton hierarchy (27) has the Hamiltonian structures

w, =K, =]—"=, m=0. (39)

C C,_
( '"):\P('”‘), m >0, (40)
am+1 am
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where

Py

Y= 1

_a—llala_a—lgaga _a—llal 1Py _g1PP
94 1 9

It is easy to verify that J¥ = ¥*]. Actually, we can show that
the hierarchy (27) is bi-Hamiltonian:

oK /4
u, =K, =] M’" =M 8;”“, m>1, (42)

where the second Hamiltonian operator is

0 0o
M=]¥Y = ) . (43)
-0° -0
Here J and M constitute a Hamiltonian pair. Particularly,
O, >
K}, = =0, kI=0,
7 Z}I J < Su U
O . 5%1
{%k’%l}M=J< 6u_> ou —dx k,1>0, (44)
[Kio K] = K ) [K] = K () [Ki]] =0,

k,1>0.

These commuting relations are also consequences of the
Virasoro algebra of Lax operators [22, 23]. To sum up the
above discussion, we obtain the following proposition and
theorem.

Proposition 2. The soliton hierarchy (27) has infinitely many
common commuting symmetries {J(6H,,/0u)},, and inf-

initely many conserved functions {H,,} > .

Theorem 3. The soliton equations in the soliton hierarchy (27)
are all integrable in Liouville sense.

4. Concluding Remarks

Based on the special orthogonal Lie algebra 56(3,R), the
AKNS spectral matrix, the KN spectral matrix, and the WKI
spectral matrix were presented in [11, 16, 24], respectively.
Those spectral matrices are

U (u,A) = Ae; + ge, + pes,
U (u,A) = Ve, + Age, + Apes,
(45)
U (u,A) = Ae; + Age, + Apes,
U@, A)=(A+q)e, + pe, +e5,

where u = (p,g)" includes two dependent variables.

o+ 2

1 (41)

9 4 q 9 9

In our paper, the new spectral problem defined by (10)
with (11), associated with 56(3, R), has been proposed and its
corresponding soliton hierarchy has been worked out. The
new soliton hierarchy is bi-Hamiltonian, and so, the resulting
equations possess infinitely many commuting symmetries
and conserved functionals, which implies that they are
Liouville integrable. Furthermore, we will further research
the integrable couplings and Darboux transformation of the
integrable hierarchy (27).

It is particularly interesting to explore other types of spec-
tral problems of even higher degree in a spectral parameter,
associated with so(3, R), which generate soliton hierarchies.
All those studies should provide insightful thoughts to
classify multicomponent integrable systems.
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