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Abstract. We aim at presenting Liouville integrable Hamiltonian models with
four dependent variables from a specific matrix eigenvalue problem. The Liouville inte-
grability of the resulting models is exhibited through formulating their bi-Hamiltonian
formulations. The basic tools are the Lax pair approach and the trace identity. Two
illustrative examples consist of novel four-component coupled integrable models of
second-order and third-order.
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1. INTRODUCTION

In soliton theory, Lax pairs play an important role in exploring integrable mod-
els [1, 2]. The concept of a Lax pair involves the formulation of a linear eigenvalue
problem associated with a given nonlinear partial differential equation [3]. By formu-
lating an appropriate Lax pair, we can generate a compatible set of model equations
that possess remarkable integrable properties, for example, infinitely many symme-
tries and conserved quantities, and exhibit soliton solutions, making them amenable
to analytical techniques and providing insights into their dynamics.

To construct integrable models by Lax pairs, it is crucial to formulate an ap-
propriate spatial spectral matrix, being the spatial part of an infinite sequence of Lax
pairs. Let us denote a q-dimensional column potential vector by p = (p1, · · · ,pq)T
and assume that k stands for the spectral parameter.

To begin with, let us take a loop matrix algebra g̃ with the loop parameter k and
define a spatial spectral matrix as follows:

M=M(p,k) = p1E1(k)+ · · ·+pqEq(k)+E0(k), (1)
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where the elements E1, · · · ,Eq are linearly independent and the element E0 is pseudo-
regular. The pseudo-regular conditions here consist of

ImadE0 ⊕KeradE0 = g̃, [KeradE0 ,KeradE0 ] = 0,

where adE0 denotes the adjoint action of E0 on g̃. These characteristic conditions
ensure that the stationary zero curvature equation

Zx = i[M,Z] (2)

has a solution among Laurent series matrices Z =
∑

n≥0 k
−nZ [n] in the underlying

loop algebra g̃.
Second, we form an infinite sequence of temporal spectral matrices

N [m] = (kmZ)++σr =

m∑
n=0

km−nZ [n]+∆m, ∆m ∈ g̃, m≥ 0, (3)

being the other parts of a sequence of Lax pairs, so that we can generate an integrable
hierarchy of soliton equations:

ptm =X [m] =X [m](p), m≥ 0, (4)

via the zero curvature equations:

Mtm −N [m]
x + i[M,N [m]] = 0, m≥ 0. (5)

They represent the conditions that guarantee the solvability of the spatial and temporal
matrix eigenvalue problems:

−iφx =Mφ, −iφtm =N [m]φ, m≥ 0. (6)

Finally, Hamiltonian formulations and the associated Liouville integrability of a
soliton hierarchy (4) can be explored by using the so-called trace identity (see [4, 5]
for details):

δ

δp

∫
tr
(
Z ∂M

∂k

)
dx= k−γ ∂

∂k
kγtr

(
Z ∂M

∂p

)
, (7)

where δ
δp denotes the variational derivative with respect to p, tr stands for the trace of

a matrix, and γ is a constant, being independent of the spectral parameter k.
Abundant Liouville integrable hierarchies of soliton equations are computed

through such a procedure, whose underlying loop algebras are generated from the
special linear algebras (see, e.g., [6–12]), and the special orthogonal algebras (see,
e.g., [13–15]). Bi-Hamiltonian formulations of soliton hierarchies [16] show the
Liouville integrability of soliton equations in the corresponding hierarchies. Among
integrable hierarchies with two dependent variables, the Heisenberg hierarchy [17],
the Ablowitz-Kaup-Newell-Segur hierarchy [6], the Kaup-Newell hierarchy [18] and
the Wadati-Konno-Ichikawa hierarchy [19] are the well-known integrable hierarchies.
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Their spectral matrices read[
k p1
p2 −k

]
,

[
kp3 kp1
kp2 −kp3

]
,

[
k2 kp1
kp2 −k2

]
,

[
k kp1

kp2 −k

]
, (8)

where p1p2+p23 = 1, respectively.
This paper aims to present a Liouville integrable hierarchy of four-component bi-

Hamiltonian equations through isospectral (i.e. ktm =0) Lax pairs. The corresponding
bi-Hamiltonian formulations are established for the resulting hierarchy of soliton
equations by an application of the trace identity. Two illustrative examples are
composed of four-component coupled integrable nonlinear Schrödinger equations and
modified Korteweg-de Vries equations. The last section consists of a conclusion and
some concluding remarks.

2. AN INTEGRABLE HAMILTONIAN HIERARCHY
WITH FOUR-DEPENDENT VARIABLES

Let σ1 and σ2 be two real numbers satisfying σ2
1 = σ2

2 = 1, i.e. σ1,σ2 ∈ {1,−1}.
Motivated by a recent study on integrable models associated with a reduced spectral
matrix [20], within the Lax pair formulation, we consider a matrix eigenvalue problem
of the form:

−iφx=Mφ=M(p,k)φ, M=



k r1 r2 r2 r2 r1 0
s1 0 0 0 0 0 σ1r1
s2 0 0 0 0 0 σ2r2
s2 0 0 0 0 0 σ2r2
s2 0 0 0 0 0 σ2r2
s1 0 0 0 0 0 σ1r1
0 σ1s1 σ2s2 σ2s2 σ2s2 σ1s1 −k


,

(9)
where p is the dependent variable consisting of four components:

p= p(x,t) = (r1, r2,s1,s2)
T . (10)

This eigenvalue problem is associated with a B-type Lie algebra and it is different
from the A-type matrix Ablowitz-Kaup-Newell-Segur eigenvalue problem (see, e.g.,
[21] for cases of nonlocal reductions).

To present an associated four-component Liouville integrable hierarchy, we
first solve the associated stationary zero curvature equation (2) by searching for a
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particular Laurent series solution:

Z =



e f1 f2 f2 f2 f1 0
g1 0 h h h 0 σ1f1
g2 −σ1σ2h 0 0 0 −σ1σ2h σ2f2
g2 −σ1σ2h 0 0 0 −σ1σ2h σ2f2
g2 −σ1σ2h 0 0 0 −σ1σ2h σ2f2
g1 0 h h h 0 σ1f1
0 σ1g1 σ2g2 σ2g2 σ2g2 σ1g1 −e


=
∑
n≥0

k−nZ [n],

(11)
where the basic objects are assumed to be expanded in Laurent series of the spectral
parameter k:

e=
∑
n≥0

k−ne[n], fj =
∑
n≥0

k−nf
[n]
j , gj =

∑
n≥0

k−ng
[n]
j , h=

∑
n≥0

k−nh[n], i= 1,2.

(12)
It is clear that the associated stationary zero curvature equation yields the initial
requirements:

e[0]x = 0, f
[0]
1 = f

[0]
2 = g

[0]
1 = g

[0]
2 = 0, h[0]x = 0, (13)

and the recursion relations for defining the Laurent series solution:

f
[n+1]
1 =−if

[n]
1,x+ r1e

[n]+3σ1σ2r2h
[n], f

[n+1]
2 =−if

[n]
2,x+ r2e

[n]−2r1h
[n], (14)

g
[n+1]
1 = ig

[n]
1,x+s1e

[n]−3s2h
[n], g

[n+1]
2 = ig

[n]
2,x+s2e

[n]+2σ1σ2s1h
[n], (15)

e[n+1]
x =−i(2s1f

[n+1]
1 +3s2f

[n+1]
2 r1g

[n+1]
1 −3r2g

[n+1]
2 )

=−(2s1f
[n]
1,x+3s2f

[n]
2,x+2r1g

[n]
1,x3r2g

[n]
2,x), (16)

and
h[n+1]
x = i(s1f

[n+1]
2 −σ1σ2s2f

[n+1]
1 +σ1σ2r1g

[n+1]
2 − r2g

[n+1]
1 ), (17)

where n≥ 0. To have a unique Laurent series solution, we go with the initial data,

e[0] = 1, h[0] = 0, (18)

and take the constants of integration to be zero,

e[n]|u=0 = 0, h[n]|u=0 = 0, n≥ 1. (19)

Under these conditions, one can obtain that

f
[1]
1 = r1, f

[1]
2 = r2, g

[1]
1 = s1, g

[1]
2 = s2, e

[1] = 0, h[1] = 0;{
f
[2]
1 =−ir1,x, f

[2]
2 =−ir2,x, g

[2]
1 = is1,x, g

[2]
2 = is2,x,

e[2] =−2r1s1−3r2s2, h
[2] =−σ1σ2r1s2+ r2s1;
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[3]
1 =−r1,xx−2r21s1−6r1r2s2+3σ1σ2r

2
2s1,

f
[3]
2 =−r2,xx+2σ1σ2r

2
1s2−4r1r2s1−3r22s2, g

[3]
1 =−s1,xx−2r1s

2
1+3σ1σ2r1s

2
2−6r2s1s2,

g
[3]
2 =−s2,xx−4r1s1s2+2σ1σ2r2s

2
1−3r2s

2
2,{

e[3] = i(2r1,xs1−2r1s1,x+3r2,xs2−3r2s2,x),

h[3] =−i(σ1σ2r1s2,x− r2s1,x−σ1σ2r1,xs2+ r2,xs1);

and  f
[4]
1 = i(r1,xxx+6r1r1,xs1+9r1r2,xs2−9σ1σ2r2r2,xs1+9r1,xr2s2),

f
[4]
2 = i(r2,xxx+6r1r2,xs1−6σ1σ2r1r1,xs2+61,xr2s1+9r2r2,xs2), g

[4]
1 =−i(s1,xxx+6r1s1s1,x−9σ1σ2r1s2s2,x+9r2s1s2,x+9r2s1,xs2),

g
[4]
2 =−i(s2,xxx+6r1s1s2,x+61s1,xs2−6σ1σ2r2s1s1,x+9r2s2s2,x),

e[4] = 6r21s
2
1−9σ1σ2r

2
1s

2
2+36r1r2s1s2−9σ1σ2r

2
2s

2
1+

27
2 r

2
2s

2
2

+2r1s1,xx+2r1,x,xs1+3r2s2,xx+3r2,xxs2−2r1,xs1,x−3r2,xs2,x,

h[4] =−3(2r1s1+3r2s2)(σ1σ2r1s2r2s1)+σ1σ2r1,xxs2− r2,xxs1

−r2s1,xx+σ1σ2r1s2,xx−σ1σ2r1,xs2,x+ r2,xs1,x.

Based on these computations, we can take ∆m = 0, m≥ 0, to formulate

−iφtm =N [m]φ=N [m](p,k)φ, N [m] = (kmZ)+ =
m∑

n=0

knZ [m−n], m≥ 0, (20)

which are the temporal matrix eigenvalue problems within the Lax pair formulation.
The conditions that guarantee the solvability of the spatial and temporal matrix
eigenvalue problems in (9) and (20) are given by the zero curvature equations in (5).
They generate a a soliton hierarchy with four potentials:

ptm =X [m] =X [m](p) = (if
[m+1]
1 , if

[m+1]
2 ,−ig

[m+1]
1 ,−ig

[m+1]
2 )T , m≥ 0, (21)

or more concretely,

r1,tm = if
[m+1]
1 , r2,tm = if

[m+1]
2 , s1,tm =−ig

[m+1]
1 , s2,tm =−ig

[m+1]
2 , m≥ 0.

(22)
An particular examples, this soliton hierarchy contains the coupled systems of

(c) RJP69(Nos. 1-2), ID 101-1 (2024) v.2.4r20231030 *2024.7.2#dd20a1ea



Article no. 101 Jin-Yun Yang, Wen-Xiu Ma 6

integrable nonlinear Schrödinger equations:

ir1,t2 = r1,xx+2r21s1+6r1r2s2−3σ1σ2r
2
2s1,

ir2,t2 = r2,xx−2σ1σ2r
2
1s2+4r1r2s13r

2
2s2,

is1,t2 =−s1,xx−2r1s
2
1+3σ1σ2r1s

2
2−6r2s1s2,

is2,t2 =−s2,xx−4r1s1s2+2σ1σ2r2s
2
1−3r2s

2
2,

(23)

and the coupled system of integrable modified Korteweg-de Vries equations:

r1,t3 =−r1,xxx−6r1r1,xs1−9r1r2,xs2+9σ1σ2r2r2,xs1−9r1,xr2s2,

r2,t3 =−r2,xxx−6r1r2,xs1+6σ1σ2r1r1,xs2−6r,xr2s1−9r2r2,xs2,

s1,t3 =−s1,xxx−6r1s1s1,x+9σ1σ2r1s2s2,x−9r2s1s2,x−9r2s1,xs2,

s2,t3 =−s2,xxx−6r1s1s2,x−6r1s1,xs2+6σ1σ2r2s1s1,x−9r2s2s2,x.

(24)

These two systems provide typical coupled integrable models, which extend the cate-
gory of coupled integrable nonlinear Schrödinger equations and modified Korteweg-de
Vries equations.

3. BI-HAMILTONIAN FORMULATIONS

To furnish bi-Hamiltonian formulations for the soliton hierarchy (22), one can
take advantage of the so-called trace identity (7) to the spatial matrix eigenvalue
problem (9). The trace identity uses the solution Z defined by (11). One can then
easily evaluate

tr
(
Z ∂M

∂k

)
= 2a, tr

(
Z ∂M

∂p

)
= (4g1,6g2,4f1,6f2)

T , (25)

and consequently, the trace identity gives

δ

δp

∫
k−(n+1)e[n+1] dx= k−γ ∂

∂k
kγ−n(2g

[n]
1 ,3g

[n]
2 ,2f

[n]
1 ,3f

[n]
2 )T , n≥ 0. (26)

A check with n= 2 leads to γ = 0, and as a consequence, one obtains

δ

δp
H[n] = (2g

[n+1]
1 ,3g

[n+1]
2 ,2f

[n+1]
1 ,3f

[n+1]
2 )T , n≥ 0, (27)

where the following Hamiltonian functionals are computed in the following way:

H[n] =−
∫

e[n+2]

n+1
dx, n≥ 0. (28)
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This allows us to present the Hamiltonian formulations for the soliton hierarchy (22):

ptm =X [m] = J1
δH[m]

δp
, J1 =

 0
1
2 i 0
0 1

3 i

−1
2 i 0
0 −1

3 i
0

 , m≥ 0, (29)

where J1 is Hamiltonian and H[m] are the functionals given by (28). We point out that
an important property that the Hamiltonian formulations exhibit is an interrelation
S = J1

δH
δp between a symmetry S and a conserved functional H of the same model.

On one hand, those vector fields X [n] satisfy a characteristic commuting pro-
perty:

[[X [n1],X [n2]]] =X [n1]′(p)[X [n2]]−X [n2]′(p)[X [n1]] = 0, n1,n2 ≥ 0, (30)

which can bee seen from an algebra of Lax operators:

[[N [n1],N [n2]]] =N [n1]′(p)[X [n2]]−N [n2]′(p)[X [n1]]+[N [n1],N [n2]] = 0, n1,n2≥ 0.
(31)

One can directly check this by analyzing the relation between the isospectral zero
curvature equations (see [22] for details).

On the other hand, from the recursion relation X [m+1] =ΦX [m], we can work
out a hereditary recursion operator Φ= (Φjk)4×4 [23] for the soliton hierarchy (22),
and it reads as follows:{

Φ11 = i(−∂x−2r1∂
−1s1−3r2∂

−1s2), Φ12 = i(−3r1∂
−1s2+3σ1σ2r2∂

−1s1),

Φ13 = i(−2r1∂
−1r1+3σ1σ2r2∂

−1s2), Φ14 = i(−3r1∂
−1r2−3r2∂

−1r1);

(32){
Φ21 = i(−2r2∂

−1s1+2σ1σ2r1∂
−1s2), Φ22 = i(−∂x−3r2∂

−1s2−2r1∂
−1s1),

Φ23 = i(−2r2∂
−1r1−2r1∂

−1r2), Φ24 = i(3r2∂
−1r2+2σ1σ2r1∂

−1r1);

(33){
Φ31 = i(2s1∂

−1s1−3σ1σ2s2∂
−1s2), Φ32 = i(3s1∂

−1s2+3s2∂
−1s1),

Φ33 = i(∂x+2s1∂
−1r1+3s2∂

−1r2), Φ34 = i(3s1∂
−1r2−3σ1σ2s2∂

−1r1);

(34){
Φ41 = i(2s2∂

−1s1+2s1∂
−1s2), Φ42 = i(3s2∂

−1s2−2σ1σ2s1∂
−1s1),

Φ43 = i(2s2∂
−1r1−2σ1σ2s1∂

−1r2), Φ44 = i(∂x+3s2∂
−1r2+2s1∂

−1r1).

(35)

We remark that although the above recursion operator is nonlocal, all isospectral (i.e.
ktm = 0) flows are local. This is a common characteristic of integrable hierarchies.
Further, with some analysis, one can see that J1 and J2=ΦJ1 constitute a Hamiltonian
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pair, and thus, the soliton hierarchy (22) possesses the bi-Hamiltonian formulations
[16]:

ptm =X [m] = J1
δH[m]

δp
= J2

δH[m−1]

δp
, m≥ 1. (36)

It then follows that the associated Hamiltonian functionals commute under the corres-
ponding two Poisson brackets [4]:

{H[n1],H[n2]}J1 =
∫ (

δH[n1]

δp

)T

J1
δH[n2]

δp
dx= 0, n1,n2 ≥ 0, (37)

and

{H[n1],H[n2]}J2 =
∫ (

δH[n1]

δp

)T

J2
δH[n2]

δp
dx= 0, n1,n2 ≥ 0. (38)

To summarize, each model in the soliton hierarchy (22) possesses a bi-Hamiltonian
formulation, and thus, it is Liouville integrable, which means that it has infinitely many
commuting symmetries {X [n]}∞n=0 and conserved functionals {H[n]}∞n=0. Particu-
larly (see also, [24–26]), the equations in (23) and (24) present two specific examples
of nonlinear coupled Liouville integrable models, which possess bi-Hamiltonian
formulations.

4. CONCLUDING REMARKS

A Liouville integrable hierarchy of bi-Hamiltonian equations with four depen-
dent variables has been generated from a specific special matrix eigenvalue problem,
through a sequence of Lax pairs. The key point is to determine a particular Laurent
series solution to the associated stationary zero curvature equation. The obtained
integrable models have been shown to possess bi-Hamiltonian formulations, upon
applying the trace identity to the underlying matrix isospectral eigenvalue problem.

One can, of course, enlarge the considered spatial matrix eigenvalue problem by
introducing more copies of r1 and r2. It is also possible to generate larger integrable
models via involving more dependent variables in a spatial spectral matrix (see,
e.g., [27]). Moreover, various higher-order integrable models and local integrable
reductions of the obtained hierarchy could be computed (see, [28–30] for examples in
the case of the matrix Ablowitz-Kaup-Newell-Segur eigenvalue problem).

It should be of much interest to study structures of soliton solutions to the
obtained integrable models by powerful and effective methods in soliton theory,
including the Zakharov-Shabat dressing method [31], the Riemann-Hilbert technique
[32], the determinant approach [33] and the Darboux transformation [34, 35]. Other
important solutions, such an lump, kink, breather and rogue wave solutions, including
their interaction solutions (see, e.g., [36–38, 40]), can be computed from specific
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9 Four-component Liouville integrable models Article no. 101

wave number reductions of solitons. Nonlocal reduced integrable equations can also
be presented by considering nonlocal group reductions of matrix eigenvalue problems
under similarity transformations (see, e.g., [41, 42]).

The structures of integrable models are complex and multifaceted, and the
study of these models, requiring a deep understanding of many different areas of
mathematics and physics, has led to the discovery of various types of soliton solutions
and other nonlinear coherent structures, and has the potential to significantly expand
our understanding of the natural world.
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