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Abstract Based on the Hirota bilinear form of the KP
equation, five classes of interaction solutions between
lumps and line solitons are generated via Maple sym-
bolic computations. Analyticity is automatically guar-
anteed for the first four classes of interaction solutions
and the last fifth class of interaction solutions with the
plus sign and can be easily achieved for the last fifth
class of interaction solutions with the minus sign by
taking special choices of the involved parameters. The
presented interaction solutions reduce to the existing
lumps while the hyperbolic function disappears.
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1 Introduction

Integrable equations possess Wronskian solutions [1],
by basing on Hirota bilinear forms [2]. Among such
interesting and important solutions are solitons, posi-
tons and complexitons [3–5], and interaction solutions
between different kinds of exact solutions describe
more interesting nonlinear phenomena [1]. Surpris-
ingly, integrable equations can also have algebraically
localized solutions, called lump solutions [6,7]. The
Hirota bilinear formulation plays a crucial role in gen-
erating all those exact solutions, and usually, trial and
error is a way to go with [8].

Nonlinear equations arising from physically rele-
vant situations and possessing lump solutions con-
tain the KP equation I [6,9], the three-dimensional
three-wave resonant interaction [10], the BKP equa-
tion [11,12], the Davey–Stewartson equation II [13]
and the Ishimori-I equation [14]. In particular, the KP
equation of the following form:

(ut + 6uux + uxxx )x − uyy = 0, (1.1)

has the lump solution [6]:

u = 4
−[x + ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2

{[x + ay + (a2 − b2)t]2 + b2(y + 2at)2 + 3/b2}2 ,

(1.2)

where a and b are real free parameters. General ratio-
nal solutions to integrable equations have been gener-
ated from the Wronskian formulation, the Casoratian
formulation and the Grammian or Pfaffian formulation
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(see [2,7]). Typical examples include theKdV equation
and the Boussinesq equation in (1+1)-dimensions, the
KP equation in (2+1)-dimensions, and the Toda lattice
equation in (0+1)-dimensions (see, e.g., [1,15]). New
attempts have also been made to search for rational
solutions to other integrable and near-integrable equa-
tions, particularly in higher dimensions, by direct ana-
lytical approaches including the tanh-function method,
the G ′

G -expansionmethod, and the exp-functionmethod
without using Hirota bilinear forms (see, e.g., [16–
19]). Links of rational solutions between integrable and
near-integrable equations could also exist (see, e.g.,
[20]). Bilinear Bäcklund transformations are applied
to rational solutions to (3+1)-dimensional generalized
KP equations (see, e.g., [21]), and direct searches have
been made for general rational solutions to nonlinear
equations determined by generalized bilinear equations
(see, e.g., [22–25]).

In this paper, we would like to consider interaction
solutions between lumps and line solitons of the KP
equation and generate five classes of interaction solu-
tions by symbolic computations with Maple, which
exhibit more diverse nonlinear phenomena. We will
start from the Hirota bilinear form of the KP equa-
tion, and compute linear combination solutions to the
bilinear KP equation by making linear combinations
of quadratic functions and the hyperbolic cosine. Con-
cluding remarks will be given finally in the last section.

2 Interaction solutions

The KP equation

PK P (u) := (ut + 6uux + uxxx )x − uyy = 0 (2.1)

is among the entire Sato KP hierarchy [26] and can be
transformed into a Hirota bilinear equation [2]:

BK P ( f ) :=
(
Dx Dt + D4

x − D2
y

)
f · f

= 2 ( fxt f − ft fx + fxxxx f − 4 fxxx fx

+ 3 fxx
2 − fyy f + fy

2
)

= 0, (2.2)

under the transformation

u = 2(ln f )xx = 2
(
fxx f − fx 2

)

f 2
. (2.3)

This is also one of characteristic transformations
adopted in Bell polynomial theories of soliton equa-
tions (see, e.g., [27,28]), and in fact, we have

PK P (u) =
( BK P ( f )

f 2

)
xx

.

Therefore,when f solves the bilinearKPEq. (2.2), u =
2(ln f )xx will present a solution to the KP Eq. (2.1).

The Hirota perturbation technique and symmetry
constraints allow us to present soliton solutions and
dromion-type solutions (see, e.g., [29–32]). In what
follows, we focus on computing interaction solutions
between lumps and line solitons to the KP Eq. (2.1)
through searching for linear combination solutions to
the bilinear KP Eq. (2.2) with symbolic computations,
by making linear combinations of quadratic functions
and the hyperbolic cosine.

Weapply the computer algebra systemMaple to look
for linear combination solutions to the bilinear KP Eq.
(2.2). We take an ansatz

f = ξ1
2 + ξ2

2 + cosh ξ3 + a13, (2.4)

where three wave variables are defined by
⎧
⎨
⎩

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = a9x + a10y + a11t + a12,

(2.5)

the ai ’s being real constants to be determined. We con-
sider two caseswhere taking a10 = 0 or a11 = 0.Direct
Maple symbolic computations generate the following
set of solutions for the parameters ai ’s:
{
a1 = a1, a2 = −a6a5

a1
, a3 = −a62

a1
,

a4 = a4, a5 = a5, a6 = a6,

a7 = −a5a62

a12
, a8 = a8, a9 = b a6

a1
,

a10 = 0, a11 = − a63

9 b a13
,

a12 = a12, a13

= 36 a18 + 72 a16a52 + 36 a14a54 + a64

12 a12a62(a12 + a52)

}
,

upon taking a10 = 0, and the following four sets of
solutions for the parameters ai ’s:{
a1 = 0, a2 = c a7

2 a9
, a3 = ±c a7, a4 = a4,

a5 = − a7
2 a92

, a6 = ∓ a7
2 a9

,

a7 = a7, a8 = a8, a9 = a9, a10 = ±a9
2,

a11 = 0, a12 = a12, a13 = 4 a912 + a74

4 a72a96

}
,

123



Abundant interaction solutions of the KP equation 1541

{
a1 = b a6

a9
, a2 = ±b a6, a3 = −2 a6a9

3 c
,

a4 = a4, a5 = 0, a6 = a6,

a7 = ±2 a6a9, a8 = 0, a9 = a9, a10 = ±a9
2,

a11 = 0, a12 = a12, a13 = 9 a98 + 4 a64

12 a62a94

}
,

{
a1 = c a5, a2 = 0, a3 = −4 c a5a9

2,

a4 = a4, a5 = a5, a6 = ±4 a5a9,

a7 = 4 a5a9
2, a8 = a8, a9 = a9, a10 = ±a9

2,

a11 = 0, a12 = a12, a13 = 64 a54 + a94

16 a52a92

}
,

{
a1 = ∓a5a9 − a6

3 b a9
, a2 = b (4 a5a9 ± a6),

a3 = 2 a9(∓2 a5a9 + a6)

3 b
, a4 = a4,

a5 = a5, a6 = a6, a7 = −4 a5a9
2 ∓ 2 a6a9,

a8 = a8, a9 = a9, a10 = ∓a9
2, a11 = 0,

a12 = a12, a13

= 64 a54a94 + 9 a98 ± 64 a53a6a93 + 48 a52a62a92 ± 16 a5a63a9 + 4 a64

12 a94(4 a52a92 + 2 a5a6a9 + a62)

}
,

upon taking a11 = 0. In all above sets of solutions for
the parameters ai ’s, the constants b and c are deter-
mined by

3 b2 − 1 = 0, c2 − 3 = 0, (2.6)

and an equation ai = ai means that the parameter ai is
arbitrary provided that any other expressions using ai
make sense.

These sets of solutions for the parameters generate
five classes of linear combination solutions fi , 1 ≤
i ≤ 5, defined by (2.4) and (2.5), to the bilinear KP
Eq. (2.2), and then the resulting combination solutions
present five classes of interaction solutions ui , 1 ≤ i ≤
5, under the transformation (2.3), to the KP Eq. (2.1).
Each of the latter four sets of solutions for the param-

eters ai ’s contain the plus and minus signs, and both
the constants b and c have two values. Therefore, vari-
ous kinds of interaction solutions could be constructed
explicitly this way.

The analyticity of the interactions solutions is auto-
matically guaranteed for the first four classes and the
last fifth class with the plus sign and can easily be
achieved for the last fifth class with the minus sign,
if we choose the parameters to ensure a13 > 0. We
point out that the presented interaction solutions do not
approach zero in all directions in the independent vari-
able space since a line soliton is involved, and they
form a peak at finite times due to the existence of a
lump solution.

For thefirst class of interaction solutions and thefifth
class of interaction solutions with the minus sign, let
us choose the following two special sets of parameters:

a1 = 1

2
, a4 = a5 = 0, a6 = −1

2
,

a8 = 0, a12 = 1, b =
√
3

3
,

and

a4 = 0, a5 = 1, a6 = −1

2
, a8 = 0,

a9 = −1

2
, a12 = 1, b =

√
3

3
,

the second of which leads to a13 = 65
16 , which is posi-

tive, indeed. The corresponding two special interaction
solutions to the KP Eq. (2.1) read

u1 = (24 x2+24 y2 − 48 xt + 24 t2 + 248) cosh ξ3

g12
−96

√
3 (−x+t) sinh ξ3+36 x2 − 36 y2 − 72 xt+36 t2−252

g12

(2.7)

with

g1 = 3 x2 + 3 y2 − 6 xt + 3 t2

+ 12 cosh ξ3 + 13, ξ3 =
√
3

9
(t − 3 x) + 1,

(2.8)
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Fig. 1 Profiles of (2.7) with t = 0, 5, 10: 3d plots (top) and contour plots (bottom)

and

u5,− = 2
[
2 + 1

4 cosh(
1
2 x − 1

4 y − 1)
]

g2

− 2
[
2 x − y − t + 1

2 sinh(
1
2 x − 1

4 y − 1)
]2

g22

(2.9)

with

g2 =
(√

3

2
y −

√
3

2
t

)2

+
(
x − 1

2
y − 1

2
t

)2

+ cosh

(
1

2
x − 1

4
y − 1

)
+ 65

16
, (2.10)

respectively.
Three 3-dimensional plots and contour plots of the

solution u1 at t = 0, 5, 10 and the solution u5,− at
t = 0, 10, 15 are shown in Figs. 1 and 2, respectively.

3 Concluding remarks

Through the Hirota formulation and symbolic com-
putations with Maple, we constructed five classes of

interaction solutions between lumps and line solitons
to the KP equation explicitly, and the resulting classes
of interaction solutions supplement the existing lump
solutions in the literature.

On the one hand, we point out that the case of taking
a9 = 0 leads to a class of trivial interaction solutions:

f = (a3t + a4)
2 + (a7t + a8)

2

+ cosh(a11t + a12) + a13,

which is independent of the spatial variables. However,
if we do not take any reduction, we could not work
out any linear combination solution to the bilinear KP
equation on personal computers. On the other hand, if
we change the Hirota derivatives in (2.2) into general-
ized bilinear derivatives [33], all previous computations
would be different in the case of the KP-like equation
[23], though lump solutions generated from quadratic
functions remain the same. It is also interesting to find
linear combination solutions to other generalized bilin-
ear and trilinear differential equations, formulated in
terms of general bilinear derivatives [33], which should
be pretty different from resonant solutions [34,35].

Linear combination solutions could present inter-
esting rogue wave solutions to the associated nonlinear
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Fig. 2 Profiles of (2.9) with t = 0, 10, 15: 3d plots (top) and contour plots (bottom)

equations under the transformations u = 2(ln f )x and
u = 2(ln f )xx . It is recognized that higher-order rogue
wave solutions are connected with generalized Wron-
skian solutions [36] and generalized Darboux trans-
formations [37], and higher-order generalizations of
lump solutions and rogue waves can also be generated
from the Fredholm determinant formulation [38]. All
of these motivate us to compute more general interac-
tion solutions to the KP equation. There is a long way
to go to classify exact solutions to the KP equation.
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