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A new Lax pair is introduced for a perturbed Kaup—Newell equation and used to con-
struct two series of conservation laws through a Riccati equation that a ratio of eigen-
functions satisfies. Both series of conservation laws are defined recursively, and the first
two in each series are presented explicitly.
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1. Introduction

Many nonlinear models are studied and showed to possess infinitely many con-
servation laws, and bi-Hamiltonian structures play a crucial role in constructing
conserved densities.! Associated with non-semisimple Lie algebras, the variational
identities have been developed to formulate generating functions for conserved den-
sities.?’3 There are also other approaches to conservation laws including the method
using adjoint symmetries* % and the expansion technique of ratios of eigenfunctions
of spectral problems.”8

A perturbed Kaup—Newell equation was recently introduced from a general-
ized Kaup-Newell spectral problem with linear perturbation.? The generalized
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Kaup—Newell equation is defined by
1
P = 5 (Paw = 2PP2q = P00 — dapps),
1 1,
@w=—3 2Ped” — P94 — 20(pg)e,

where « is an arbitrary constant. The case of & = 0 reads to the standard Kaup—

(1.1)

Qrx —

Newell equation,'® which possesses a tri-Hamiltonian structure!® and is the Euler—
Poincaré flow on the space of first-order differential operators.!?

In this paper, we would like to present a different Lax pair for the perturbed
Kaup—-Newell equation (1.1) and construct two series of conservation laws through
a Riccati equation which a ratio of two eigenfunctions needs to satisfy.” Such a
scheme of constructing conservation laws using Lax pairs has been also applied to
other nonlinear integrable equations (see, e.g. Refs. 13 and 14). A few concluding
remarks are given at the end of the paper.

2. A Riccati Equation and Conservation Laws

Motivated by a Lax pair for the Kaup—Newell equation (see, e.g. Ref. 15), we can
derive a new Lax pair for the perturbed Kaup—Newell equation (1.1):

A+ap Ap ] ¢:l¢1

¢ =Ug = U(Ua)\)éf’, U= (Ui')2><2 =
q —A—ap

and
¢ =Vo=V(u,\op, V= (Vij)axa, (2.2)
where

1 1 1
Vi = —Vag = A% — 3 \Pa— §ap2q —a’p’ + 2P

1
Viz = =5 A(=22p —pq + p°q + 2ap?) (2.3)

1 1
Vor = Aq = 50 — §pq2 —apq.

That is to say, the isospectral (A\; = 0) zero curvature equation:
U -V, +[U,V]=0

exactly presents the perturbed Kaup—Newell equation (1.1).
To apply the scheme of generating conservation laws based on Lax pairs, we
consider the ratio of the two eigenfunctions

P21 = % : (2.4)

Obviously from the spectral problem in (2.1), we see that the ratio ¢o; satisfies the
following Riccati equation:

G212 = —2(A+ ap)d21 + g — Apd3, . (2.5)
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Expanding ¢9; into a Laurent series

oo
P21 = Z XA, (2.6)
i=1
we obtain from the above Riccati equation a recursion relation for defining y;:
q 1 1 & )
X1=95 Xitl = —5Xia — §P;Xi—j+1xg‘ —apxi, i>1. (2.7)
Particularly, this gives rise to
1 5 1 1
X2 = —gpq - Eapq - Eq;tv
123+1 Jr1 2+122+3 22Jr1 +1 +1
= — - — el - e — — Gz -
X3 16p q 4pq(Iz 16pzq 9 pq 3 P4 9 Pqx 4 Pzq SQmm

Expanding ¢2; into another Laurent series
o0
Go1 =D KA, (2.8)
i=0
we obtain from the above Riccati equation a recursion relation for defining &;:

2 1 1+ 1 1 9
Ko=——, K1= =Koz — — apkg = — | — — —q — 2«
0 p’ 1 20,;10 2q PKo p). 2q ,

; (2.9)
1 1 .
Ritl = 5Ria + 5;021 Ki—jt1K; +apk;, 12>1.
j=
Note that there are the opposite signs in defining x;+1 and x; 1 due to the existence
of an additional term 2pkgr;A~% in the second recursive relation. The recursion
relation (2.9) particularly produces

1
Ko = @(JD“Q2 — 203Gy — 4p*poq + Appes — 4p2 + dapq — Sap®p,)

K3 = (=p5¢® + 4p°qqs + T Poa® — 20 quw — 8PP — 8P°Paaq

16p*
+ 4D Doz — 8PPrPas + 4D5 — 60’ — 8a”p°q + 8ap°y,

+16a°p*p, + 28ap*p.q — 16ap°p) -

Now to construct conservation laws, we introduce

I'=Vi1+Viadar, J=Ui1 + U292 (2.10)

and then, from the presented Lax pair (2.1) and (2.2), we obtain

o (bl,t _ ¢1,1 _
e () - (22 - o
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Substituting the two Laurent series expansions of ¢o; into this basic formula and
equating the same powers of \ will produce conservation laws for the perturbed
Kaup—Newell equation (1.1). In what follows, we compute these two series of con-
servation laws.

First, using (2.6) and comparing different powers of A from zeroth in (2.11)
directly yields infinitely many conservation laws

1 2 1 2 1 2 2, 2 1
(px1+ap)e = { =P ax1 +PX2 + 5PeX1 — ap™X1 — SapTg — AP+ japs |
T

1 1 .
(PXit1): = <—2P2(IXi+1 + PXi+2 + SPeXit1 — Olp2X¢+1) , 1 2>1,
xr

(2.12)

where x;, i > 1, are defined recursively by (2.7). The first two conservation laws in
(2.12) can be worked out as follows:

1 3,, 1 1 3, ., 1
= = (-2p%¢® - 2pgu + ~pog — Sap’q - ~ap, 2.13
(QPQ+ap>t (8]0(1 4pq +4pq 2apq a p +2ap N ( )
and
155 1 4 1
<8Pq 204"1 4Pth

L 33,39 1 1 3 39, 93 3 9
= (= = ~Ps — = = 2 L (2.14
(8p ¢+ 5P 40 + gPGee — GPale + 0P AP+ S0P ) (2.14)

Second, by use of (2.8) in (2.11), the coefficients of A presents a trivial conserva-
tion law, and comparing different powers of A from zeroth exactly yields infinitely
many conservation laws

_(_1- L SN S-S A S
(pk1 + ap)y = 5P a1+ PRz + opoky — ap Ry — Sapig - apt + japs |
T

1 2 1 2 .
(PRit1)t = —§p qki+1 + PRiy2 + ipxlfzurl —ap rig1 ] , 121,
@ (2.15)

where k;, i > 1, are defined recursively by (2.9). The first two conservation laws in
(2.15) can be computed as follows:

1
——(p*q—2ps + 2@172)]
{ 2p ! .

1
[—8]3(—31)3612 + 2p*qy + 10ppLq — 4pes — 80°p® — 12ap®q + 20app,)

x

(2.16)
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1
{—8102(—194(12 +2p°qs + 4p*poq — Appas + 4P — dap’q + 8ap2p$)]

t

1
= {—8]32(2?5613 — 6p°p2q® — 3p qqu + 5P’ Pudy + 6P’ Punq + PP Qus + 2D2Pus

— 2PPass + 6ap’q* + 8a”p°q — 24ap’p.q — 16a°p°p, — 6ap’qs + 12ap2pm)}

x

(2.17)

Observing the two recursive formulas (2.7) and (2.9), we see that the first series of
conservation laws in (2.12) is of differential polynomial type and the second series
of conservation laws in (2.15) is of rational differential function type.

We point out that the other Riccati equation,

$12,0 = 2(A + ap)diz + Ap — ¢, (2.18)
which the other ratio ¢ = % of the two eigenfuntions satisfies, generates two

equivalent classes of conservation laws, by use of similar Laurent expansions of ¢1s.

3. Concluding Remarks

Based on a Lax pair, we constructed two series of conservation laws for the discussed
perturbed Kaup—Newell equation. Both series of conservation laws were generated
from taking two Laurent expansions of a ratio of eigenfunctions, which satisfy a
Riccati equation, and the first two conservation laws in each series were explicitly
presented.

Such Riccati equations are also used to present algebro-geometric solutions by
expanding ratios of eigenfunctions, called the Baker—Akhiezer functions, into Lau-
rent series. In 2 X 2 matrix spectral problems, hyperelliptical curves are adopted,
and in 3 x 3 matrix spectral problems, trigonal curves are introduced to construct
algebro-geometric solutions to soliton equations, by taking characteristic polyno-
mials of Lax matrices.'618

Moreover, by symbolic computations, rational and lump solutions are discussed
recently for many interesting nonlinear equations, 22 23
or generalized bilinear forms2* 26 have been used to present rational and lump

and Hirota bilinear forms

solutions by links of logarithmic derivatives.
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