
October 10, 2016 10:28 IJMPB S0217979216400282 page 1

International Journal of Modern Physics B
Vol. 30, Nos. 28 & 29 (2016) 1640028 (7 pages)
c� World Scientific Publishing Company
DOI: 10.1142/S0217979216400282

Lump solutions to the BKP equation by symbolic computation

Jing-Yun Yang

School of Mathematical and Physical Science, Xuzhou Institute of Technology,

Xuzhou 221111, Jiangsu, P. R. China

Wen-Xiu Ma

Department of Mathematics and Statistics, University of South Florida,

Tampa, FL33620-5700, USA

mawx@cas.usf.edu

Accepted 25 April 2016
Published 5 September 2016

Lump solutions are rationally localized in all directions in the space. A general class of
lump solutions to the (2+ 1)-dimensional B-Kadomtsev–Petviashvili (BKP) equation is
presented through symbolic computation with Maple. The Hirota bilinear form of the
equation is the starting point in the computation process. Like the KP equation, the
resulting lump solutions contain six arbitrary parameters. Two of the parameters are
due to the translation invariances of the BKP equation with the independent variables,
and the other four need to satisfy a nonzero determinant condition and the positivity
condition, which guarantee analyticity and rational localization of the solutions.
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1. Introduction

Since lump solutions to the Kadomtsev–Petviashviii (KP) equation1
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were recognized as long-wave limits of soliton solutions,2,3 lump solutions are
presented for many other integrable equations such as the Davey–Stewartson-II
equation,3 the three-dimensional three-wave resonant interaction4 and the Ishimori-
I equation.5 Almost all integrable equations possess Hirota bilinear forms.6 It
becomes an interesting question to take advantage of Hirota bilinear forms or
even generalized bilinear forms7 to construct lump solutions to nonlinear partial
di↵erential equations. We will, in this paper, consider the (2 + 1)-dimensional
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B-Kadomtsev–Petviashviii (BKP) equation8,9

PBKP(u) := (u
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The BKP equation (2) is a member of the BKP soliton hierarchy, and it is also a
(2 + 1)-dimensional generalization of the Caudrey–Dodd–Gibbon–Sawada–Kotera
(CDGSK) equation10,11
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when v = u

x

and v is a function of x and t. The associated spectral problem is of
third-order:
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which provides a basis for solving the Cauchy problem of the CDGSK equation
(3)12,13 by the inverse scattering transform.14

Soliton solutions are exponentially localized solutions in certain directions, and
can be generated by using Hirota bilinear forms6 (noting that some intelligent
guesswork often needs to be made15). In contrast to soliton solutions, lump solutions
are a kind of rational function solutions, localized in all directions in the space. By
using Hirota bilinear forms, general rational function solutions were presented by
the Wronskian and Casoratian determinant techniques,16,17 particularly for the
KdV equation, the Boussinesq equation and the Toda lattice equation (see, e.g.,
Refs. 18, 19 and 22).

In this paper, we would like to study the (2+1)-dimensional BKP equation, and
construct a class of lump solutions by symbolic computation with Maple, supple-
menting soliton solutions.20–22 Starting with the Hirota bilinear form of the BKP
equation, we will carry out a search for positive quadratic function solutions to the
corresponding bilinear BKP equation. The resulting quadratic function solutions
contain a set of six arbitrary parameters. Taking special choices of the involved
parameters leads to a particular class of lump solutions generated from long-wave
limits of soliton solutions.23 A few concluding remarks are given at the end of the
paper.

2. Lump Solutions to the BKP Equation

Under the link between f and u:

u = 2(ln f)
x

, (5)

the (2+1)-dimensional BKP equation (2) becomes the following (2+1)-dimensional
Hirota bilinear equation:
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The transformation (5) is also one of the characteristic transformations in estab-
lishing Bell polynomial theories of soliton equations,24,25 and the exact relation
between the BKP equation and the bilinear BKP equation is

PBKP(u) =


BBKP(f)

f

2

�

x

. (7)

Therefore, if f solves the (2 + 1)-dimensional bilinear BKP equation (6), then u =
2(ln f)

x

will solve the (2 + 1)-dimensional BKP equation (2).
In order to find quadratic function solutions to the bilinear BKP equation (6),

similarly to the KP case,26 we start with

f = g

2 + h

2 + a9, g = a1x+ a2y + a3t+ a4, h = a5x+ a6y + a7t+ a8 , (8)

where a

i

, 1  i  9, are real parameters to be determined. A simpler form g

2 + a5

does not generate analytic solutions to the BKP equation, which are rationally
localized in all directions in the space; and so, we take a sum of two squares of linear
functions plus a constant function in (8). A direct Maple symbolic computation with
such a class of functions f gives the following set of constraining equations for the
parameters:

⇢
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�
. (9)

The function f is well defined on the whole space R3, if we require a nonzero
determinant condition

� := a1a6 � a2a5 =

�����
a1 a2

a5 a6

����� 6= 0 , (10)

which guarantees a1
2 + a5

2 6= 0 and so every parameter in (9) makes sense. This
set of parameters, in turn, generates positive quadratic function solutions to the
bilinear BKP equation (6):
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when we impose a positivity condition for a9:

a1a2 + a5a6 < 0 . (12)
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The resulting class of quadratic function solutions yield a class of lump solutions
to the (2 + 1)-dimensional BKP equation (2) through the transformation (5):

u =
4a1g + 4a5h

f

, (13)

where f is determined by (11), and g and h are defined by

g = a1x+ a2y +
5(a1a22 � a1a6

2 + 2 a2a5a6)

a1
2 + a5

2
t+ a4 , (14)

h = a5x+ a6y +
5(2 a1a2a6 � a2

2
a5 + a5a6

2)

a1
2 + a5

2
t+ a8 . (15)

In this class of lump solutions, all six involved parameters, a1, a2, a4, a5, a6 and
a8, are arbitrary provided that the solutions u are well defined on the whole space
R3. This can be achieved, when the determinant condition (10) and the positivity
condition (12) are satisfied. That determinant condition precisely means that two
directions (a1, a2) and (a5, a6) in the xy-plane are not parallel.

Note that the solutions defined by (13) are analytic in R3 if and only if the
parameter a9 > 0. The analyticity of the solutions in (13) is guaranteed if both
the determinant condition (10) and the positivity condition (12) hold. It is easy to
observe that at any given time t, all the above solutions u ! 0 if and only if the
corresponding sum of squares g

2 + h

2 ! 1, or equivalently, x2 + y

2 ! 1 due to
(10). Therefore, the nonzero determinant condition (10) and the positivity condition
(12) guarantee both analyticity and localization of the solutions in (13). There are
various possibilities to take appropriate parameters to obtain lump solutions.

If we take a particular choice of the parameters

a1 = 1, a2 = 3(↵2 � �

2), a5 = 0, a6 = 6↵� , (16)

where � > ↵ to guarantee a9 > 0, then we have
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So, the resulting lump solutions read

u =
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f

, (18)

where
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g = x+ 3(↵2 � �

2)y + 45(↵4 � 6↵2
�

2 + �

4)t+ a4 . (20)

This is a particular class of lump solutions generated from taking long-wave limits
of a 2-soliton solution in Ref. 23, as did for the KP equation (see, e.g., Refs. 2 and
3 for details).
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We now take

a1 = 3(↵2 � �

2), a2 = 1, a5 = 6↵�, a6 = 0 , (21)

where � > ↵ to guarantee a9 > 0. Then we have
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The resulting lump solutions read
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where
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3(↵2 + �

2)2
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This is a new class of lump solutions to the (2+ 1)-dimensional BKP equation (2).
The solutions (18) have a dependence on the spatial variable x in the first func-

tion g, but not in the second function h, while the solution (23) has a dependence
on the variable y in the first function g, but not in the second function h. Generally,
based on (13), we see that the corresponding lump solution u by (13) goes to zero,
when the determinant � in (10) goes to zero. This is really true in the following
two cases of the parameters.

First taking

a1 = 1 + ", a2 = 1, a4 = 0, a5 = 1, a6 = 1, a8 = 0 , (27)

which leads to � = ". Assume that " < 0 to have a9 > 0. From (13) in this case,
we obtain the following lump solution

u = �4"2p(")

q(")
, (28)

where
8
>>><

>>>:

p(") = x"

3 + (4x+ 2y)"2 + (10t+ 6x+ 4y)"+ 20t+ 4x+ 4y ,

q(") = 3"7 � (x2 � 24)"6 � 2(2x2 + xy � 45)"5 � 2(4x2 + 4xy + y

2 � 102)"4

�4(10tx+ 5ty + 2x2 + 3xy + y

2 � 75)"3

�4(25t2 + 10tx+ 10ty + x

2 + 2xy + y

2 � 72)"2 + 168 "+ 48 .

Obviously, we see that the limit of this solution is zero, when " approaches zero.
Second taking

a1 = 1, a2 = 1, a4 = 0, a5 = 1, a6 = 1� ", a8 = 0 , (29)
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which leads to � = �". Assume that " > 0 to guarantee a9 > 0. From (13) in this
case, we obtain the following lump solution

u =
8"2p(")

q(")
, (30)

where
8
>>><

>>>:

p(") = �(10t+ y)"+ 10t+ 2x+ 2y ,

q(") = 25t2"6 � 10(10t2 + ty)"5 + 2(100t2 + 20ty + y

2)"4

�4(50t2 + 10tx+ 15ty + xy + y

2)"3

+4(25t2 + 10tx+ 10ty + x

2 + 2xy + y

2)"2 + 24"� 48 .

We also see that the limit of this solution is zero, when " approaches zero.

3. Concluding Remarks

Based on the Hirota formulation and by symbolic computation with Maple, we
constructed a class of lump solutions to the (2 + 1)-dimensional BKP equation.
The analyticity and localization of the resulting lump solutions is guaranteed by a
nonzero determinant condition and a positivity condition. A special class of lump
solutions under reductions of the parameters involved covers the lump solutions
previously presented by computing long-wave limits of soliton solutions.23 A few
particular classes of lump solutions with specific values of the parameters were
computed.

Fortunately, for the bilinear BKP equation (6), we do not need to classify
positive and negative equations, as we did for the KP case. Lumps solutions exist
for both negative and positive BKP equations, but lumps solutions do not exist for
the (2+1)-dimensional KPII equation (see, e.g., Ref. 26). Rational solutions to the
(3+1)-dimensional KPII equation are linked to the good Boussinesq equation by a
transformation of dependent variables.27

Very recently, Hirota bilinear forms have been generalized by introducing dif-
ferent assignments of signs7 and applied to construction of rational solutions (see,
e.g., Refs. 28–32). We point out that resonant solutions, in terms of exponential
functions, to generalized bilinear and trilinear di↵erential equations have been sys-
tematically discussed.33,34 It would be very interesting to see when there exist
positive polynomial solutions, even quadratic function solutions, to generalized bi-
linear and trilinear equations, which lead to lump solutions to the corresponding
nonlinear equations, through the two characteristic transformations u = 2(ln f)

x

or u = 2(ln f)
xx

(see, e.g., Ref. 35). Particularly, rogue wave solutions could be
generated as well in terms of positive polynomial solutions. An open question in
the study of lump solutions by the Hirota bilinear technique is how to determine
if a real multivariate polynomial is positive or nonnegative or possesses only one
zero.36
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