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1. Introduction

Integrable equations possess Hirota bilinear forms, and among important examples of such equations are the
Korteweg-de Vries (KdV) equation, the Boussinesq equation, the Kadomtsev-Petviashvili (KP) equation, the BKP equation
and the Toda lattice equation [ 1]. All those integrable equations have exponentially localized solutions—soliton solutions [2].
It is the Hirota bilinear formulation that plays a key role in generating soliton solutions, but some intelligent guesswork is
often required [3].

Besides soliton solutions, there exist rational solutions to nonlinear partial differential equations, certainly to integrable
equations (see, e.g., [4,5]). Particularly important are rationally localized solutions in all directions of space, called lump
solutions, and examples of lump solutions are found for many interesting nonlinear equations arising from physically
relevant situations, which contain the KP equation I [6,7], the three-dimensional three-wave resonant interaction [8], the
BKP equation [9,10], the Davey-Stewartson equation Il [ 11] and the Ishimori-I equation [12]. In particular, the KP equation
I of the following form:

(ut + 6uu, + uxxx)x - 3uyy =0, (1'1)

has the lump solution [6]:

I —[x 4+ ay + 3(a® — b*)t]? + b*(y + 6at)?® + 1/b? (12)

© {[x+ay + 3(a® — b2)t]2 + b2(y + 6at)? + 1/b2}2’ '
where a and b are real free parameters. Rogue wave solutions, which draw a big attention of mathematicians and physicists
in the international research community, are a particularly important kind of lump or lump-type solutions, and such
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solutions, usually with rational function amplitudes, could be used to describe interesting nonlinear wave phenomena in
both oceanography [13] and nonlinear optics [ 14]. Lump or lump-type solutions to nonlinear partial differential equations
present an interesting research question for us, and Hirota bilinear forms will be a good basis for carrying out research on
such solutions.

General rational solutions to integrable equations have been considered within the Wronskian formulation, the
Casoratian formulation and the Grammian or Pfaffian formulation (see [ 1,2]). Typical examples include the KdV equation and
the Boussinesq equation in (1+1)-dimensions, the KP equation in (24-1)-dimensions, and the Toda lattice equationin (0+1)-
dimensions (see, e.g., [ 15-18]). A few new attempts have also been made to look for rational solutions to the non-integrable
(341)-dimensional KP 1[19,20] and KP II [21] by direct analytical approaches, for example, the tanh-function method, the
GE,—expansion method and symbolic computations (see, e.g.,[22-26]). There is a link of rational solutions between the (3+1)-
dimensional KP I and the good Boussinesq equation [21], bilinear Backlund transformations are applied to rational solutions
to (3+1)-dimensional generalized KP equations (see, e.g., [27]), and there exist some direct searches for rational solutions to
generalized bilinear equations (see, e.g.,[24,16,26]). Moreover, there are studies on rational solutions to nonlinear equations
by the Exp-function method without using Hirota bilinear forms [28,29].

In this paper, we would like to consider the Jimbo-Miwa equation in (3+1)-dimensions [30] and generate ten classes of its
lump-type solutions by Maple symbolic computations, based on the studies on lumps to (2+1)-dimensional equations (see,
e.g.,[7]). The resulting lump-type solutions supplement the existing lump-type solutions in the literature (see, e.g., [31]). The
(3+1)-dimensional Jimbo-Miwa equation possesses a Hirota bilinear form, and thus, we will search for positive quadratic
function solutions of the corresponding (3+1)-dimensional bilinear Jimbo-Miwa equation. A few concluding remarks will
be given finally in Section 3.

2. Abundant lump-type solutions

The (341)-dimensional Jimbo-Miwa equation reads [30]
Ping (1) = Uyuxy + 3Uyliyy + Syl + 2uy — 3uy, = 0, (2.1)

called the Jimbo-Miwa equation in [32]. The equation is among the entire KP hierarchy [30] and completely defined by a
Hirota bilinear equation

Bm(f) == (D;Dy + 2D:D, — 3D,D,)f - f

= z(fxxxyf _fyfxxx - 3fxfxxy + 3fxxfxy + 2f3/tf - 2fyfl‘ - 3fxzf + 3fxf:z) =0, (2-2)
under the transformation between f and u:
u = 2(Inf)y. (2.3)

This is also a characteristic transformation adopted in Bell polynomial theories of soliton equations (see, e.g., [33,34]) and
actually we have

FBMU)x — 2fBm ()

f? '
Therefore, when f solves the bilinear Jimbo-Miwa equation (2.2), u = 2(Inf), will present a solution to the (3+1)-
dimensional Jimbo-Miwa equation (2.1).

The Hirota perturbation technique allows us to present one- and two-soliton solutions [32] and dromion-type
solutions [35], and the Exp-function method and the transformed rational function method generates many traveling
wave solutions [36,37]. A direct computation also shows that the Jimbo-Miwa equation (2.1) has the following polynomial
solutions [37]:

P]M (U) = (24)

3
U =ay+ a1x + ay + asz + ast + asxz + agxt + a;yz + 5a5yt + agzt, (2.5)

where a;, 0 < i < 8, are arbitrary parameters.

In what follows, we focus on computing lump-type solutions to the (3+1)-dimensional Jimbo-Miwa equation (2.1)
through carefully searching for positive quadratic function solutions to the bilinear Jimbo-Miwa equation (2.2) with
symbolic computations.

We apply the computer algebra system Maple to look for quadratic function solutions to the (341)-dimensional bilinear
Jimbo-Miwa equation (2.2). A direct Maple symbolic computation starting with

f=g*+h +an,
g = 41X + ayy + asz + ast + as, (2.6)
h = agx + a;y + agz + aqt + ayg,
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yields the following ten sets of solutions for the parametersa;, 1 <i < 11:

a 2 (0304 + a20309 — (30709 + A4070g = O O = n Qs — o O — @
1=73 2 =0y, A3 =03, 44 = 0g, U5 =05
3 a32 +a82 b 9 b 9 9
a 2 (0309 — Ap040g + A30407 + A7agdy a . a 0. @ . a a
6= 5 , 07 = a7, Ag = dg, (g = dg, A10 = Q10,
3 (132 + (132
4 (a,% + a7%)?(a4® + ag?)(asas + agag)
- 2 7 4 9 304 8o
1n=z )
9 (a32 + ag?)(aza3 — asa;)(asag — a4ag)
a 4. a 3 aja3a4 + aiagag + azagag — a40gdg a 0. a . a a
1=01, a2 = = , 03 = a3, (4 = 04, (s = 0s,
2 a42 + (192
3 10309 — A10408 — A30406 — Aglgdg
g = de, 7 = — , g = Qg, A9 = dg, U190 = 10,
2 as? + aq? '
2 2\2
a 3 (m1” + ag”)*(azas + agag) }
1=z )
2 (a1a9 — a405)(asag — a40ag)

a 0. a 0. a 0n. a 3 a1a,as + aya;ag — ax0gag + asdgdy a a
1=01, Gy =0, Q3 =043, (4 = , s = Qs,
2 (122 + (172
= O =@ 0 — de. @ 3 a1axa3 — a1a3a7 + A0306 + Asd7 03 a a
6 = 0p, 7 = a7, Ag = dg, 09 = = 10 = a0
9 9 b 2 a22 + a72 9 b
2 2 2 2
(a1* + as”)(a2° + a7°)(a1az + agay)
ay = — ,
(a1a7 — aya6)(azag — azay)
13aja3® + 3a1as® + 2 asa;ag — 2 a4a;0g
ay=a, Gy = = , 3 = a3, (4 = (4, 45 = 0s,
2 asay + agdg
13aia3a9 — 3 a1a40g + 2 a4%a; + 2 a;a9>
s = 7 , a7 = a7, , ag = dg, dg9 = Qg, Q19 = d10,
3 asay + agdg
a 1 (a4® + ae®)[(3a1a3 + 2 a7a9)® + (3aiag — 2 aqa7)?1? }
1=z
18 (a3a4 + agag)?(asag — a4as) (3 a1ag — 2 a4ay)
12 (12204 +3 apdagdg — 3 asaga; + 2 (146172
ay = - , p = 0y, A3 = 03, Q4 = 04, (5 = ds,
3 a,as + a,ag
12 ayasa3 + 3 asag — 2 asasa; + 3 agag>
g = Qp, 07 = A7, Ag = dg, (g = = , d10 = Ao,
2 aas + a;ag
a 1 (a2 + a7%)?(2 aza4 + 3 aas)[(2 a2a4 + 3 agas)* + (3 a3as — 2 aqay)?] }
1= = )
9 (a2a3 + azag)?(a,as — asaz) (3 asas — 2 asay)
13 a,azag — 2 (122(14 -3 adgdg — 2 a4a72
ay =a, Gy =0ay, a3 = — , Q4 = Q4, 45 = ds,
3 aia, + agay
13a:%as — 2 a1a4a7 + 2 aya4a6 + 3 ag>ag
g = Qp, 07 = A7, Ag = dg, (g = = , 10 = dqo0,
2 aia; + agay
2 2 2
a 3[(a1* + ag”)(ara; + agaz)<] }
1 = — )
(a1a; — axa6) (3 a1ag — 2 agay)
1 3(112(18 — 2010407 + 306208 -2 aga7dg
a =aq, a = - s
2 109 — 0406
13 aia4ag — 2 (142(17 +3 dgQgdg — 2 (17[192
as = - , Q4 = Q4, A5 = 05, g = de,

3 a109 — 040g

3 (0% + ag®)*(3aras — 2 azay)
a; = a7, ag = dg, dg = dg, Q10 = d10, A11 = s

2 (arag9 — a40a6)(3 asag — 2 azay)
13a1a2a3 — 2 ay2aq + 3 agarag — 2 a;%aq

a; =0ay, ap =dz, a3 = )
3 aia; — axag

1 3012(18 — 2(11a209 + 3(16208 -2 agd70g
a4 = = , 5 = ds, dg = Ug, 07 = dy,
2 aia; — axas

g = dg, (g = dg, U190 = Q10, d11 =

3 (a1’ay + ar’aga; + a10206% + agay)
3 aglg — 2 a70dg ’
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3 by b,
ay=0ay, G = —-7—, 3 = —7—, (4 = U4, 05 = 0s, dg = s,
2 by bs
3 b3
a; = —-—, (g = ag, g = g, A10 = A10, A11 = 11 ¢,
2 by
1 ¢
ay =ay, G =0z, a3 = — , 04 = 04, A5 = 0s, dg = Js,
3aan
1C2 1C3
a; =4z, Qg = —Z—, g = ——~—, O10 = Qq10, 11 = A11 ¢
3C4 2C4

in the last two sets of which the constants b; and ¢;, 1 < i < 4, are defined by

b1 = Bai*as + 6a1’as> + 3 a6’ + 2 ar’agar; — 2 a1040sa11) a5,
by = (3ar*ag + 6 a1°as’ag + 3 a6 g + 2 410409011 — 2 a4 ds011)0s,
by = 3ar’ +6a’as” +3a1a6" — 2 a1aga9a11 + 2 a4as”ar)as,
by = 3a:%as + 6 a1%asa6® + 3 asas® — 2 ara9’ar; + 2 asasa9ary,

and

C1 = 3 013(12 +3 01205(17 +3 (11(12(162 +3 (16307 +2 a,q4aq1,
C) = 3 (114(122 + 6(1]3(12(16(17 +3 (112(122(152 +3 (112(162(172
+6 (11(12(163(17 +3 (154(172 -2 (11(14(172(11] +2 axauaesazaqq,
c3=3 (115(12 +3 014(15(17 + 6(113(12(162 + 6(112(153(17
+3a1a206" + 3a6°a7 — 2 1040607011 + 2 G20406% 11,
€4 = a1a11(a107 — 0206).

These sets of solutions for the parameters generate ten classes of quadratic function solutions f;, 1 < i < 10, defined
by (2.6), to the bilinear Jimbo-Miwa equation (2.2); and further the resulting quadratic function solutions present ten
classes of lump-type solutions u;, 1 < i < 10, under the transformation (2.3), to the (3+1)-dimensional Jimbo-Miwa
equation (2.1).

The analyticity of those rational solutions can be achieved, if we choose the parameters guaranteeing a;; > 0. All the
above rational function solutions u;, 1 <i < 10, go to zero, when the corresponding sum of squares g2 + h> — oo, which
can be easily satisfied. However, they do not approach zero in all directions in R* due to the character of (34-1)-dimensions
in the resulting solutions, and thus, they are lump-type solutions but not lump solutions.

For the first and fourth lump-type solutions, let us choose the following two special sets of parameters:

a =1, a3 = —2, as = 3, as = —1, a; =2, ag = 4, ag = —1, a;p =5,
and

a =1, a; =2, ay = —2, as = —1, a; = 3, ag = 2, ag =1, ag = 5,
which all satisfy a;; > 0. The corresponding two special lump-type solutions read

16(18¢t + 10x — 15y — 42z — 48)

1= (2.7)
81
with
g1 = 360t> + 144tx+ 72ty — 720tz + 40x* — 120xy — 336 xz
+180y? +432yz +7202% — 576t — 384x + 648y + 1584z + 961, (2.8)
and
24(10t — 65x+ 39y + 14z + 41)
Uy = — (29)
&2
with
2 = 30t% — 120tx + 396ty — 24tz + 390x* — 468 xy — 168 xz
+1404y> — 288yz + 4822 4+ 84t — 492 x + 360y + 96z + 1001, (2.10)

respectively.
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3. Concluding remarks

Through the Hirota formulation and symbolic computations with Maple, we constructed ten classes of lump-type
solutions to the (341)-dimensional Jimbo-Miwa equation (2.1) explicitly, and the resulting classes of lump-type solutions
are supplements to the existing lump-type solutions in the literature [31].

We point out that if we change the Hirota derivatives in (2.2) into generalized bilinear derivatives [38], all the quadratic
function solutions presented in the previous section are true for the generalized (3+1)-dimensional bilinear Jimbo-Miwa
equations. It is also interesting to find positive polynomial solutions to other generalized bilinear or even tri-linear
differential equations, formulated in terms of general bilinear derivatives [38], as did for resonant solutions in terms of
exponential functions [39,40]. This kind of polynomial solutions will present lump or lump-type solutions, including rogue
wave solutions, to the corresponding nonlinear equations by u = 2(Inf), or u = 2(Inf)x.

It is recognized that higher-order rogue wave solutions are linked to different mathematical topics including generalized
Wronskian solutions [41] and generalized Darboux transformations [42]. Higher-order generalizations of lump solutions
and rogue waves, which exhibit more diverse soliton phenomena, can also be presented by the Fredholm determinant [43].
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