Abundant lump-type solutions of the Jimbo–Miwa equation in (3 + 1)-dimensions

J.Y. Yanga, W.X. Mab,∗

a School of Mathematical and Physical Sciences, Xuzhou Institute of Technology, Xuzhou 221111, Jiangsu, PR China

b Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620, USA

\textbf{A R T I C L E I N F O}

Article history:
Received 14 July 2016
Received in revised form 28 October 2016
Accepted 10 November 2016
Available online 6 December 2016

Keywords:
Lump-type solution
Jimbo–Miwa equation
Quadratic function

\textbf{A B S T R A C T}

Based on the Hirota bilinear form of the (3+1)-dimensional Jimbo–Miwa equation, ten classes of its lump-type solutions are generated via Maple symbolic computations, whose analyticity can be easily achieved by taking special choices of the involved parameters. Those solutions supplement the existing lump-type solutions presented previously in the literature.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Integrable equations possess Hirota bilinear forms, and among important examples of such equations are the Korteweg–de Vries (KdV) equation, the Boussinesq equation, the Kadomtsev–Petviashvili (KP) equation, the BKP equation and the Toda lattice equation [1]. All those integrable equations have exponentially localized solutions—soliton solutions [2]. It is the Hirota bilinear formulation that plays a key role in generating soliton solutions, but some intelligent guesswork is often required [3].

Besides soliton solutions, there exist rational solutions to nonlinear partial differential equations, certainly to integrable equations (see, e.g., [4,5]). Particularly important are rationally localized solutions in all directions of space, called lump solutions, and examples of lump solutions are found for many interesting nonlinear equations arising from physically relevant situations, which contain the KP equation I [6,7], the three-dimensional three-wave resonant interaction [8], the BKP equation [9,10], the Davey–Stewartson equation II [11] and the Ishimori-I equation [12]. In particular, the KP equation I of the following form:

\begin{equation}
(u_t + 6uu_x + u_{xxx})_x - 3u_{yy} = 0,
\end{equation}

has the lump solution [6]:

\begin{equation}
\left.\begin{array}{l}
\left[\begin{array}{c}
3(a^2 - b^2) t
\end{array}\right] + b^2(y + 6at)^2 + 1/b^2
\end{array}\right) x
\end{array} - 3u_{yy} = 0,
\end{equation}

\begin{equation}
\left.\begin{array}{l}
\left[\begin{array}{c}
3(a^2 - b^2) t
\end{array}\right] + b^2(y + 6at)^2 + 1/b^2
\end{array}\right) x
\end{array} - 3u_{yy} = 0,
\end{equation}

\begin{equation}
\left.\begin{array}{l}
\left[\begin{array}{c}
3(a^2 - b^2) t
\end{array}\right] + b^2(y + 6at)^2 + 1/b^2
\end{array}\right) x
\end{array} - 3u_{yy} = 0,
\end{equation}

where \(a\) and \(b\) are real free parameters. Rogue wave solutions, which draw a big attention of mathematicians and physicists in the international research community, are a particularly important kind of lump or lump-type solutions, and such

∗ Corresponding author.
E-mail address: mawx@cas.usf.edu (W.X. Ma).

http://dx.doi.org/10.1016/j.camwa.2016.11.007
0898-1221/© 2016 Elsevier Ltd. All rights reserved.
solutions, usually with rational function amplitudes, could be used to describe interesting nonlinear wave phenomena in both oceanography [13] and nonlinear optics [14]. Lump or lump-type solutions to nonlinear partial differential equations present an interesting research question for us, and Hirota bilinear forms will be a good basis for carrying out research on such solutions.

General rational solutions to integrable equations have been considered within the Wronskian formulation, the Casoratian formulation and the Grammian or Pfaffian formulation (see [1,2]). Typical examples include the KdV equation and the Boussinesq equation in (1+1)-dimensions, the KP equation in (2+1)-dimensions, and the Toda lattice equation in (0+1)-dimensions (see, e.g., [15–18]). A few new attempts have also been made to look for rational solutions to the non-integrable (3+1)-dimensional KP I [19,20] and KP II [21] by direct analytical approaches, for example, the tanh-function method, the C -expansion method and symbolic computations (see, e.g., [22–26]). There is a link of rational solutions between the (3+1)-dimensional KP II and the good Boussinesq equation [21], bilinear Bäcklund transformations are applied to rational solutions to (3+1)-dimensional generalized KP equations (see, e.g., [27]), and there exist some direct searches for rational solutions to generalized bilinear equations (see, e.g., [24,16,26]). Moreover, there are studies on rational solutions to nonlinear equations by the Exp-function method without using Hirota bilinear forms [28,29].

In this paper, we would like to consider the Jimbo–Miwa equation in (3+1)-dimensions [30] and generate ten classes of its lump-type solutions by Maple symbolic computations, based on the studies on lumps to (2+1)-dimensional equations (see, e.g., [7]). The resulting lump-type solutions supplement the existing lump-type solutions in the literature (see, e.g., [31]). The (3+1)-dimensional Jimbo–Miwa equation possesses a Hirota bilinear form, and thus, we will search for positive quadratic function solutions of the corresponding (3+1)-dimensional bilinear Jimbo–Miwa equation. A few concluding remarks will be given finally in Section 3.

2. Abundant lump-type solutions

The (3+1)-dimensional Jimbo–Miwa equation reads [30]

\[p_{11}(u) := u_{xxx} + 3u_y u_{xx} + 3u_x u_{xy} + 2u_{yt} - 3u_{xz} = 0, \]

(2.1)
called the Jimbo–Miwa equation in [32]. The equation is among the entire KP hierarchy [30] and completely defined by a Hirota bilinear equation

\[B_{JM}(f) := (D^2_x D_y + 2D_x D_y - 3D_y D_z)J \cdot f = 2(f_{xxx} f_y - f_x f_{xxx} - 3f_{xxy} + 3f_x f_{xy} + 2f_y f_x - 2f_y f_t - 3f_{xx} f_z + 3f_{xz} f_x) = 0, \]

(2.2)
under the transformation between \(f \) and \(u \):

\[u = 2(\ln f)_x. \]

(2.3)
This is also a characteristic transformation adopted in Bell polynomial theories of soliton equations (see, e.g., [33,34]) and actually we have

\[p_{11}(u) = \frac{f(B_{JM}(f))_x - 2f_{t} B_{JM}(f)}{f^3}. \]

(2.4)
Therefore, when \(f \) solves the bilinear Jimbo–Miwa equation (2.2), \(u = 2(\ln f)_x \) will present a solution to the (3+1)-dimensional Jimbo–Miwa equation (2.1).

The Hirota perturbation technique allows us to present one- and two-soliton solutions [32] and dromion-type solutions [35], and the Exp-function method and the transformed rational function method generates many traveling wave solutions [36,37]. A direct computation also shows that the Jimbo–Miwa equation (2.1) has the following polynomial solutions [37]:

\[u = a_0 + a_1 x + a_2 y + a_3 z + a_4 t + a_5 x z + a_6 x t + a_7 y z + \frac{3}{2} a_8 y t + a_9 z t, \]

(2.5)
where \(a_i, \ 0 \leq i \leq 8, \) are arbitrary parameters.

In what follows, we focus on computing lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation (2.1) through carefully searching for positive quadratic function solutions to the bilinear Jimbo–Miwa equation (2.2) with symbolic computations.

We apply the computer algebra system Maple to look for quadratic function solutions to the (3+1)-dimensional bilinear Jimbo–Miwa equation (2.2). A direct Maple symbolic computation starting with

\[
\begin{align*}
\frac{d}{d\sigma} &= g^2 + h^2 + a_{11}, \\
g &= a_1 x + a_2 y + a_3 z + a_4 t + a_5, \\
h &= a_6 x + a_7 y + a_8 z + a_9 t + a_{10},
\end{align*}
\]

(2.6)
yields the following ten sets of solutions for the parameters a_i, $1 \leq i \leq 11$:

\[
\begin{align*}
\{a_1 &= \frac{2}{3} a_2 a_3 a_4 + a_2 a_5 a_8 - a_3 a_7 a_8 + a_4 a_7 a_9 \}, & a_2 &= a_2, & a_3 &= a_3, & a_4 &= a_4, & a_5 &= a_5, \\
a_6 &= \frac{2}{3} a_2 a_3 a_5 - a_2 a_4 a_8 + a_2 a_6 a_9 - a_7 a_9 a_8, & a_7 &= a_7, & a_8 &= a_8, & a_9 &= a_9, & a_{10} &= a_{10}, \\
a_{11} &= \frac{4}{9} (a_2^2 + a_7^2)(a_4 a_8 + a_9 a_9) \}, & a_1 &= a_1, & a_2 &= a_2, & a_3 &= a_3, & a_4 &= a_4, & a_5 &= a_5, \\
a_6 &= -\frac{3}{2} a_1 a_5 a_6 - a_1 a_5 a_9 - a_1 a_4 a_6 - a_5 a_6 a_9, & a_8 &= a_8, & a_9 &= a_9, & a_{10} &= a_{10}, \\
a_{11} &= -\frac{3}{2} (a_1^2 + a_6^2)(a_3 a_4 + a_4 a_9) \}, \end{align*}
\]
\[
\begin{align*}
a_1 &= a_1, \quad a_2 = -\frac{3}{2} b_1 b_4, \quad a_3 = -\frac{b_2}{b_4}, \quad a_4 = a_4, \quad a_5 = a_5, \quad a_6 = a_6, \\
a_7 &= \frac{3}{2} b_3 b_4, \quad a_8 = a_8, \quad a_9 = a_9, \quad a_{10} = a_{10}, \quad a_{11} = a_{11},
\end{align*}
\]

in the last two sets of which the constants \(b_i\) and \(c_i\), \(1 \leq i \leq 4\), are defined by

\[
\begin{align*}
b_1 &= (3 a_1^4 a_6 + 6 a_1^2 a_5^2 + 3 a_5^3 + 2 a_1^2 a_9 a_{11} - 2 a_1 a_4 a_6 a_{11}) a_8, \\
b_2 &= (3 a_1^4 a_9 + 6 a_1^2 a_5^2 a_9 + 3 a_6^4 a_9 + 2 a_1 a_4 a_9 a_{11} - 2 a_4 a_6^2 a_{11}) a_8, \\
b_3 &= (3 a_1^5 + 6 a_1^3 a_6^2 + 3 a_9 a_4^4 - 2 a_1 a_4 a_6 a_{11} + 2 a_4 a_6^2 a_{11}) a_8, \\
b_4 &= 3 a_1^4 a_4 + 6 a_1^2 a_5 a_9^2 + 3 a_4 a_6^4 - 2 a_1 a_4^2 a_9 a_{11} + 2 a_4 a_6^2 a_{11},
\end{align*}
\]

and

\[
\begin{align*}
c_1 &= 3 a_1^3 a_2 + 3 a_1^2 a_5 a_7 + 3 a_1 a_2 a_5^2 + 3 a_6^3 a_7 + 2 a_2 a_4 a_{11}, \\
c_2 &= 3 a_1^4 a_2^2 + 6 a_1^3 a_5 a_7 + 3 a_9 a_1^2 a_9^2 + 3 a_1^2 a_6^2 a_7^2 \\
&\quad + 6 a_1 a_2 a_6^3 a_7^2 + 3 a_6^4 a_7^2 - 2 a_1 a_4 a_7^2 a_{11} + 2 a_4 a_6 a_7 a_{11}, \\
c_3 &= 3 a_1^5 a_2 + 3 a_1^4 a_5 a_7 + 6 a_1 a_2 a_5^2 + 6 a_1 a_1^3 a_7 + 3 a_4 a_6^4 + 3 a_5^3 a_7 - 2 a_1 a_4 a_6 a_{11} + 2 a_4 a_6 a_{11}, \\
c_4 &= a_1 a_1 a_{11} (a_4 a_7 - a_2 a_6).
\end{align*}
\]

These sets of solutions for the parameters generate ten classes of quadratic function solutions \(f_i\), \(1 \leq i \leq 10\), defined by \((2.6)\), to the bilinear Jimbo–Miwa equation \((2.2)\); and further the resulting quadratic function solutions present ten classes of lump-type solutions \(u_i\), \(1 \leq i \leq 10\), under the transformation \((2.3)\), to the \((3+1)\)-dimensional Jimbo–Miwa equation \((2.1)\). The analyticity of those rational solutions can be achieved, if we choose the parameters guaranteeing \(a_{11} > 0\). All the above rational function solutions \(u_i\), \(1 \leq i \leq 10\), go to zero, when the corresponding sum of squares \(g^2 + h^2 \rightarrow \infty\), which can be easily satisfied. However, they do not approach zero in all directions in \(\mathbb{R}^4\) due to the character of \((3+1)\)-dimensions in the resulting solutions, and thus, they are lump-type solutions but not lump solutions.

For the first and fourth lump-type solutions, let us choose the following two special sets of parameters:

\[
\begin{align*}
a_2 &= 1, \quad a_3 = -2, \quad a_4 = 3, \quad a_5 = -1, \quad a_7 = 2, \quad a_8 = 4, \quad a_9 = -1, \quad a_{10} = 5,
\end{align*}
\]

and

\[
\begin{align*}
a_1 &= 1, \quad a_3 = 2, \quad a_4 = -2, \quad a_5 = -1, \quad a_7 = 3, \quad a_8 = 2, \quad a_9 = 1, \quad a_{10} = 5,
\end{align*}
\]

which all satisfy \(a_{11} > 0\). The corresponding two special lump-type solutions read

\[
u_1 = \frac{16 (18 t + 10 x - 15 y - 42 z - 48)}{g_1}
\]

with

\[
g_1 = 360 t^2 + 144 tx + 72 ty - 720 tz + 40 x^2 - 120 xy - 336 xz \\
+ 180 y^2 + 432 yz + 720 z^2 - 576 t - 384 x + 648 y + 1584 z + 961,
\]

and

\[
u_4 = -\frac{24 (10 t - 65 x + 39 y + 14 z + 41)}{g_2}
\]

with

\[
g_2 = 30 t^2 - 120 tx + 396 ty - 24 tz + 390 x^2 - 468 xy - 168 xz \\
+ 1404 y^2 - 288 yz + 48 z^2 + 84 t - 492 x + 360 y + 96 z + 1001,
\]

respectively.
3. Concluding remarks

Through the Hirota formulation and symbolic computations with Maple, we constructed ten classes of lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation (2.1) explicitly, and the resulting classes of lump-type solutions are supplements to the existing lump-type solutions in the literature [31].

We point out that if we change the Hirota derivatives in (2.2) into generalized bilinear derivatives [38], all the quadratic function solutions presented in the previous section are true for the generalized (3+1)-dimensional bilinear Jimbo–Miwa equations. It is also interesting to find positive polynomial solutions to other generalized bilinear or even tri-linear differential equations, formulated in terms of general bilinear derivatives [38], as did for resonant solutions in terms of exponential functions [39,40]. This kind of polynomial solutions will present lump or lump-typesolutions, including rogue waves, to the corresponding nonlinear equations by $u = 2(\ln f_\lambda^+)$ or $u = 2(\ln f_\lambda^-$).

It is recognized that higher-order rogue wave solutions are linked to different mathematical topics including generalized Wronskian solutions [41] and generalized Darboux transformations [42]. Higher-order generalizations of lump solutions and rogue waves, which exhibit more diverse soliton phenomena, can also be presented by the Fredholm determinant [43].

Acknowledgments

The work was supported in part by NNSFC under the grants 11371326, 11271008, 11371086 and 1371361, the Fundamental Research Funds for the Central Universities (2013XK03), the Natural Science Foundation of Shandong Province (Grant No. ZK2013AL016), Zhejiang Innovation Project of China (Grant No. T200905), the First-class Discipline of Universities in Shanghai and the Shanghai Univ. Leading Academic Discipline Project (No. A.13-0101-12-004), and the Distinguished Professorship by Shanghai University of Electric Power and Shanghai Second Polytechnic University.

References

