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Through the Zm-KP hierarchy, we present a new (3 + 1)-dimensional equation called
weakly coupled generalized Kadomtsev–Petviashvili (wc-gKP) equation. Based on Hirota

bilinear differential equations, we get rational solutions to wc-gKP equation, and further

we obtain lump solutions by searching for a symmetric positive semi-definite matrix. We
do some numerical analysis on the trajectory of rational solutions and fit the trajectory

equation of wave crest. Some graphics are illustrated to describe the properties of rational
solutions and lump solutions. The method used in this paper to get lump solutions by
constructing a symmetric positive semi-definite matrix can be applied to other integrable

equations as well. The results expand the understanding of lump and rational solutions

in soliton theory.

Keywords: Wc-gKP equation; symmetric positive semi-definite matrix; lump solutions;
rational solutions.
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1. Introduction

Nonlinear science plays an important role in fluid mechanics, plasma physics and

other fields.1–4 The nonlinear evolution equation can explain the movement of fluid

in shallow water waves well.3–10 Therefore, finding the exact solution of these in-

tegrable systems is a very significant work. In recent years, experts in physics and

fluid mechanics have, for wave propagation in integrable systems, extended the

generation mechanism and dynamic properties of rogue waves and lump waves.1–10

In this paper, we consider the (3+1)-dimensional generalized Kadomtsev–

Petviashvili (KP) equation11 as follows:

uxt − uxxxy − 3(uxuy)x − 2uxx + uyy + uzz = 0, (1)

which is derived from the generalized bilinear equation. Here, u = u(x, y, z, t) de-

notes a scalar function of the space variables x, y, z, and time variable t.

Under the variable transformation, we have

u(x, y, z, t) = 2(ln f)x, (2)

where f(x, y, z, t) is a real function. Inserting Eq. (2) into Eq. (1) yields

(DxDt −D3
xDy − 2D2

x + D2
y + D2

z)f · f = 0. (3)

The operator D is Hirota’s bilinear differential operator defined by

Dm
x Dn

t f · g =

(
∂

∂x
− ∂

∂x′

)m(
∂

∂t
− ∂

∂t′

)n

f(x, y, z, t) · g(x, y, z, t)|x′=x,t′=t. (4)

Through the Zm-KP hierarchy which takes values in a maximal commutative

subalgebra,12,13 a new (3 + 1)-dimensional equation called weakly coupled general-

ized Kadomtsev–Petviashvili (wc-gKP) is presented:{
uxt − uxxxy − 3(uxuy)x − 2uxx + uyy + uzz = 0

vtx − vxxxy − 3(vxuy)x − 3(uxvy)x − 2vxx + vyy + vzz = 0.
(5)

In addition, the consistent Riccati expansion method, generalized bilinear method

and other ways can also be used to construct the new nonlinear systems which

possess the rational and lump solutions.14–18

The (3+1)-dimensional equation (5) reduces to the following equation in (2+1)

dimensions under z = x:{
uxt − uxxxy − 3(uxuy)x − uxx + uyy = 0,

vtx − vxxxy − 3(vxuy)x − 3(uxvy)x − vxx + vyy = 0.
(6)

In most studies on the lump solutions, the bulk of Refs. 19–25 get lump solutions

to a single equation by searching for positive quadratic functions.1–10 Lump and

rational solutions also can be generated from soliton solutions by taking a long

wave limit.29,30 In particular, Tian et al. use these two methods to investigate the

breather wave and the lump wave of the KP equation.26–28 In this paper, we try to

find lump and rational solutions of Eq. (6) by searching for the symmetric positive
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semi-definite matrix. Furthermore, we discuss the trajectory of lump and rational

solutions, and do some numerical analysis on rational solutions to Eq. (6).

The arrangement of this paper is organized as follows. In Sec. 2, we construct the

bilinear equation to Eq. (6). In Sec. 3, based on the bilinear formalism to Eq. (6), we

get rational solutions to Eq. (6), and further we obtain lump solutions by searching

for a symmetric positive semi-definite matrix. We also do some numerical analysis

on the trajectory of rational solutions and fit the trajectory equation of the wave

crest. Finally, some conclusions are given in Sec. 4.

2. Bilinear Formalism

Using the variable transformation, we have
u = 2(ln f)x,

v = 2

(
g

f

)
x

,
(7)

the bilinear form of Eq. (6) is generated as{
(DxDt −D3

xDy −D2
x + D2

y)f · f = 0,

(DxDt −D3
xDy −D2

x + D2
y)f · g = 0.

(8)

That is,

2ftxf − 2fxxf − 2fxxxyf + 2fyyf − 2fxft + 2fx
2 + 6fxxyfx − 6fxxfxy

+ 2fxxxfy − 2fy
2 = 0,

fgtx − fgxx − fgxxxy + fgyy + ftxg − fxxg − fxxxyg + fyyg − ftgx

− fxgt + 2fxgx + 3fxgxxy − 3fxxgxy + fxxxgy

+ 3fxxygx − 3fxygxx + fygxxx − 2fygy = 0.

(9)

Here, f = f(x, y, t), g = g(x, y, t) are real functions, and the operator D is Hirota’s

bilinear differential operator defined by Eq. (4).

It is clear that if f, g solve Eq. (9), then u(x, y, t), v(x, y, t) are solutions to

Eq. (6) through dependent variable transformation equations (7).

3. Rational Solutions and Lump Solutions

In order to find the rational solutions to Eq. (6), we make the following assumption:{
f = XTAX + c1,

g = XTBX + c2,
(10)

and

A =


a11 a12 a13

a12 a22 a23

a13 a23 a33

, B =


b11 b12 b13

b12 b22 b23

b13 b23 b33

, X =


x

y

t

. (11)
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Here, both A and B are symmetric matrices with real entries. c1, c2 are also real

parameters to be determined.

Substituting Eq. (10) into Eqs. (9) and (12) can be derived by comparing the

coefficients of the same power terms of x, y, and t. The following set of constraining

equations for the parameters had been generated by performing a direct Maple

symbolic computation with f :

c1 = c1, a11 = a11, a12 = a12,

a13 =
3a11

2a12 + a11
2c1 − a12

2c1
a11c1

,

a22 =
a12(3a11

2 + a12c1)

a11c1
,

a23 = −a12(3a11
2a12 − a11

2c1 + a12
2c1)

a112c1
,

a33 =
9a11

4a12
2 + 6a11

4a12c1 + a11
4c1

2 + 6a11
2a12

3c1 − 2a11
2a12

2c1
2 + a12

4c1
2

a113c12
.

(12)

Combining Eqs. (7), (10) and (12), we can get the f

f = a11x
2 + 2a12xy +

(6a11
2a12 + 2a11

2c1 − 2a12
2c1)xt

a11c1

+
a12(3a11

2 + a12c1)y2

a11c1
− 2

a12(3a11
2a12 − a11

2c1 + a12
2c1)yt

a112c1

+

(9a11
4a12

2 + 6a11
4a12c1 + a11

4c1
2 + 6a11

2a12
3c1

− 2a11
2a12

2c1
2 + a12

4c1
2)t2

a113c12
+ c1, (13)

that corresponds to the rational solutions u to Eq. (6). To get lump solutions u to

Eq. (6), the matrix A and parameter c1 should satisfy the following constraints:

(1) Matrix A is a positive semi-definite matrix, in other words, the eigenvalues of

matrix A are all non-negative. (2) c1 > 0. (3) The elements in matrix A must

also satisfy the constraints a11 > 0 and a11a22 − a212 > 0. Conditions (1) and (2)

guarantee that f is always greater than 0. Condition (3) guarantees that f has only

one minimum value for any time t.

It is found that there are three arbitrary parameters a11, a12, c1 in Eq. (13).

Under the constraints of the above three conditions, we may assign the values of

the three free variables as follows:

a11 = 1, a12 = 1, c1 = 1, (14)

which implies that

f = 21t2 + 6xt− 6yt + x2 + 2xy + 4y2 + 1, (15)
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Fig. 1. (Color online) The lump solution u (Eq. (16) to Eq. (6)) at t = 0. (a) Contour plot;

(b) x-curve; (c) y-curve.

and

u =
12t + 4x + 4y

21t2 + 6xt− 6yt + x2 + 2xy + 4y2 + 1
. (16)

The contour plot, x-curve, and y-curve of the lump solution u are depicted in Fig. 1

when t = 0. Lump solution u has a maximum point (−5t + 1, 2t) and a minimum

point (−5t − 1, 2t), and the corresponding maxima and minima are 2 and −2,

respectively. The moving velocity of both extremum points with time is
√

29.

Although the constraints between parameters {aij , bij , c1, c2, i, j = 1, 2, 3} can

be obtained by substituting Eq. (13) and g = XTBX + c2 into Eq. (9), the con-

straint equations are too complex to further analyze the properties of the rational

solutions v. To remedy this, we substitute Eq. (15) into Eq. (9) and get the following

constraint equations:

b11 = b11, b12 = b12, b13 = −3c2 + b12 + 5b11,

b22 = −3c2 + 5b12 + 2b11, b23 = 3c2 − 8b12 + 2b11,

b33 = −30c2 + 42b12 + 9b11, c2 = c2.

(17)

Equation (17) contains three arbitrary parameters b11, b12, c2, which are given

as follows:

b11 = 1, b12 = 2, c2 = 1, (18)

which implies that

g = 63t2 + 8tx− 22ty + x2 + 4xy + 9y2 + 1, (19)

and

vr =

−2x2y − 2x2t− 10xy2 + 32xyt− 84xt2 − 2y3 − 2y2t

+ 42yt2 − 210t3 + 2y + 2t

(21t2 + 6tx− 6ty + x2 + 2xy + 4y2 + 1)2
. (20)

Here, vr is the rational solution to Eq. (6). Equations (16) and (20) are a set of

rational solutions to Eq. (6).
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Table 1. The position of the crest of rational solution vr.

t x y h vr,x vr,y

10 −50.00333918 20.01010358 60.00991274 −0.012038487 −0.028698477

20 −100.0016729 40.00509711 120.0020929 −0.019203938 −0.046050917
30 −150.0011160 60.00340827 179.9966164 −0.021803249 −0.052418889

40 −200.0008373 80.00256004 239.9965202 −0.023218168 −0.055863414

50 −250.0006700 100.0020499 299.9961000 −0.023990630 −0.057860924
60 −300.0005584 120.0017093 359.9974186 −0.024484116 −0.059487168

70 −350.0004786 140.0014657 419.9449314 −0.025010567 −0.059773932

80 −400.0004188 160.0012829 479.9265658 −0.025218182 −0.058815766
90 −450.0003723 180.0011407 540.0522814 −0.025904692 −0.061256340

100 −500.0003351 200.0010268 600.0720536 −0.026319387 −0.063187144

We find that rational solution vr has some interesting properties. First of all, vr
is an odd function, which means that v(x, y, t) + v(−x,−y,−t) = 0. So, if we can

figure out the trajectory of the crest when t > 0, we can figure out where the crest

is at any given moment. Second, the solutions obtained from equations vr,x = 0 and

vr,y = 0 are unwieldy algebraic structures. From that we can be sure that the crest

is not moving uniformly in a straight line with time. Therefore, in order to study

the motion path of the crest clearly, some numerical analysis on rational solutions

is appropriate.

Table 1 describes the position of the crest at different moments. Here, h is the

height of the crest, and vr,x, vr,y are used to measure the error of the numerical

calculation. The closer vr,x and vr,y are to 0, the more accurate the position of the

calculated crest is.

According to the description in the previous paragraph, we conduct nonlinear

fitting for the data in Table 1. In some time range of t > 0, the movement trajectory

of the wave crest roughly conforms to the following equation:
x =

−0.0335241199228886

t + 0.0396119992712996
− 5t,

y =
0.102865205001053

t + 0.181067231314590
+ 2t,

(21)

and, the height of wave crest h satisfies the following equation:

h = −0.0141135773333083 + 6.00024659784242t. (22)

It can be known from Eq. (21) that with the increase of time, the motion rule of

wave crest is approximately uniform linear motion. In addition, every other unit of

time, at the height of the crest, increases by about six. It is worth mentioning that

although the height of the crest changes over time, the lump wave is always local in

the x− o− y plane. Figure 2 shows this feature intuitively and clearly. From Fig. 2,

we can intuitively observe that vr is an odd function, which has been discussed

previously. Combined with Eq. (21), we can get the trajectory of the minimum
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Fig. 2. (Color online) The rational solution vr (Eq. (20) to Eq. (6)).

point when t < 0 
x =

−0.0335241199228886

t− 0.0396119992712996
− 5t,

y =
0.102865205001053

t− 0.181067231314590
+ 2t.

(23)

When t > 0, the height of the wave peak increases with the increase of time, this

qualitative conclusion conforms to Eq. (22). In addition, it can be clearly seen from

Fig. 2 that rational solution vr does not change its shape significantly with time t.

Rational solution vr looks particularly similar to the spatial structures of lump

solutions.

Whether Eqs. (21) and (23) can accurately express the position of the wave

peak at other moments, we have made the following test on Eqs. (21) and (23), and

the results are shown in Table 2.

Table 2. Test of fitting equations.

t x y h vr,x vr,y

700 −3500.000048 1400.000147 4172.000294 −0.022112116 0.008479364

800 −4000.000042 1600.000129 4798.000258 −0.029704090 0.003799510

900 −4500.000037 1800.000114 5380.000228 −0.017040070 −0.098400384
−700 3500.000048 −1400.000147 −4172.000294 −0.022112116 0.008479364

−800 4000.000042 −1600.000129 −4798.000258 −0.029704090 0.003799510

−900 4500.000037 −1800.000114 −5380.000228 −0.017040070 −0.098400384
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Fig. 3. (Color online) Lump solutions u and v (Eq. (24) to Eq. (6)) at t = 0. (a) Lump solution

u. (b) Lump solutions v. (c) Contour plot of lump solution v.

In Table 2, both vr,x and vr,y are very close to 0, so Eqs. (21) and (23) can

accurately represent the position of wave peaks when t ∈ [−900, 900]. From Table 2,

we can also find that Eq. (22) is no longer able to accurately express the height

of the wave peak, but we can still calculate the height of the wave peak through

Eqs. (20), (21) and (23).

Finally, we give a class of lump solutions to Eq. (6). If u = 2(ln f)x is a lump

solution to Eq. (6) and g = fx, then v = 2( g
f )x is also a lump solution to Eq. (6). In

combination with Eqs. (13) and (14), we give a specific set of solutions to Eq. (6):
u =

12t + 4x + 4y

21t2 + 6xt− 6yt + x2 + 2xy + 4y2 + 1
,

v =
6t2 − 12tx− 36ty − 2x2 − 4xy + 4y2 + 2

(21t2 + 6tx− 6ty + x2 + 2xy + 4y2 + 1)2
.

(24)

Lump solution u has a maximum point (−5t + 1, 2t) and a minimum point (−5t−
1, 2t), and the corresponding maxima and minima are 2 and −2, respectively. At

any given moment, the peak of lump solution v is in position (−5t, 2t). Lump wave

u and lump wave v move at the same speed with time, both of which are
√

29. This

type of lump wave is illustrated in Fig. 3.

4. Conclusion

In this work, we obtain rational solutions and lump solutions to wc-gKP equa-

tions by using bilinear formalism and constructing symmetric positive semi-definite

matrices. We also find an interesting set of rational solutions u, vr to Eq. (6), as

shown in Eqs. (15) and (20). Figure 2 shows that the rational solution vr is an

odd function, and the spatial structure of vr is very similar to that of general lump

solutions. With the increase of time, the motion trajectory equations (21) and (24)

of vr are approximately uniform linear motion, and the height equation (22) of the

crest increases linearly. In the same way, we can get rational and lump solutions

to Eq. (5). The method used in this paper to get lump solutions by construct-

ing a symmetric positive semi-definite matrix can be applied to other integrable
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Lump and rational solutions

equations as well. Whether general higher-order lump solutions can be obtained by

constructing symmetric positive semi-definite matrices is an important direction of

our future research. Meanwhile, we also hope that our results will provide some

valuable information in the field of nonlinear science.
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