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Through the Z,,-KP hierarchy, we present a new (3 + 1)-dimensional equation called
weakly coupled generalized Kadomtsev—Petviashvili (we-gKP) equation. Based on Hirota
bilinear differential equations, we get rational solutions to we-gKP equation, and further
we obtain lump solutions by searching for a symmetric positive semi-definite matrix. We
do some numerical analysis on the trajectory of rational solutions and fit the trajectory
equation of wave crest. Some graphics are illustrated to describe the properties of rational
solutions and lump solutions. The method used in this paper to get lump solutions by
constructing a symmetric positive semi-definite matrix can be applied to other integrable
equations as well. The results expand the understanding of lump and rational solutions
in soliton theory.
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1. Introduction

Nonlinear science plays an important role in fluid mechanics, plasma physics and
other fields.’* The nonlinear evolution equation can explain the movement of fluid
in shallow water waves well.®>10 Therefore, finding the exact solution of these in-
tegrable systems is a very significant work. In recent years, experts in physics and
fluid mechanics have, for wave propagation in integrable systems, extended the
generation mechanism and dynamic properties of rogue waves and lump waves. 10
In this paper, we consider the (3+1)-dimensional generalized Kadomtsev—

Petviashvili (KP) equation!! as follows:
Uyt — Uzwmy - 3<uwuy)z - 2”19: + uyy + Uzz = 07 (1)

which is derived from the generalized bilinear equation. Here, u = u(z,y, 2,t) de-
notes a scalar function of the space variables z,y, z, and time variable t.
Under the variable transformation, we have

w(,y, z,t) = 2(In f)a, (2)
where f(x,y,z,t) is a real function. Inserting Eq. (2) into Eq. (1) yields
(D.D; — DD, —2D7 + D2 + D?)f - f =0. (3)

The operator D is Hirota’s bilinear differential operator defined by

m n _ g i m Q_ﬂ n
DI thg— <8x ail'/> <8t aﬂ) f(x7yazvt) g($7y7z7t)|w’:w,t’:t- (4)

Through the Z,,-KP hierarchy which takes values in a maximal commutative

subalgebra,'?13 a new (3 + 1)-dimensional equation called weakly coupled general-
ized Kadomtsev—Petviashvili (we-gKP) is presented:

(5)

Uzt — Ugzzy — 3(Uasly)w — 2Uzz + Uyy + Uz =0
Vtp — Vzzay — 3(Vzly)z — 3(UpVy) s — 205 + Vyy + v, = 0.

In addition, the consistent Riccati expansion method, generalized bilinear method
and other ways can also be used to construct the new nonlinear systems which
possess the rational and lump solutions. 1418

The (3+1)-dimensional equation (5) reduces to the following equation in (2+41)

dimensions under z = x:

(6)

Uzt — Ugzay — 3(uwu7})w — Ugy + Uyy = O’
Vtx — Uggay — S(Uxuy)m - 3(urvy)m — VUgz + Uyy = 0.

In most studies on the lump solutions, the bulk of Refs. 19-25 get lump solutions
to a single equation by searching for positive quadratic functions. 1 Lump and
rational solutions also can be generated from soliton solutions by taking a long
wave limit.??3% In particular, Tian et al. use these two methods to investigate the
breather wave and the lump wave of the KP equation.26-28 In this paper, we try to
find lump and rational solutions of Eq. (6) by searching for the symmetric positive
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semi-definite matrix. Furthermore, we discuss the trajectory of lump and rational
solutions, and do some numerical analysis on rational solutions to Eq. (6).

The arrangement of this paper is organized as follows. In Sec. 2, we construct the
bilinear equation to Eq. (6). In Sec. 3, based on the bilinear formalism to Eq. (6), we
get rational solutions to Eq. (6), and further we obtain lump solutions by searching
for a symmetric positive semi-definite matrix. We also do some numerical analysis
on the trajectory of rational solutions and fit the trajectory equation of the wave
crest. Finally, some conclusions are given in Sec. 4.

2. Bilinear Formalism

Using the variable transformation, we have

w=2(In f),,

-+(3).

the bilinear form of Eq. (6) is generated as
(DzDy = DyDy = Dg + D) f - f =0,
{(Dth - DD, —D2+D3)f-g=0.
That is,
2fiaf = 2fuaf = 2fuwayf + 2fyyf = 2fufi + 210" + 6 fray fo — 6 frafuy
+2funafy — 20,7 =0,
f9te = f9ee = [Gzaay + [Oyy + frog = foag = Joaayg + fyy9 — ft9a (9)
— fegt + 2290 + 3f2g20y — 3frcGey + fooady
+3feeyYe = 3fay9za + fy9aaa — 2fygy = 0.

Here, f = f(z,y,t), g = g(x,y,t) are real functions, and the operator D is Hirota’s
bilinear differential operator defined by Eq. (4).

It is clear that if f,g solve Eq. (9), then u(x,y,t), v(z,y,t) are solutions to
Eq. (6) through dependent variable transformation equations (7).

3. Rational Solutions and Lump Solutions

In order to find the rational solutions to Eq. (6), we make the following assumption:

F=XTAX + 01,
{g = XTBX + ¢y, 10)
and
ail a2 @13 bii bz b3 z
A= a2 a a|, B=|biz b bu|, X=|y|. (11)
aiz a3 ass big b2z b33
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Here, both A and B are symmetric matrices with real entries. ¢, co are also real
parameters to be determined.

Substituting Eq. (10) into Egs. (9) and (12) can be derived by comparing the
coefficients of the same power terms of x, y, and t. The following set of constraining
equations for the parameters had been generated by performing a direct Maple
symbolic computation with f:

¢ =1¢C, ail =ai, a2 =0aiz,

2 2 2
3ai11°a12 + a11“c1 — a2®c

a3 = ’
a1y
2
a a12(3a11° + aizcy)
22 =
aiicy ’ (12)
2 2 2
~a12(3a11%a1s — a1er + aip®er)
agz = — ) )
ai ey
4, 2 4 4.2 2, .3 2, 2.2 4.2
e — 9a11%a12” + 6a11"a12¢1 +ar1"e1” + 6ar1*a1e”cr — 2a11°a12°¢1” + a12” ¢y
33 = .

arde;?
Combining Egs. (7), (10) and (12), we can get the f

f= anz? + 2a102y + (6a1121112 + 2a112¢1 — 26112201)3915

a11€C1

2

L a2Banr® ape)y®  anBan’ain —an’ea + an’e)yt
2

a11C1 ail“c

4, 2 4 4.2 2. 3
(9a11*a12® + 6a11*ai2c1 + ar1*ci” + 6aii*a12’c

—2a112a12%c1% + arnter?)t?
2 + C1, (13)

011‘361

that corresponds to the rational solutions u to Eq. (6). To get lump solutions u to
Eq. (6), the matrix A and parameter ¢; should satisfy the following constraints:
(1) Matrix A is a positive semi-definite matrix, in other words, the eigenvalues of
matrix A are all non-negative. (2) ¢; > 0. (3) The elements in matrix A must
also satisfy the constraints a;; > 0 and ajjas2 — a2y > 0. Conditions (1) and (2)
guarantee that f is always greater than 0. Condition (3) guarantees that f has only
one minimum value for any time ¢.

It is found that there are three arbitrary parameters ajq,ai2,¢; in Eq. (13).
Under the constraints of the above three conditions, we may assign the values of
the three free variables as follows:

a1 = ]., a12 = ]., Cc1 = 1, (14)
which implies that
f =21t% + 6xt — 6yt + x> 4+ 22y + 4y + 1, (15)
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(a) (b) (c)

Fig. 1. (Color online) The lump solution v (Eq. (16) to Eq. (6)) at ¢ = 0. (a) Contour plot;
(b) z-curve; (c) y-curve.

and
B 12t + 4x + 4y
YT Q1 T 6at— Gyt + 22 + 2ay + A2 + 1

The contour plot, z-curve, and y-curve of the lump solution u are depicted in Fig. 1
when ¢ = 0. Lump solution v has a maximum point (=5t + 1,2t) and a minimum
point (=5t — 1,2t), and the corresponding maxima and minima are 2 and —2,
respectively. The moving velocity of both extremum points with time is v/29.

Although the constraints between parameters {a;;, b;j,c1,¢2,1,j = 1,2,3} can
be obtained by substituting Eq. (13) and g = X7 BX + ¢ into Eq. (9), the con-
straint equations are too complex to further analyze the properties of the rational
solutions v. To remedy this, we substitute Eq. (15) into Eq. (9) and get the following
constraint equations:

(16)

bi1 =bi1, bz = b2, biz = —3ca + bi2 + 5biy,
bao = —3ca + 5b12 4 2011,  bag = 3ca — 8big + 2611, (17)
b33 = —3002 + 42b12 + 9()117 Co = C3.

Equation (17) contains three arbitrary parameters by1, b12,co, which are given
as follows:

bin=1, bia=2, =1, (18)
which implies that
g = 63t2 + 8tx — 22ty + 2% + day + 9y* + 1, (19)
and
—2x%y — 22%t — 10xy? + 32xyt — 84xt? — 23 — 2%t
+42yt? — 21013 + 2y + 2t
(21¢% + 6tz — 6ty + x2 + 22y + 4y? + 1)

(20)

Uy =

Here, v, is the rational solution to Eq. (6). Equations (16) and (20) are a set of
rational solutions to Eq. (6).
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Table 1. The position of the crest of rational solution v,.

t T y h VUr,z Ur,y

10  —50.00333918 20.01010358 60.00991274 —0.012038487 —0.028698477
20 —100.0016729 40.00509711  120.0020929  —0.019203938 —0.046050917
30 —150.0011160 60.00340827  179.9966164  —0.021803249 —0.052418889
40 —200.0008373 80.00256004  239.9965202  —0.023218168 —0.055863414
50 —250.0006700 100.0020499 299.9961000  —0.023990630 —0.057860924
60 —300.0005584 120.0017093 359.9974186  —0.024484116 —0.059487168
70  —350.0004786 140.0014657 419.9449314  —0.025010567 —0.059773932
80 —400.0004188 160.0012829 479.9265658  —0.025218182 —0.058815766
90 —450.0003723 180.0011407 540.0522814  —0.025904692 —0.061256340
100 —500.0003351 200.0010268 600.0720536  —0.026319387 —0.063187144

We find that rational solution v, has some interesting properties. First of all, v,
is an odd function, which means that v(z,y,t) + v(—z, —y, —t) = 0. So, if we can
figure out the trajectory of the crest when ¢ > 0, we can figure out where the crest
is at any given moment. Second, the solutions obtained from equations v, , = 0 and
vy = 0 are unwieldy algebraic structures. From that we can be sure that the crest
is not moving uniformly in a straight line with time. Therefore, in order to study
the motion path of the crest clearly, some numerical analysis on rational solutions
is appropriate.

Table 1 describes the position of the crest at different moments. Here, h is the
height of the crest, and v, ,,v,, are used to measure the error of the numerical
calculation. The closer v, , and v, are to 0, the more accurate the position of the
calculated crest is.

According to the description in the previous paragraph, we conduct nonlinear
fitting for the data in Table 1. In some time range of ¢ > 0, the movement trajectory
of the wave crest roughly conforms to the following equation:

. —0.0335241199228886
4 0.0396119992712996 ’

(21)
~0.102865205001053 py
Y5 + 0.181067231314590 ’
and, the height of wave crest h satisfies the following equation:
h = —0.0141135773333083 + 6.00024659784242¢. (22)

It can be known from Eq. (21) that with the increase of time, the motion rule of
wave crest is approximately uniform linear motion. In addition, every other unit of
time, at the height of the crest, increases by about six. It is worth mentioning that
although the height of the crest changes over time, the lump wave is always local in
the £ — 0 — y plane. Figure 2 shows this feature intuitively and clearly. From Fig. 2,
we can intuitively observe that v, is an odd function, which has been discussed
previously. Combined with Eq. (21), we can get the trajectory of the minimum
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Fig. 2.

point when ¢t < 0

—0.0335241199228886

(Color online) The rational solution v, (Eq.

0.102865205001053

Y = 0.181067231314590

Lump and rational solutions

(f) t = —100

= t —0.0396119992712996

(20) to Eq. (6)).

(23)

When t > 0, the height of the wave peak increases with the increase of time, this
qualitative conclusion conforms to Eq. (22). In addition, it can be clearly seen from
Fig. 2 that rational solution v, does not change its shape significantly with time ¢.
Rational solution v, looks particularly similar to the spatial structures of lump

solutions.

Whether Egs. (21) and (23) can accurately express the position of the wave
peak at other moments, we have made the following test on Egs. (21) and (23), and
the results are shown in Table 2.

Table 2.

Test of fitting equations.

x

Y

h

Ur,x

Ur,y

700
800
900
—700
—800
—900

—3500.000048
—4000.000042
—4500.000037
3500.000048
4000.000042
4500.000037

1400.000147
1600.000129
1800.000114
—1400.000147
—1600.000129
—1800.000114

4172.000294
4798.000258
5380.000228
—4172.000294
—4798.000258
—5380.000228

—0.022112116
—0.029704090
—0.017040070
—0.022112116
—0.029704090
—0.017040070

0.008479364
0.003799510
—0.098400384
0.008479364
0.003799510
—0.098400384
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-4 -3 -2 -1 0 1 2 3 4
X

(a) (b) (©)

Fig. 3. (Color online) Lump solutions v and v (Eq. (24) to Eq. (6)) at ¢ = 0. (a) Lump solution
u. (b) Lump solutions v. (¢) Contour plot of lump solution v.

In Table 2, both v,, and v,, are very close to 0, so Egs. (21) and (23) can
accurately represent the position of wave peaks when ¢ € [—900, 900]. From Table 2,
we can also find that Eq. (22) is no longer able to accurately express the height
of the wave peak, but we can still calculate the height of the wave peak through
Egs. (20), (21) and (23).

Finally, we give a class of lump solutions to Eq. (6). If w = 2(In f), is a lump
solution to Eq. (6) and g = fo, then v = 2(%), is also a lump solution to Eq. (6). In
combination with Egs. (13) and (14), we give a specific set of solutions to Eq. (6):

12t + 4z + 4y
u =
212 + 6zt — 6yt + 22 + 2oy + 4y2 + 1’
6t2 — 12tz — 36ty — 222 — 4oy + 49> + 2
(2142 + 6tz — 6ty + 2 + 2xy + 4y% + 1)%

(24)

Lump solution » has a maximum point (—5¢ + 1,2¢) and a minimum point (—5¢ —
1,2t), and the corresponding maxima and minima are 2 and —2, respectively. At
any given moment, the peak of lump solution v is in position (—5t,2t¢). Lump wave
w and lump wave v move at the same speed with time, both of which are v/29. This
type of lump wave is illustrated in Fig. 3.

4. Conclusion

In this work, we obtain rational solutions and lump solutions to wc-gKP equa-
tions by using bilinear formalism and constructing symmetric positive semi-definite
matrices. We also find an interesting set of rational solutions w, v, to Eq. (6), as
shown in Egs. (15) and (20). Figure 2 shows that the rational solution v, is an
odd function, and the spatial structure of v, is very similar to that of general lump
solutions. With the increase of time, the motion trajectory equations (21) and (24)
of v, are approximately uniform linear motion, and the height equation (22) of the
crest increases linearly. In the same way, we can get rational and lump solutions
to Eq. (5). The method used in this paper to get lump solutions by construct-
ing a symmetric positive semi-definite matrix can be applied to other integrable
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equations as well. Whether general higher-order lump solutions can be obtained by
constructing symmetric positive semi-definite matrices is an important direction of

our future research. Meanwhile, we also hope that our results will provide some

valuable information in the field of nonlinear science.
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