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In this paper, we present a systematic formulation of multi-breathers and higher-
order rogue wave solutions of a fourth-order nonlinear Schrédinger equation on the
periodic background. First of all, we compute a complete family of elliptic solution
of this higher-order equation, which can degenerate into two particular cases, i.e.,
the dnoidal and cnoidal solutions. By using the modified squared wavefunction
approach, we solve the spectral problem on the elliptic function background.
Then, we derive multi-breather solutions in terms of the theta functions, particular
examples of which are the Kuznetsov-Ma breather and the Akhmediev breather.
Furthermore, taking the limit of the breather solutions at branch points, we
construct higher-order rogue wave solutions by employing a generalized Darboux
transformation technique. On the periodic background, we present the first-order,
second-order and second-second-order rogue waves. With aid of the theta functions,
we explicitly characterize the resulting breathers and rogue waves, and demonstrate
their dynamic behaviors by illustrative examples. Finally, we discuss how the
parameter of the higher-order effects affects the breathers and rogue waves.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that integrable nonlinear evolution equations play an important role in nonlinear science,

and their localized solutions, solitons, breathers and rogue waves, have attracted great attention [1,16,29,

41,54]. As a kind of nonlinear waves, rogue waves usually appear in the oceans with a significantly larger

amplitude than the surrounding waves, and they often come from nowhere and disappear without any
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trace [3,38]. The emergence of rogue waves is thought to be associated with the modulation instability of
the plane waves or periodic waves [6]. On mathematical aspect, as the lowest-order rational solution to the
nonlinear Schrodinger (NLS) equation, the Peregrine soliton, first proposed by Peregrine in 1983 [55], plays
an important role in understanding the mechanics of the rogue wave phenomena. It is a doubly localized
wave packet with a peaked hump and two side holes. Moreover, the maximum amplitude of the wave packet
reaches three times the amplitude of the background plane wave. The Peregrine soliton solution can also
be derived by taking the larger-period limitation of Kuznetsov-Ma breathers (KMBs) [39,45] or Akhmediev
breathers (ABs) [2]. In recent years, many efforts have been made to realize the higher-order rogue waves of
the NLS equation [14,34,52]. In addition, rogue waves have been experimentally observed in many physical
settings including nonlinear optics [48,60,66], Bose-Einstein condensates [8,59] and plasma physics [27,62].
These important studies show that rogue waves can indeed be excited from a finite continuous background
wave. More and more numerical and experimental evidence have shown that there are many new nonlinear
physical phenomena that are related to rogue waves and breathers. For example, the excitation for rogue
waves has been proposed [44] in media with electromagnetically induced transparency [24,49].

In the past decades, the field of rogue waves has rapidly grown. Recently, there has been considerable
attention paid to rogue waves on a periodic background [7,10,23,63]. It has been shown that rogue waves
can also arise due to the modulational instability of the periodic waves. Rogue waves on the periodic
background have many rich physical properties and dynamic behaviors [22,35,51]. In Ref. [10] such exact
solutions to the NLS equation were constructed first by combining the method of nonlinearization of spectral
problem with the Darboux transformation (DT) method. Further, breathers and rogue waves for the NLS
equation on the elliptic function background have also been presented by combining the algebro-geometric
method and the squared wave function approach [23]. Recent studies reveal that rogue waves on the periodic
function background are universal solutions of majority of integrable models [11,42,53,67,72]. In addition,
it is worthwhile mentioning that rogue waves on the background of on stationary periodic waves have been
experimentally observed in nonlinear optics and hydrodynamics [65]. Very recently, some achievements
have been made on the solutions of breathers and rogue waves on the periodic background for the integrable
equations associated with higher-order spectral problems, such as the vector Geng-Li model [28] and the
Yajima-Oikawa long-wave-short-wave equation [43].

The NLS equation has limitations related to realistic problems, as there are also other significant physical
effects that need to be considered. For instance, the ultrashort pulse propagation in optical fibers, aside
from the group-velocity dispersion and Kerr nonlinearity, higher-order effects need to be taken into account,
like the higher-order dispersion, self-steepening and self-frequency shift. Therefore, many extended NLS
equation have been proposed by adding high-order terms with more free parameters. Recently, Ankiewicz et
al. have proposed an extension of the NLS equation to the infinite NLS hierarchy with an arbitrary number
of higher-order terms and free real coefficients [5,36]. This extension can be used to model various physical
problems of nonlinear wave evolutions with a large degree of flexibility. Particularly, under different reduced
coefficients, besides the NLS equation, this extension also includes many important integrable nonlinear
equations such as the Hirota equation [30], the Lakshmanan-Porsezian-Daniel (LPD) equation [40] and the
quintic NLS equation [17]. In the past few years, a large number of exact rogue wave or breather solutions of
many equations in NLS hierarchy have been investigated on various backgrounds. Moreover, recent studies
have shown that the higher-order effects in NLS hierarchy affect spatiotemporal patterns of rogue waves
and cause the compression effects of the breathers [64,73]. For example, rogue waves for the Hirota equation
on a uniform background [4] and on the dn/cn background [50] have been studied using different methods.
Dynamical evolution behaviors of rogue waves and rational solitons for the quintic NLS equation have been
detailed [68]. Meanwhile, in Ref. [18] researchers have found that a breather solution for the quintic NLS
equation can be converted into a non-pulsating soliton solution.
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In this paper, we study the following fourth-order NLS equation

igr + & (qoo + 2|1%q) + B (dwwas + 6305 + 4|6:°q + 8|d|*qus + 2¢°@ua + 6]q|*q) =0, (1)

where ¢(x,t) is the slowly varying wave packet envelope, x, t respectively are the scaled spatial and time
coordinate, the bar refers to the complex conjugate, the subscripts denote the partial derivatives, o and
B are real parameters and stand for the strength of higher-order linear and nonlinear effects. Eq. (1) is
also called the LPD equation, which was originally derived as a model for the nonlinear spin excitations
in the one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin [21,57]. It also arises in alpha
helical proteins modeling the dynamics of higher-order molecular excitations associated with the energy
transport [20]. In nonlinear optics, besides the group-velocity dispersion and Kerr nonlinearity, Eq. (1) can
model the propagation of ultrashort optical pulses with the fourth-order dispersion, cubic-quintic nonlinear-
ity, self-steepening and self-frequency shift [56]. Therefore, in contrast with the standard NLS equation, with
the higher-order dispersions and nonlinearity effects, Eq. (1) can be applied to describe more complicated
and real circumstance [46]. In the past decades, Eq. (1) has been investigated from different points of view,
and its large classes of exact solutions have been studied extensively like the solitons, breathers and rogue
waves [19,64,73].

In Ref. [71], we have obtained the first-order rogue wave solutions on the dn- and cn-elliptic function
backgrounds. However, this algebraic method maybe is not very straightforward in use for generating multi-
breather and high-order rogue wave solutions on the periodic background because it just only relies on the
one- and two-fold potential transformations in the DT method. Therefore, in the present paper, we will
give a systematic construction of multi-breather and higher-order rogue wave solutions for Eq. (1) on the
elliptic function background, which can recover some previously published solutions. Since Eq. (1) is the
third member in the NLS hierarchy of equations, its solutions can be studied in the same way as treating
the NLS equation. However, it is a nontrivial work to construct multi-breather and higher-order rogue wave
solutions on the background of elliptic functions because of the complexity of the time part in the Lax
spectrum problem.

The method of the present study in solving the Lax spectrum problem is the modified squared
wave (MSW) function approach [31-33], which is the so-called simple modification of the known finite-
band integration method [25,26,70]. This method is based on the re-parametrization of the solution with
the use of algebraic resolvent of the polynomial defining the solution in the finite-band integration method.
The periodic solutions of nonlinear integrable equations can be constructed explicitly by introducing the
Riemann surface of the hyperelliptic curve. It has been developed and applied to the investigation of the
periodic solutions for many soliton equations [12,13,31-33,61] such as the NLS equation, the derivative NLS
equation and the Heisenberg model.

In this paper, by use of the MSW function approach, we first solve the spectral problem of Eq. (1)
corresponding to the Jacobi elliptic function seed solution. Then, with aid of the DT, we give the expression
of multi-breather solution in terms of the determinant of theta functions based on the algebro-geometric
method. Using the Taylor expansion technology and taking the special limit of the breather solutions at
branch points, we derive higher-order rogue wave solutions by employing generalized DT. Based on obtained
solutions, we analyze the dynamic behaviors of the breathers and rogue waves on the periodic background.
We illustrate these results by discussing several examples. Finally, we discuss how the parameter of the
higher-order effects affects the breathers and rogue waves.

The rest of this paper is arranged as the follows. In Section 2, we present the Lax pair, the multi-
fold DT of Eq. (1) and the explicit formulas of the associated potential transformation. In Section 3, we
derive the Jacobi elliptic function solutions of Eq. (1) and solve the Lax pair corresponding to the Jacobi
elliptic function seed solution. In Section 4, we express these solutions in terms of the theta functions, and
construct the multi-breather solution on the periodic background. In Section 5, by taking the special limit
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of the breather solutions at branch points, we present higher-order rogue wave solutions. Furthermore, we
analyze the dynamic behaviors of these solutions. In Section 6, by taking the KMB and the first-order rogue
wave on the dn-periodic wave background as two illustrative examples, we discuss how the parameter of the
higher-order effects affects the breathers and rogue waves. Section 7 is devoted to the conclusions.

2. Lax pair and Darboux transformation
To begin with, we write the Lax pair of Eq. (1) in the form [58]
v, =0V, ¥, =VVU, (2)

with

and

F=-i\ G=iq, H=ig,

A= —ia (20% = q7) +18 (7(dze — 2iM) — €uGs + (—4N°T + 200Gz + Gza) + 36°T +8X)

B = a(2iAq — ¢2) + B (q(—6427 — 8IA?) + 4iAg*T + 4N + 2iMgan — Goan)

C = (g +2iAg) + B (G(—8iA° +6q,) — ANy + 4iAgq” + 2iAGuw + Gova) |
where (¢;, ;)T (j = 1,2, the superscript T denotes the matrix transpose) are two vector solutions for the
above linear eigenvalue problem, and A is the spectral parameter. The compatibility condition ¥ ,; = Wy,
or the zero curvature equation U, — V,, 4+ [U, V] = 0 is equivalent to Eq. (1).

It is well known that the DT method plays an important role in constructing explicit solutions of nonlinear

integrable equations [47]. Suppose that ¥; = (v;, ;)T (i = 1,2,...,n) are a set of n linearly-independent
solutions of the Lax pair (2) with A = A;. Then, the n-fold DT of Eq. (1) can be constructed by:

U[n] = T[n]¥, Tn]=1I- XnM:LlD;IX:[m q[n] =q— 2Xn,1Mn_1XIL’23 (3)

with

Uiy,
Mn:<ﬁ> . X = [T, 0s,..., 0], D, =diag(A — A1, A= Aoy A — An),
g 1<i,j<n

in which X, ; (k = 1,2) is the kth row of X,,, I is the 2 x 2 identity matrix and the superscript { stands
for the conjugate transpose. Moreover, based on the work in Refs. [23,29], we know that the above DT can
be further generalized by a special limit, which is useful in constructing the higher-order soliton solutions.
In this way, by expanding the ¥; at points A = \;: ¥; = Z;“:'Bl WA — A)U], so that the generalized DT
can be formulated as follows: [23]

T [my,ma,...,my] =1— XM D IXT, ¢ [my,ma,...,mp] =q— 2X1M_1X£, (4)

with
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X =[X1,Xs,...,Xn], M=YSY',

Yl O 0 Dl O O S171 SLQ SLn
0 Y - 0 0 Dy --- 0 5271 5272 S2,n

Y = . .1, D= . . .|, S= ;
0 0 Y, 0 0 D, Sp1 Snpo Sn.n

and

)

1+1
X, = \I/t[IO],\I,Ll]’_._’\II([Ima—l]}’ Sa)b:<i<k+l—2

) 1<k<mg,1<I<my

()\b B S\G)k+l71 k—1
1
ot 0 0 e 0 0
1 1
\I/a \I/a [N \I]a ()\75\&)7”0/ (/\—;\a)ma71 ()\75\&)

3. Jacobi elliptic function solutions and the solutions of Lax pair

In this section, we would like to exploit Jacobi elliptic function solutions of Eq. (1) and derive the
corresponding solutions of the Lax pair (2) by the MSW function approach. We look for a wave solution to
Eq. (1) of the following form

q(z,t) = yu(z,t) exp(iat), (5)

where u(z,t) is a positive real function to be determined and a is a real constant. First, we set two eigen-
functions of the Lax pair (2): Uy = (41, zj)l)T and ¥y = (12, (;SQ)T, which are used to build a squared wave
function via

f= —% (V192 +1h201), g=v1v2, h=—¢1¢. (6)

In combination with the definition of f, g and & in Egs. (6) and using the Lax pair (2), we get

fo = —iHg+iGh, g, = 2iGf +2Fg, hy, = —2iHf — 2Fh, (7)

Based on the Egs. (7) and (8), one can find that y?(\) = f2 — gh is independent of x and ¢ and is only the
function of A. Next we want to derive quasi-periodic solutions of Lax pair (2) in the presence of periodic
background. It is known that periodic and quasi-periodic solutions of integrable evolution equations are
associated with Riemann surfaces in the algebro-geometric theory [7]. In our situation, we consider such a
surface determined by the following polynomial

4
v =12 —gh =] (0 =) =M = 510% + 5507 — 53\ + 54, (9)

i=1

where \; are zeros of the polynomial which parameterize the genus-1 solution. Egs. (7) and (8) have a
solution in the polynomial forms of f, g and h:
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fZ)\2—f1(.Z‘,t)/\+f2(.T,t), g:iq(ac,t)(/\—u(x,t)), h:i(j(l‘,t) ()\—ﬂ(l‘,t)). (10)

By comparing the coefficients of A* on both sides of Eq. (9), we obtain

1 1
fl(xat) = 5517 fz(l',t) = §(p1 - U($7t))7 (11)
1 1
t) + iz, t) = =5 — —— iz, t) = — 2z, t) =2 t 2_4 12
N(% )+:U/($a ) 231 u(x’t)p% ,U/(ZL', ),U/(QL ) 4u(x,t) (U (LIZ’, ) Plu(l’, )+p1 84)7 ( )
where

1 1 1

P1 = S2 — 15%7 b2 = 581 <52 - ZS%) — 53. (13)

From the above expressions (12), we can derive the exact expressions of y and &

| pe £iy/—R(u)
oo H= g 2u(x,t) (14)

where
R(u) = v’ (z,t) + (s1/4 = 2p1)u’ (2, t) + (T — s1p2 — 4sa)u(z, t) + p. (15)

From the first equation in Eqs. (11), the function f;(z,t) is a constant determining the phase velocity
of the background periodic wave. For simplicity, we consider the case of f; = 0. The case of f; # 0 can be
similarly treated as the case of f; = 0. In order to satisfy f; = 0 and wu(z,t) > 0, the zeros A; need to be
formed by two pairs of specific complex numbers and their complex conjugates

M =b+ic, No=-b+id, M3=b—ic, M\ =—b—id, (16)

where b, ¢ and d are positive real constants. In addition, when the polynomial (15) admits three zeros
uj (j = 1,2,3), then through a direct calculation, we can derive the relations between the roots and the
coefficients:

1 1 1
ulzfz()\1+>\37>\27)\4)2, u2:7Z(A1+A47)\27)\3)2, U3271()\1+)\2*)\3*>\4)2, (17)

and

1

1
s1=0, so= 5 (Ul + ug + U3), 83 = \/—UjUgUu3, S84 = 1_6 (u% -2 (U2 + U3) uy + (UQ — Ug) 2) . (18)

Meanwhile, by inserting Egs. (16) into Egs. (17), we obtain u; = —4b%, us = (¢ — d)? and u3z = (c + d)%.
Using Egs. (6)-(8) and taking A = u, one can obtain

pe = =20/ f(p) = =2iy(n), pe = =483, (19)
Based on Egs. (7) and (8), we further derive the expression of u with respect to x and ¢

Uy = 24/ —R(u), us = —48s3u,. (20)

Since R(u) is a cubic polynomial and u; < 0 < ug < ug, the explicit expression of u is readily obtained in
terms of the Jacobi elliptic function
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u(z — 4Bsst) = ug + (uz — ug) sn® (Vug — uy (z — 4Bsst) ;m) , (21)

where m = , /%3=%2_ Moreover, from Eqgs. (7), (8) and (10), we find that

Uz —ul

) .S 1 )
¢e = 2ipg = 15’(1 + (5 Inu),q, g =2i(ass+ B(3s5 —4s4)) ¢ — 4853, (22)

Based on the results of Egs. (20) and Egs. (22), we deduce that

q(z,t) = \/Ug + (ug — ugz) sn? (\/ug — UL T; m) exp (2i [QSQ + B(3s3 — 484)] t) , (23)
where we have set s3 = 0 for convenience. Therefore, under this condition s3 = /—ujusuz = 0, the

solution (23) can reduce to the following two types of Jacobi elliptic function solutions

(i) For u; =0 (i.e., b=0)

q(z,t) = kdn (kx; m) exp(iat), (24)
where k =c+d, m = % and a = 2 [oz (02 —|—d2) —|—6(3C4+202d2 +3d4)].
(ii) For ug =0 (i.e., c=d)
q(z,t) = kmcn(ka; m) exp(iat), (25)

where k = 202 + d2, m = /o and a = 4 [o (d? — b2) + 48 (b* — 4b2d% + d*)].
b24-d

Next, we proceed to construct the solutions of the Lax pair (2) on the background of the periodic

solutions (24) and (25) using the MSW approach. By defining w; = i—j (j = 1,2) and using Egs. (6), we
have
i h(z,t;\)
tAN)==|———-=— t Nw;(x,t; A
f(xv ) ) 2 <’LU]({II,t7)\) g(:E, ) )’LUJ(.T7 I ))7

which implies that

m@m»:ieﬁﬁﬁiﬁ):%ﬂﬁﬂﬂiﬂ,

g(x, t; ) Tt N) —y
(St -y L k(A
w2(l’,t,)\) =1 <m) =1 <m> . (26)

Then, from the Lax pair (2), the functions 1, and ¢; in ¥; can be derived as:

(nen), = F+Gur, (nor), =Hoo ~ F. (27)

(Inv1) = A+ Buwr, (ngy) = cwil s (28)

Inserting Egs. (10) into Egs. (27) and combining w; in Eqgs. (26), we have
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h(z,t; A .. C 1
(Inth1)s = —iA — %Q(%ﬂ =i\ + 1W_12% t5n (w(@) = 2m),
s g($7ta >‘) — . . C2 1
(1n¢)1)x =i\ + f(l',t,)\) I yq(xvt) = —i\ — I’U,(ZI,‘) — 272 + 5 In (U(JZ) - 2’72)xa

where C; = 4\y; and v; = A% + s2/2 F y (F symbol: the upper sign is for j = 1 and the lower sign is for
j = 2). Integrating with respect to = once for the above equations gives

x

. . Cl ds 1 -
Ity = iAo+ i 0/ e g (@) = 2) + Di(o), (20)
Ing; = —idx — i/ % + % In (u(z) — 27v2) + Da(t). (30)
0

With the aid of Egs. (19) and Egs. (22), we insert the high-order derivative of y and ¢ with respect to x
into Egs. (28), we arrive at

(In91)e = i (2y + s2) +iB(Py + Fo), (Ing1) =i (2y — s2) +iB(Py — F), (31)

where

P =459 — 802 —

2u(@) [p(z) + p(@)] (=2 () — 52 +u(z))
A — p(z) '

Py = — (u(x) [4pu(z)i(x) + u(z)] — 2s2u(z) — 2s3) +

By use of pup = fﬁ (u2 — 2sou + 83 — 434) and g+ ¢ =0 in Egs. (12), the P, and Py can be simplified as
Py =45y — 8\%, Py = 3s3 — 4s,. (32)

Furthermore, based on Egs. (29)-(32), the ¢ and ¢; can be given by

T

d
U1(z, ;) = BivJu(z) — 2y exp (61), 0, = 1/ u(gli; +idz +iDyt, (33)
- 1
0
[ Chds
¢1(x,t; \) = Bay/u(x) — 27yaexp (02), 603 = —i W — iAx + iDot, (34)
- 2
0

where D; = o (2y + s3) + 3 [y (4s2 — 8A?) & (353 — 4s4)], and the B; (j = 1,2) stand for two complex
constants to be determined. According to the definition: w; = %, one can derive that

. [ F0,0:X) +y [h(0,0;X) . [u(0) =272 _ By [u(0) — 2y
wn(0,0:2) = 1\/f(o,o; N — y\/g(0,0;)\) - 1\/u(O) o = B\ o) =2 (35)

For simplicity, we consider By = 1 and By = i.

By using a similar procedure as in ¢; and 7, we can also obtain the other vector solution of the Lax
pair (2) as follows:

Yoz, t; A) = Vu(z) — 2y2exp (—b2), d2(x,t; ) = ivu(z) — 2y exp (—b61) . (36)
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Therefore, one fundamental solution for the Lax pair (2) with ¢ as the elliptic function (23) can be
represented as:

Wt ) = | V) =2 Juln) — 2007 (37)
ivu(r) — 2v0e%  iy/u(x) — 2ye 0 |

4. Theta function representation for solutions and multi-breather solution

To begin with, we will use theta functions to express the solutions ¢, ¢; and ¢; (j = 1,2). Based on
Egs. (19), we know that the spectra curve (9) as genus-1 Riemann surface can be parameterized by the
uniformization variable z [7,63]

w2 = (“Z,;”), A(z>=u<i(2k_”), (38)

with k = /us —uj and [ € [‘TKl, KTI}, where K’ = K(1 —m) and K(m) is the complete elliptic integral of
the first kind. Furthermore, in order to deduce the solutions of the Lax pair (2) with a uniform expression

for different [, we introduce the parameterization:
u; = —k2dn®(ag;m), up = —m?k%cn®(ag;m), usz = m?k*sn?(ag;m), ag = K + 2il. (39)

Combining Egs. (18) and Eq. (21), we have u(z) = k? (dn*(kz;m) — dn*(ap;m)) and sp = %(2 —m? —
3dn?(ag;m)). Obviously, when Iy = KT, and . = 0, u(z) can reduce to the Jacobi elliptic dn and cn
functions, respectively. Moreover, with the aid of the associated transformation relationship (see appendix
B of Ref. [63]), we can derive directly the solutions ¢ in terms of the theta functions:

qa(z,t) =k

U403 ( ) : % exp(iat). (40)

— ey expliat),  qe(z,t) =k
9304 (2

)

To continue, according to the definition of y :=

Nz

—1In(u),, taking A = p in Egs. (38), we can obtain the

corresponding A(z) of Eqgs. (40) as follows:

Aa(z) = %km2 sn(i(z — 1)) cd(i(z = 1)), Ac(2) = %kdn(i(z —1))sc(i(z = 1)).

Hereafter, for simplicity, we omit the modulus parameter m. Using the addition formulas of the Jacobi
elliptic functions (see 122.18 of Ref. [9]), the above expressions can be rewritten as one formula for different
[ (ie., lgorl.):

Az) = %k’ [dn(2il)dn(i(z — 1)) sc(i(z + 1)) — men(2il)sd(2il)] . (41)
On account of Egs. (38), we can write y(z) in the form:

va(z) = ikZmQ (sni(z — )2 — ed(i(z — 1)), ye(z) = 1/8 (m2sn(i(z — ))* — de(i(z — 1))?) .

Furthermore, the above two equations can merge into one

y(z) = ikz (dnz(ag) - dnz(al)) , (42)
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where a; = i(z — 1) and a3 = K + 1K’ —i(z + ). In order to simplify parametrization of the solutions, we
consider a better formula of A2(z) by the addition formula

1
N (z) = Zk2 (dn*(ao) + dn*(ar) + dn’(az) + m? — 2) . (43)
With these results, we obtain

1 1 .
vi = A (2) + 352 F y(z) = §k2 (dn®(aj) — dn®(a0)), (j=1,2). (44)
Meanwhile, we have u(z) — 2v; = k? (dn*(kz) — dn*(a;)) = k*m? (sn?(a;) — sn?(kx)). Based on Egs. (9)
and (38), we know that 2y3¥ = 4\3 + 2s5), and thus the C; can be derived as

dy(2)

C; =4\ (2)v; = 2y(z) (d/\(z) F 2)\(z)> = k% (y(2) F A*(2)) = ik>m?sn(a;)en(a;)dn(a;).  (45)

Next, we will present the elements of the solutions (37) in terms of theta functions. By utilizing the inte-
gration formula (see appendix B of Ref. [63]), one can derive

[ i} kxsn(aj)cn(aj)dn(aj) 1. Y (“g}(’“)
/ (s)—mds‘/ () —s(ay) 2 IHWMZM% (46)

Using the addition formula of theta functions (see 3.4 of Ref. [37]), we get

L2 929, (a]+kw> 9 <aj2;(k:m)
) kW 192( )192( ) . (47)

% (B (3 %)
u(z) — 2y —k;2 ( LA2K L g

U5\ (s%) 03 (5%)
Then, by inserting the above two equations into Eq. (37), we have

i(z4+1)—kz

i(z=)—kz . 9
lk192194 3 2K eEngriDQt
)

k9994 Gl (T> oFra+iDit

Vi(,t;2) = z o dilwtiz) = :
! O3t (4%) v, (I(SKU> ' U391 (3%) 0, (“5—}”)
and
9 i(z4+1)+kz . 9 i(z=0)+kz
'(/)2(1'7-6; Z) — k"’921194 3 ( 2K )e—EQZ—iDQt ¢2(.T,t; Z) — 1k?92194 ! ( 2K )e—E'lm—iDlt7

D304 (32) 9, (%) ’ U394 (3%) v, («;I—(z))
where By = kZ(i(z — 1)) + i\ and Ey = — %I — kZ(K + iK' —i(z + 1)) — i\. Using the addition formulas of
the Zeta function (see 142 of Ref. [9]), we get

Zy = Z(K +iK' —i(z +1))
= Z(=i(z = ) + Z (K +iK’ = 2i0) + m*sn(i(= — ) sn (K + 1K' = 2il)sn (K + iK' ~i(z + 1))
= —Z(i(z — 1)) — Z(K + 2il) + cs(K — 2il) dn(K — 2il) — %

+m?sn(i(z —1))sn (K + iK' — 2il)sn (K + 1K’ —i(z +1)).

For Il =14 or | = 1., we find that the Z; can be further simplified into
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. . im 2i
Hence, the F5 can be rewritten in the form
Ey=kZ(i(z—1))+ kZ(K +2il) + i\(z) = By + kZ(K + 2il). (49)

Therefore, one fundamental solution for the Lax pair (2) with g represented by Eq. (40) can be expressed
in terms of theta functions

l¢1($,t;Z)]

djl(xa t, Z)

91 (i(z;lf)(sz)
MeElx+i[a(2y+52)+ﬂ(y(45278)\2)+(3527454))}t 194(i(§;<l>) (50)

k o (i(zD)—ka
9394 (5%) ivs 15k )ekZ(K+2il)r*2i[a82+[3(3537434)]t
o-T5)

and
Yo, t52) | _
ooz, t; 2
ﬂa(i(—zg}:m) —kZ(K+2il)z+2i[asa+B8(3s5—4s4)]t
k920 oY ©
2YV4 efElzfi[a(2y+32)+ﬁ(y(45278)\2)+(35§7454))}t 192( 2K ) 4
0204 (5) ()

(51)

In the following, we construct multi-breather solutions of Eq. (1) on the background of the Jacobi elliptic
functions. In this way, we consider the linear combination of the two sets of solutions

7/}1 (.’,E, t7 Z?,)

B PE

+ Q5
o2 (x,t; 2;)

Pa(,t; Zz)]

idsa(—x; 2 )wy (z, t) id14(x; 2;)

= G(z) <OJ2(CC,t;zi) l da(—; %)

N aiwgl(x,t;zi) [dgz(x;zi)wl—l(x,t)]> (52)

in which «; is a complex constant, and

wi(z,t) := exp (kZ(K + 2il)x — 2i [asy + B(3s3 — 4s4)] 1),
wa(x,t;2;) = exp (kZ(i(z — 1))z 4+ iAz + i [o(2y + s2) + B(y(4s2 — 8A%) + (352 — 4s4))] ),

Co) e ) o\ 2K )
dya(z; z) = 19( ) , daa(z;2) = " (l(zz_;z)) )

ko9
Glx) = 1919;::1?’ i(za—1)
Vi (25) R

Then, the complex conjugate of the solution (52) can be given by:

U(x,t;2;) = G(x) <—@2(a:,t; %) Ldgz(dm(:r;zj)

x; Ej)wl_l(x, t) idia(—z; Z5)

+ a5 (2t 7)) [dw(z;zﬁ)wl(x’t)b . (53)
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Consequently, the potential transformation in Eq. (3) can be rewritten in this form:

e T(2:)®(2;

where &1 = [Uq (21), V1 (22),..., V1 (20)], P2 = [Va(21),V2(22),...,Ps (zn)]T Then, according to the
representation of the solution for the NLS equation [23], we would like to use Eq. (52) and Eq. (53) to
represent the elements in Eq. (54)

Ui (2))U(2i) = G(2)? (w2, t; 20) @2, ; 2) [daz (3 Z5)dsa (—; 2i) — dua(; Z)dra (=25 2)]
+ awy (@, wy (2, 2)wa (2, 85 2) [dua (5 20 da (w3 2;) — dia(w; Z5)daa (25 2:)]
+ ajwi (2, t)wa(z, t; zi)G;;l(x, t; 25) [dia(—; 23)ds2 (—x; Zj) — dia(—x; Z)dsa(—; 2;)]
+aiajwy Nz, b 2wy (2,8 25) [daa(x; 25)dsa (— 3 25) — dua(w; 23)dua(—25 Z)]) - (55)

The terms in square brackets can be simplified based on the addition formula for the theta functions (see
3.5b and 3.8 of Ref. [37]),

05 (2L
[dao(x; Zj)dso (=5 2;) — dra(@; 25)dra(—2; 23)] = (

9y (22) 9 <1(z7+z] )194 (l(z,—zj) kac)
0 (5 () (1)
(

2il i(z;—%; i(zi+Z5)+kx
st st
2\"2K )V2\ 2K

Due to the symmetry relationship, the other two terms can be given by

00 3 0 () 0 (1552 ) 0, (=)

[dra(—x; 2i)dsa (=3 25) — dra(—; Zj)ds2 (—; 7)) = y <l(zl+l))19 (1(z]+l)> (1(zl—l) ( )

)7
2il kx 1(z,+z]) i(2s—25)+kx
[ds2 (w3 2i)dsa(—23 25) — dia(w; 20 )dra(—2; )] = 1;93<<i(2:2l;9;?(921<(?(:9+l(> <12214<)19 (lzjz))
2\ 72K 2 (73

Similarly, by using the addition formula (see 3.8 of Ref. [37]) and according to the A(z) in Eq. (41), we

arrive at

) (52) (552 “
o2 (552) s (G22) 90 (72 o1 (%)

Furthermore, we have

where
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9y (1 z7+2217<)+k:6)
94 (i(zf;}{)%z)

+ aiwfl(x,t)wgl(x,t; zi)wa(x,t; 25

| 9y (i(zﬂr;;()fkr)

o (55)

M ; =ws(x,t; z;)wa(x, t; 25

+ ajwi (2, t)wa(z, t; zi)wgl(:v7 t; 2 + aidngl(:m t; zi)wgl(x, t; 2,

In addition, we also have
9 <i(zqygll){—kx> s <i(2j-£2+kx)
94 (i(zzi};l)) e (1(52_7‘;1))

s (i(zi;li);rkz) 05 (i(zj;rzﬂm)

o (1(%;2—1%) 9 (i(%;g—kz>
0 (50) (%)

9 (i(zj;szm) s (i(zi;2+kz)

Uy (2:)Wa(zj) = —iG(2)? | wi' (x, w2, b 2;)@a (2, £ 25)

+ a2, t; zj)w1_2(x, t)w;l(x, t; 2;)

— ajwa(w, t; 2)iy H(w, b 25)

E— —1 ——1
—a; 0wy (z, twy (2, b 2)wy - (2,85 25) — = (58)
(5] 0 (G0)
Based on Eqs. (40), we note that ¢(z,t) can be represented in the form:
9 kx+2il
g, 1) = wi (@, )G, 1) — ( il ) (59)

With the above results and the additional formula for the theta functions (see 3.5b and 3.7 of Ref. [37]),
the H; ; in Eq. (54) can be written as

Hj,i = q(x,t)Mj,i — Wg(Zj)‘I/l(Zi) = —iwl_l(x,t)G2(x, t)HjJ', (60)

where

9y (i(,;i;(rz)) 9y (1(21-75]-2;(21)71”)19 (fz) v, ( (zrz))
U1 (—i(z}zj))ﬁz (—i(zj”))ﬁs (3%) Vs (_1(2?1)>
i(zs—1 i(zi+Zz;4+20)+kx
o () o (e o
I3 (1(Z§+ZJ))192 ( (Zﬁ‘l))ﬁ (2
9y (i(z;;l)) 9, ( (zl+z1;(2l) k:z) (_K
V3 (i(z,i+2j))q\94 (1(23—l )19 (22_K
9y ( iz 4+ )192 ( (zﬁzg(zz +k:z) 9, ;%
o () (G502} ) 0 (57)
Therefore, by inserting Eq. (57) and Eq. (60) into Eq. (54), we derive the multi-breather solutions of
Eq. (1) on the background of the Jacobi elliptic functions

H;; =wa(z,t; z)a(z, t; 25)

+ aiwfl(x, t)w;l(a:, t; zi)wa (z, t; 25)

+ agajwy iz, t 2)0y s, t 2)
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2_il n
i) = ale.0) et 1) <§5§L§;§)> , (61)

in which H,, = (Hj;)1<ij<n and M, = (M;;)1<ij<n-
4.1. Breather solutions on the dn-periodic wave background
First, we consider the parameters | = [ = K% and n = 1 in Eq. (61), with which one can obtain a

single breather solution on the dn-periodic wave. Furthermore, with the aid of the shift formula of theta
functions (see 2.7 of Ref. [37]), we derive a more compact expression for the breather solution:

194 Hd 2 2_
— =2 [0452+B(332 454)}t 62
q1 193 ‘2\4(1e ) ( )
where
194 (i(z1—22[1()—k:c) 192 (i(zl-l-;ll()—i-kx) . 192 (i(zl—&-jll()—kx) 2194 (1(21—2211{)+kx)
M = iz M TR N T ] -2\
n(ar) o n(ER) () o ()
i(z1—21)—kz i(z1421)+kx i(z1421)—kz i(z1—21)+kz
e () g () () g, 0 ()
Ha= oy, (G) a2 9, (eatz)) i e 9. (11tz) *Iml g, (=)
1( 2K ) 3( 2K ) 3( 2K ) 1( 2K )

and 1, = g exp (wx — ot),

2K

. 9
w = (ik —2Z((z1 — lg))k — Qi)\) , 0=2iy (200 + B(4s2 — 8)\2)) , Mo =
9

A= %ka sn(i(21 — 10)) ed(i(z1 — 1)), oy = %k’zmQ (sn(i(z1 — 1a))? — cd(i(z1 — 1a)?) -

Fixing the parameters of background solution £k = 1 and m = g, we have u; =0, ug = %, us =1, s0 = %
and s4 = g;. From Eq. (40), one can obtain that the maximum of |g| located on these lines: z = 27K, 7 € Z.
And the maximum of |g;| can be calculated by the peak-height formula [15]: |g,| = |q| + i, 2[Im(A(z;))|-

To reveal the dynamic behaviors of the solution (62), we rewrite 7; in this form:

m = a; {2 exp (%) cosh <%> — 1] [cos(&2) +isin(€2)], and & = wgrx — ort, & = wrx — ost, (63)

where the subscript R and I represent the real and imaginary parts of the variable, respectively. In this
way, we know that the breather is localized in the straight line: & = 0.

For wp # 0, the velocity of the breather moving along the above line can be derived: v = pr/wg. By
taking z; = —0.6180 — 0.6953i and «; = —1, we plot the Fig. 1(a). It can be seen that the peaks all lie on
a line, and the velocity is v; = —7.1465. Meanwhile, using the inverse of the velocity, the slopes of this line
can be calculated: K7 = —0.1399. Moreover, due to A(z1) = 0.1526 + 0.7803i and based on the peak-height
formula, we obtain the maximum of |g1] is 1 4 2|Im(A(z1))| = 2.5605 located at the origin. Specially, we
consider the choice z; = —0.9270 — 0.6953i such that o = 0. This condition can result in a breather
solution, which will propagate in the line: 2 = 0. On account of p; = 3.1976 and A\(z1) = 0.9229i, the period
of breather in this line is T' = 27 /p; = 1.9650, and the maximum of |g;| is 2.8458 located at x = 0 and
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Fig. 1. The breather solutions of Eq. (1) with & = 8 = 1 on the dn-periodic wave background. (a) The general breather (GB)
solution with z; = —0.6180 — 0.6953i and a; = —1. (b) The KMB solution with z; = —0.9270 — 0.6953i and a; = —1. (¢) The AB
solution with z; = —0.4000 — 0.9270i and a; = —1. (d-f) Show the contour plots of the corresponding solutions.

t = 7T. To illustrate this point, we plot Fig. 1(b), it is shown that the solution is temporally breathing and
spatially localized, which is similar to the KMB on the plane wave background.

On the other hand, by taking z; = —0.4000 — 0.9270i such that wg = 0, we can obtain another form of
breather solution: the AB solution, and all its peaks located on the line: ¢ = 0 as shown in Fig. 1(c). As
seen from this figure, we find that the breather does not have a shift of crest, and the maximum value is
2.2064 located at the origin.

Next, by choosing the parameters [ = I and n = 2 in Eq. (61), we obtain two-breather solution on
the dn-periodic wave background. Then, we fix the same parameters as the background wave in single
breather solution. Taking z; = —0.9270 — 0.6953i, zo = —0.4000 — 0.9270i and a; = a3 = —1, we plot the
Fig. 2(a). In this figure, it exhibits the spatio-temporal structure of an interaction between an AB and a
KMB. Both breathers have no the shift of crest after the interaction. The maximum value can be derived
by: |g2| = 1+ 2Im(A(z1) + A(z2)) = 4.4063, and it is also located at the origin. We note that at the crossing
point there exists a fundamental second-order rogue wave with a “four-claw” symmetric structure around
the central peak.

4.2. Breather solutions on the cn-periodic wave background

Similarly, by choosing the parameters | = . = 0 and n = 1 in Eq. (61), we can obtain the single breather
solution on the cn-periodic wave background. Then, we fix the parameters of background solution k = 1
and m = \/_, so that u; = —%, uy = 0, ug = %, Sg = % and s4 = 1—16. By taking z; = —1.4833 + 0.4635i
and a; = 1, we have A(z1) = —1.4833 + 0.4635i and plot the Fig. 3(a). It is shown that this solution
is a GB moving to left along a line with the velocity —5.5744. The slope of this line is —0.1794 and the
maximum amplitude of the breather is 1.9270 at the origin. In addition, if we take z; = 1.8541 4 0.6953i,
so that y; = 3.2891 and A(z1) = —0.7024i, the KMB on the cn-periodic background can be obtained. As
shown in Fig. 3(b), the breather is temporally breathing and spatially localized. By a calculation, we find
that the period T is 0.9551 and the maximum value is 2.4048 at x = 0, t = 277. Moreover, by choosing
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(@) (b)

Fig. 2. (a) The two-breather solution of Eq. (1) on the dn-periodic wave background. (b) Show the contour plot of the solution.
The parameters of the solution (62) are chosen as « = 3 =1, z; = —0.9270 — 0.6953i, zo = —0.4000 — 0.9270i and a1 = az = —1.

3

3

t
S b & b b o N & o ®

(d

Fig. 3. The breather solutions of Eq. (1) with a = 8 = 1 on the cn-periodic wave background. (a) The GB solution with z; =
—1.4833 + 0.4635i and a; = 1. (b) The KMB solution with z; = —0.9270 — 0.6953i and a; = 1. (¢) The AB solution with
z1 = —0.4000 — 0.9270i and a7 = —1. (d-f) Show the contour plots of the corresponding solutions.

z1 = —0.7711 — 0.56i and «; = —1, we can obtain the AB on the cn-periodic background, as shown in
Fig. 3(c). From this figure, we deduce that the breather admits the shift of crest, and the maximum value
is 1.2643 at the origin.

Next, by taking the parameters | = [, and n = 2 in Eq. (61), the two-breather solution on the cn-periodic
wave background can be obtained. Taking z; = —1.4833 + 0.4635i, 2o = —0.7711 — 0.56i and a3 = as =1,
we plot the Fig. 4(a). From this figure, we can see that this solution exhibits an interaction between a GB
and a KMB. Two breathers both have the shift of crest after the interaction.

5. Rogue waves on the elliptic function background

In the previous section, we know that the period of breather solutions (KMB solution or AB solution) is
related to y(\) (i.e., T = 27/0;, or = Im(2iy(2a + B(4s2 — 8A?)))). In the following, by taking y(\) — 0,



Y.-C. Wei et al. / J. Math. Anal. Appl. 537 (2024) 128287 17

iy

() (b)

Fig. 4. (a) The two-breather solution of Eq. (1) on the cn-periodic wave background. (b) Show the contour plot of the solution. The
parameters of the solution (61) are chosen as « = 8 =1, 21 = —1.4833 + 0.4635i, zo = 1.4833 4 0.4635i and a1 = az = 1.

we will construct rogue wave solutions on the elliptic function background. To begin with, we expand the
parameter y(\) at the branch point A\; : A = A\; + €2 with €; being small parameter, and we arrive at

y(A) = VA= 2A)A = A2) (A= A3)(A = \g) = e Y3, (64)

where

2 2 2
. — — — _ € € €
Y1 = \/()\1 )\2)()\1 )\3)(/\1 /\4), Yi \/(1 + )\1 — )\2) (1 + )\1 — )\3> (1 + )\1 — )\4>

Furthermore, we have

T =AM+ 52/24+ RN+ €]) —anYr, u(z) —2m =ui(x) — 26 (2A1 + €7) + 2e151 Y7,
Ci=Cy+4 [E%(?)/\% + 82/2 + 3)\16% + 6411) — 61y1Y1(>\1 + 6%)] s
D1 = oo+ e1y1Y1 [01 — 8Bei(2A1 + €})] .

in which uy (z) = u(x) — (201 + s2), Co = 43 + 2521, 00 = asa + B(3s3 —4s4) and 01 = 200+ B(4sz — 8AF).

Then, by inserting the above equations into the vector solution ¥y, we would like to expand them in Taylor
series of €1. In this way, we first consider the expansion of 1, as follows:

o e o oCids
Y1 = u(z) — 2yiexp (01) = Zwyel], 01 :l/u(l—s—i—l)\.r—‘rlDlt. (65)
0

s) —2m

Then, with the aid of Egs. (5), (10) and (22), we arrive at

_ b 2u@N ()2 _
S A e i Z¢ . (66)

where 6y = 2igpt and the above expansion coefficients wgﬂ and (b[li] are defined by

W 19" [i]ila(bl

1 _ﬁ 86 |€1—07 1 _Z' (96 |E1 =0-
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In a similar procedure, ¥, and ¢, can be treated for the other eigenvalue A\ = X\ + €3 with €3 as a small
parameter

Zwé”ezk $2 —Zsz e, (67)

where 1/)£i] and ¢[2i ) have the same forms of wgﬂ and (b[li] by exchanging A1 to A2. Moreover, using Eq. (10)
and f? — gh = 0, we have

w(@)? = ——— [<2u(:17))\1 - i““f;m) > (2u(x))\1 + 1“””2(5”))} . (68)

To avoid singularity, we consider a different representation for the expansion coefficients of ¢; based on
Eq. (68). For convenience, we would present the first two odd-order coefficients

m _ () n _ _re(@)yu(z)u ()
U= PO =Ty ele) (69)

h 1G4 (& T2(X Z-l, €;2G; €
53] El_g(e%fz)x;_ ol exp(01), [13] = vVu(x)uy(z) lil(i)g - Zl_léjf(i;+ 02 exp(©2), (70)
with
iug (z)

0, =iCp& + iNiz +ippt, ©O9 =07 — 2ipgt, J; (1‘) = 2u($))\1 + 5

Tl(x) =1+ (iglt —4i\ (&1 =+ (2)\% =+ 52)52)) ul(x), ’/’2(1‘) = 7’1(13) -2,

;= 3rj(z (Z p + 21x> + %()\xl) (2—rj(z)+ UIZ&)Q (rj(x)3 +(8— 6rj(x))) ,

euz1m@ﬂﬂ>+6Mq<)—muwnxqz~@&kﬁ(%%+w)mwx
ezj = 48IA1 (yf (sorj () + 2\1rj(2) — 2ua(2)) — 41 (2AF + 52) wa () ,
ea; = 24i (s2 (2A1rj(z) — ui(2)) + 2A1 (=B wa (2) + 2737 (2) + yir;(z)))

in which 7 = 1,2, and the definition of &; is given by

(94 _f_ d 1 s uz—uz
bi 'O/ul(s)i Hb/(l—CQSDQ(S))i’ " uz — (2M\% + s9)” ¢ ug — (2A2 + s9) ()

To calculate &;, we would use the integration formulas (see 336 of Ref. [9]) of Jacobi elliptic functions, and

obtain
& = #ll(p,Cm), = amn(k), (71a)
6 = g |G B + (¢ — s — Loy 4 CHEIGEIRED ] gy
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4 3 4 5 ¢*sn(kx)en(kz)dn (k)
§a = 61— gQT(mQ — Em2§1 + F(WQCQ +¢* =3m?)& - —3v1gs + b(i a:g?sn(gl?x))u”’ 2,

(71d)

where v; = (2¢2(1 +m?) — ¢* — 3m?), E(kx) and TI(¢, (2, m) respectively stand for the elliptic integral of
the second and third kind (see appendix B of Ref. [63]), which can be given by

E(kx) = Z(kx) +

(73)

1 9 kx—v2o
II (¢, ¢, m) = kz + sc(v2) nd (v2) (5 In M

Therefore, with the these Eqgs. (71a)-(71d) and (73), we can obtain w][.i] and ¢)§z’] to construct higher-order
rogue wave solutions on the elliptic function background.

5.1. Rogue waves on the dn-periodic background

In this case, taking \; = A3 = ci and Ay = Ay = di, then we fix the background solution q(z,t) =
kdn (kx;m)exp(iat) with k = c+d, m =, /ﬁ and a = 299 = 2[a(c? + d?) + B(3ct + 2¢2d? + 3d*)]. To
obtain the first-order rogue wave solution, we first derive r1(x) by using Eqs. (71a) and Eq. (71b)

rl(x) =1+ (lglt — 41)\1 (51 -+ (2)\% —+ 82)52)) ’I.Ll(l')

c+d E(m) _ 2d(c+d)

—14 (iglt + o= (Z(kx) + mkm) + 2%) ui (@) — = —sn(ka)en(kz)dn(kx),

where g; = 2a + 43(3c¢% + d?), u1(z) = u(z) + 2 — d? and u(x) = k? dn(kz)?. Next, taking ¢; = 77/1?} and
01 = [11] into one-fold DT (3), we obtain the first-order rogue wave solution on the dn-periodic background

2cu (z)(|r1(z, t)|> — 2r1(z, t)) (2ciu(z) + iug(x)/2) piat

|r1(x, t)|?|2ciu(z) + iug (x)/2]% + w(z)us (z)2|r1 (z, t) — 2]2 (74)

¢1 = kdn (kz;m) [1 +
It should be noted that another rogue wave solution can be derived by the interchange of the parameters c
and d, which corresponds to a different branch point.

By choosing the amplitude of background wave as a fixed value k = 1, we plot Fig. 5(a) and Fig. 5(b).
They exhibit the spatiotemporal patterns of two types of rogue waves on the background of the dn-periodic
traveling wave, respectively. As seen from Fig. 5(a), the central part resembles an interaction between two
solitons, and they collide elastically and generate a transient high wave in the interaction region. Fig. 5(b)
displays a periodic oscillation of the rogue wave along the z-direction on the periodic background.

To continue, taking ¥y = ( gll, [11])T and ¥y = (¢£1},¢[21])T into the two-fold DT (3), we can derive the
second-order rogue wave solution on the periodic background

det (Hg) iat
= kdn(kz) | ———22 | elat, 75
0 = kau(ke) | $5 G e (75)
where
2 2
AT bt sieiot [5007 1
M, = 2 ot Hy =M, — oo | O | ] |
G I T A A o o A
c+d 2d
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) (e) ®

Fig. 5. (a) The first-order dn-rogue wave solution with « = 8 =1, ¢ = 0.675, d = 0.325 and m = 0.9367. (b) The other first-order
dn-rogue wave solution with a« = 8 =1, ¢ = 0.325, d = 0.675 and m = 0.9367. (c) The second-order dn-rogue wave solution. (d-f)
Show the contour plots of the corresponding solutions.

in which z[Jj[l] and ¢£1] are given by Eq. (69).

By choosing the same parameters ¢ and d as those in Fig. 5(b), we plot the Fig. 5(c), which shows the
solution (75) on the dn-periodic wave. The maximum value of the |g2| is 3 at origin. It is observed that in
the central part three solitons form a second-order rogue wave with a large peak, and the other part is still
period in x.

Next, we give some special cases for the above rogue wave solutions. When ¢ -+ 0 and d — 1 (or d — 0
and ¢ — 1) such that £ = 1, then we have dn(z;0) = 1. In this case, the rogue wave solution (74) can
reduce to the classical rogue wave solution (Peregrine soliton) on the constant background. In Fig. 6(a), the
maximum value of |¢;| is about 3 at the origin. The maximum amplitude for the rogue wave is three times
as that of the exciting plane wave. When ¢ — d, then dn(z;1) = sech(x), one can obtain that the rogue
wave solutions (74) and (75) respectively reduce to the double- and third-pole soliton solutions, as shown in
Fig. 6(b) and Fig. 6(c). The maximum values of |¢1| and |g2| are 2 and 3 at the origin. In Fig. 6(b), two solitons
with equal amplitudes elastically collide along with a strong interaction, and generate a first-order rogue
wave. In Fig. 6(c), three solitons with equal amplitudes elastically collide and generate a second-order rogue
wave. We would like to point out that this kind of multi-pole soliton solution was first reported by Zakharov
and Shabat in the NLS equation [69]. The multi-pole solution can be regarded as the degeneration of the
N-soliton solution when N distinct poles (reflection coefficient admits N simple poles in the terminology of
the inverse scattering transform) coalesce into one.

In order to obtain higher-order rogue waves, we consider expansions at two different spectral parameters
and take m; = mg = 2 in the generalized DT (4), then the corresponding second-second-fold potential
transformation is represented as

@22 = q — 2X;M ' X, (76)

where M = YSY', X = [\11[10], \11[11]7\1][20]’ \I/[zll] and
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(d) (e) ®

Fig. 6. (a) The Peregrine soliton via solution (74) with ¢ = 1, d = 0 and m = 0. (b-c) The double- and third-pole soliton solutions (74)
and (75) with ¢ = d = 0.5 and m = 1. (d-f) Show the contour plots of the corresponding solutions.
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Taking \IIE-O] = (wj[.l],(bg.l])T and \I/gl] = (wj[.g], ¢£_3])T7 and plugging them into Eq. (76), thus we can obtain the
second-second-order rogue wave solution.

By setting the parameters ¢ = 0.675 and d = 0.325, we can obtain the second-second-order rogue wave
on the dn-periodic background. As shown in Fig. 7, it is clearly seen that a larger-amplitude rogue wave is
located at the origin, which corresponds to the third-pole soliton solution on the dn-periodic background.
The rogue wave shown in Fig. 7 is actually enhanced in the center position up to 5 times as high as
the height of the periodic background. In fact, we can compute the maximum value formulas: |g2 2| =

lq(z, )] + 2(2Im(A1)[ + 2|2Im(A2)]-
5.2. Rogue waves on the cn-periodic background

Similarly, the parameter choices are \; = A3 = b+ di and Ay = Ay = —b+ di, then we fix the background
solution ¢(z,t) = kmcn (kx;m) exp(iat) with k = 2v/b2 + d?, m = 1/172‘1—22 and a = 4[a(d?® — b?) +4B8(b* —
4b%d? + d*)]. To continue, we first give 71 () in the form

—b+di
2bc

<Z(kx) + %kx) + 2£c> up(x) + 2d(%—’wli)sn(kav)cn(lm)dn(kx),

ri(z) =1+ (iglt +
where 01 = 2a + 168(d? — b? + bdi)), u1(z) = u(x) + 4bdi and u(z) = k?m? cn(kx)?. Then, taking ¢ = wgl]

and ¢ = [11], and inserting them into one-fold DT (3), thus we can derive the first-order rogue wave

solution.
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Fig. 7. (a) The second-second-order rogue wave solution on the dn-periodic background with « = 8 =1, ¢ = 0.675, d = 0.325 and
m = 0.9367. (b) The contour plot of (a).
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Fig. 8. (a) The first-order cn-rogue wave solution with « = 8 =1, b = —0.45, d = 0.5 and m = 0.7433. (b) The other cn-rogue wave
solution with « = 8 =1, b = 0.45, d = 0.5 and m = 0.7433. (¢) The second-order cn-rogue wave solution. (d-f) Show the contour
plots of the corresponding solutions.

By fixing the amplitude of background: km = 1 with the parameters b = —0.45 and d = 0.5, we plot
Fig. 8(a). It shows the spatiotemporal structure of the rogue wave solution on the cn-periodic background
with m = 0.7433. In this figure, it is obvious that the rogue wave moves to the right, and the maximum
value of |g1| is 2 located at the origin. Moreover, if we take b = 0.45 and d = 0.5, one can derive another
rogue wave moving to the left, which arises from a different branch point, shown in Fig. 8(b). In addition,
we can obtain the second-order rogue wave solution by taking Ay = —0.45 4+ 0.5i and Ao = 0.45 + 0.5i,
shown in Fig. 8(c). On the cn-periodic background, a fundamental second-order rogue wave is located at
the central part, and its maximum amplitude reaches 3 located at the origin.

Particularly, when b — 0, then cn(kx; 1) = sech(kz). Thus, the above rogue wave solutions can also reduce
to the double- and third-pole soliton solutions, which agree completely with the results in Section 5.1.
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Fig. 9. (a) The second-second-order rogue wave solution on the cn-periodic background with « = 8 =1, b = 0.2, d = 0.5 and
m = 0.9285. (b) The contour plot of (a).

(c) (d)

Fig. 10. The KMB on the dn-periodic wave background with the same parameters in Fig. 1(b) except for (a) 8 = 0.01 and (b)
B =100. (c) and (d) respectively show the contour plots of (a) and (b).

By setting b = 0.2 and d = 0.5, we plot the Fig. 9, which displays the spatiotemporal structures of
the second-second-order rogue wave on the cn-periodic background. It seems that four breathers collide and
produce a transient high wave at the origin, which corresponds to second-order rogue wave with double poles.
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Fig. 11. The rogue wave on the dn-periodic wave background with the same parameters in Fig. 5(a) except for (a) 8 = 0.01 and (b)
B = 100. (c) and (d) respectively show the contour plots of (a) and (b).

In addition, the maximum value of the rogue wave can be derived: |g2 2| = |¢(z, t)[4+2]2Im(A\q)|+2[2Im(A\2)| =
5.

6. The effects of the parameter 3 on the breathers and rogue waves

In this section, we mainly discuss how the parameter 8 (the strength of higher-order nonlinear effects)
affects the breathers and rogue waves on the periodic background.

From the expression (62) of the breather on the periodic background, we know that the period of the
breathers is T = 27 /o1, o7 = Im(2iy(2c + B(4s2 — 8)?))). Therefore, the parameter 3 can affect the period
of the breathers, namely, the period decreases when the value of 3 increases. Since the parameter 8 has the
similar effect on the GB, KMB and AB on the periodic background, in the following we take the KMB on
the dn-periodic wave background as an illustrative example. From three cases in Fig. 10(a), Fig. 1(b) and
Fig. 10(b) with g = 0.01, 8 =1 and 8 = 100 respectively, it can be clearly seen that the number of peaks
for the breathers on same time interval is increasing when the value of [ increases. In addition, the height
of peaks of this breather is |¢g1] = ¢(0,0) + 2|Im(A(21))|. Therefore, the amplitude and the magnification
factor for the breather is independent of the parameter 3.

For the purpose of comparison, by choosing three cases of Fig. 11(a), Fig. 5(a) and Fig. 11(b) with the
parameter § = 0.01, 8 = 1 and B = 100 respectively, we show the surface plots of rogue waves on the
dn-periodic wave background. It is obvious that the parameter § is responsible for compression effect of
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the rogue wave in the time direction. When the value of 3 increases, the rogue wave compression increases.
Similar to the breathers, the parameter 5 does not affect the amplitude and the magnification factor for
the rogue wave on the periodic background.

7. Conclusions

In this paper, we have constructed the multi-breather and higher-order rogue wave solutions of a fourth-
order NLS equation on the periodic background. First, by use of the MSW function approach, we have
computed a complete family of elliptic solution, which can degenerate into two particular cases, i.e., the
dnoidal and cnoidal solutions. In addition, we have solved the corresponding solutions to the associated
spectral problem. Second, these solutions have been parameterized via the algebro-geometric method. With
the aid of the multifold DT and the additional formulas of the theta functions, we have explicitly expressed

the multi-breather solutions in terms of the theta function determinants on the dn and cn periodic back-
grounds, which correspond to the parameter [ = KT and [ = 0, respectively. On the periodic background, we

have constructed three types of multi-breathers: (a) the GB solution; (b) the AB solution; (c¢) the KMB so-
lution, and two-breather interaction solutions. Moreover, by taking some special limits at the branch points
of the breather solutions, we have obtained the first-order, second-order and second-second-order rogue wave
solutions on the dn and c¢n periodic backgrounds. In addition, we have discussed how the parameter 3 (the
strength of higher-order nonlinear effects) affects the breathers and rogue waves on the periodic background.
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