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In this paper, we present a systematic formulation of multi-breathers and higher-
order rogue wave solutions of a fourth-order nonlinear Schrödinger equation on the 
periodic background. First of all, we compute a complete family of elliptic solution 
of this higher-order equation, which can degenerate into two particular cases, i.e., 
the dnoidal and cnoidal solutions. By using the modified squared wavefunction 
approach, we solve the spectral problem on the elliptic function background. 
Then, we derive multi-breather solutions in terms of the theta functions, particular 
examples of which are the Kuznetsov-Ma breather and the Akhmediev breather. 
Furthermore, taking the limit of the breather solutions at branch points, we 
construct higher-order rogue wave solutions by employing a generalized Darboux 
transformation technique. On the periodic background, we present the first-order, 
second-order and second-second-order rogue waves. With aid of the theta functions, 
we explicitly characterize the resulting breathers and rogue waves, and demonstrate 
their dynamic behaviors by illustrative examples. Finally, we discuss how the 
parameter of the higher-order effects affects the breathers and rogue waves.

© 2024 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that integrable nonlinear evolution equations play an important role in nonlinear science, 
and their localized solutions, solitons, breathers and rogue waves, have attracted great attention [1,16,29,
41,54]. As a kind of nonlinear waves, rogue waves usually appear in the oceans with a significantly larger 
amplitude than the surrounding waves, and they often come from nowhere and disappear without any 
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trace [3,38]. The emergence of rogue waves is thought to be associated with the modulation instability of 
the plane waves or periodic waves [6]. On mathematical aspect, as the lowest-order rational solution to the 
nonlinear Schrödinger (NLS) equation, the Peregrine soliton, first proposed by Peregrine in 1983 [55], plays 
an important role in understanding the mechanics of the rogue wave phenomena. It is a doubly localized 
wave packet with a peaked hump and two side holes. Moreover, the maximum amplitude of the wave packet 
reaches three times the amplitude of the background plane wave. The Peregrine soliton solution can also 
be derived by taking the larger-period limitation of Kuznetsov-Ma breathers (KMBs) [39,45] or Akhmediev 
breathers (ABs) [2]. In recent years, many efforts have been made to realize the higher-order rogue waves of 
the NLS equation [14,34,52]. In addition, rogue waves have been experimentally observed in many physical 
settings including nonlinear optics [48,60,66], Bose-Einstein condensates [8,59] and plasma physics [27,62]. 
These important studies show that rogue waves can indeed be excited from a finite continuous background 
wave. More and more numerical and experimental evidence have shown that there are many new nonlinear 
physical phenomena that are related to rogue waves and breathers. For example, the excitation for rogue 
waves has been proposed [44] in media with electromagnetically induced transparency [24,49].

In the past decades, the field of rogue waves has rapidly grown. Recently, there has been considerable 
attention paid to rogue waves on a periodic background [7,10,23,63]. It has been shown that rogue waves 
can also arise due to the modulational instability of the periodic waves. Rogue waves on the periodic 
background have many rich physical properties and dynamic behaviors [22,35,51]. In Ref. [10] such exact 
solutions to the NLS equation were constructed first by combining the method of nonlinearization of spectral 
problem with the Darboux transformation (DT) method. Further, breathers and rogue waves for the NLS 
equation on the elliptic function background have also been presented by combining the algebro-geometric 
method and the squared wave function approach [23]. Recent studies reveal that rogue waves on the periodic 
function background are universal solutions of majority of integrable models [11,42,53,67,72]. In addition, 
it is worthwhile mentioning that rogue waves on the background of on stationary periodic waves have been 
experimentally observed in nonlinear optics and hydrodynamics [65]. Very recently, some achievements 
have been made on the solutions of breathers and rogue waves on the periodic background for the integrable 
equations associated with higher-order spectral problems, such as the vector Geng-Li model [28] and the 
Yajima-Oikawa long-wave-short-wave equation [43].

The NLS equation has limitations related to realistic problems, as there are also other significant physical 
effects that need to be considered. For instance, the ultrashort pulse propagation in optical fibers, aside 
from the group-velocity dispersion and Kerr nonlinearity, higher-order effects need to be taken into account, 
like the higher-order dispersion, self-steepening and self-frequency shift. Therefore, many extended NLS 
equation have been proposed by adding high-order terms with more free parameters. Recently, Ankiewicz et 
al. have proposed an extension of the NLS equation to the infinite NLS hierarchy with an arbitrary number 
of higher-order terms and free real coefficients [5,36]. This extension can be used to model various physical 
problems of nonlinear wave evolutions with a large degree of flexibility. Particularly, under different reduced 
coefficients, besides the NLS equation, this extension also includes many important integrable nonlinear 
equations such as the Hirota equation [30], the Lakshmanan-Porsezian-Daniel (LPD) equation [40] and the 
quintic NLS equation [17]. In the past few years, a large number of exact rogue wave or breather solutions of 
many equations in NLS hierarchy have been investigated on various backgrounds. Moreover, recent studies 
have shown that the higher-order effects in NLS hierarchy affect spatiotemporal patterns of rogue waves 
and cause the compression effects of the breathers [64,73]. For example, rogue waves for the Hirota equation 
on a uniform background [4] and on the dn/cn background [50] have been studied using different methods. 
Dynamical evolution behaviors of rogue waves and rational solitons for the quintic NLS equation have been 
detailed [68]. Meanwhile, in Ref. [18] researchers have found that a breather solution for the quintic NLS 
equation can be converted into a non-pulsating soliton solution.
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In this paper, we study the following fourth-order NLS equation

iqt + α
(
qxx + 2|q|2q

)
+ β

(
qxxxx + 6q̄q2

x + 4|qx|2q + 8|q|2qxx + 2q2q̄xx + 6|q|4q
)

= 0, (1)

where q(x, t) is the slowly varying wave packet envelope, x, t respectively are the scaled spatial and time 
coordinate, the bar refers to the complex conjugate, the subscripts denote the partial derivatives, α and 
β are real parameters and stand for the strength of higher-order linear and nonlinear effects. Eq. (1) is 
also called the LPD equation, which was originally derived as a model for the nonlinear spin excitations 
in the one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin [21,57]. It also arises in alpha 
helical proteins modeling the dynamics of higher-order molecular excitations associated with the energy 
transport [20]. In nonlinear optics, besides the group-velocity dispersion and Kerr nonlinearity, Eq. (1) can 
model the propagation of ultrashort optical pulses with the fourth-order dispersion, cubic-quintic nonlinear-
ity, self-steepening and self-frequency shift [56]. Therefore, in contrast with the standard NLS equation, with 
the higher-order dispersions and nonlinearity effects, Eq. (1) can be applied to describe more complicated 
and real circumstance [46]. In the past decades, Eq. (1) has been investigated from different points of view, 
and its large classes of exact solutions have been studied extensively like the solitons, breathers and rogue 
waves [19,64,73].

In Ref. [71], we have obtained the first-order rogue wave solutions on the dn- and cn-elliptic function 
backgrounds. However, this algebraic method maybe is not very straightforward in use for generating multi-
breather and high-order rogue wave solutions on the periodic background because it just only relies on the 
one- and two-fold potential transformations in the DT method. Therefore, in the present paper, we will 
give a systematic construction of multi-breather and higher-order rogue wave solutions for Eq. (1) on the 
elliptic function background, which can recover some previously published solutions. Since Eq. (1) is the 
third member in the NLS hierarchy of equations, its solutions can be studied in the same way as treating 
the NLS equation. However, it is a nontrivial work to construct multi-breather and higher-order rogue wave 
solutions on the background of elliptic functions because of the complexity of the time part in the Lax 
spectrum problem.

The method of the present study in solving the Lax spectrum problem is the modified squared 
wave (MSW) function approach [31–33], which is the so-called simple modification of the known finite-
band integration method [25,26,70]. This method is based on the re-parametrization of the solution with 
the use of algebraic resolvent of the polynomial defining the solution in the finite-band integration method. 
The periodic solutions of nonlinear integrable equations can be constructed explicitly by introducing the 
Riemann surface of the hyperelliptic curve. It has been developed and applied to the investigation of the 
periodic solutions for many soliton equations [12,13,31–33,61] such as the NLS equation, the derivative NLS 
equation and the Heisenberg model.

In this paper, by use of the MSW function approach, we first solve the spectral problem of Eq. (1)
corresponding to the Jacobi elliptic function seed solution. Then, with aid of the DT, we give the expression 
of multi-breather solution in terms of the determinant of theta functions based on the algebro-geometric 
method. Using the Taylor expansion technology and taking the special limit of the breather solutions at 
branch points, we derive higher-order rogue wave solutions by employing generalized DT. Based on obtained 
solutions, we analyze the dynamic behaviors of the breathers and rogue waves on the periodic background. 
We illustrate these results by discussing several examples. Finally, we discuss how the parameter of the 
higher-order effects affects the breathers and rogue waves.

The rest of this paper is arranged as the follows. In Section 2, we present the Lax pair, the multi-
fold DT of Eq. (1) and the explicit formulas of the associated potential transformation. In Section 3, we 
derive the Jacobi elliptic function solutions of Eq. (1) and solve the Lax pair corresponding to the Jacobi 
elliptic function seed solution. In Section 4, we express these solutions in terms of the theta functions, and 
construct the multi-breather solution on the periodic background. In Section 5, by taking the special limit 
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of the breather solutions at branch points, we present higher-order rogue wave solutions. Furthermore, we 
analyze the dynamic behaviors of these solutions. In Section 6, by taking the KMB and the first-order rogue 
wave on the dn-periodic wave background as two illustrative examples, we discuss how the parameter of the 
higher-order effects affects the breathers and rogue waves. Section 7 is devoted to the conclusions.

2. Lax pair and Darboux transformation

To begin with, we write the Lax pair of Eq. (1) in the form [58]

Ψx = UΨ, Ψt = VΨ, (2)

with

Ψ =
(
ψ1(x, t;λ) ψ2(x, t;λ)
φ1(x, t;λ) φ2(x, t;λ)

)
, U =

(
F G

H −F

)
, V =

(
A B

C −A

)
,

and

F = −iλ, G = iq, H = iq̄,

A = −iα
(
2λ2 − qq̄

)
+ iβ

(
q̄(qxx − 2iλqx) − qxq̄x + q(−4λ2q̄ + 2iλq̄x + q̄xx) + 3q2q̄2 + 8λ4) ,

B = α (2iλq − qx) + β
(
q(−6qxq̄ − 8iλ3) + 4iλq2q̄ + 4λ2qx + 2iλqxx − qxxx

)
,

C = α (q̄x + 2iλq̄) + β
(
q̄(−8iλ3 + 6qq̄x) − 4λ2q̄x + 4iλqq̄2 + 2iλq̄xx + q̄xxx

)
,

where (ψj , φj)T (j = 1, 2, the superscript T denotes the matrix transpose) are two vector solutions for the 
above linear eigenvalue problem, and λ is the spectral parameter. The compatibility condition Ψxt = Ψtx

or the zero curvature equation Ut − Vx + [U, V] = 0 is equivalent to Eq. (1).
It is well known that the DT method plays an important role in constructing explicit solutions of nonlinear 

integrable equations [47]. Suppose that Ψi = (ψi, φi)T (i = 1, 2, . . . , n) are a set of n linearly-independent 
solutions of the Lax pair (2) with λ = λi. Then, the n-fold DT of Eq. (1) can be constructed by:

Ψ[n] = T[n]Ψ, T[n] = I − XnM−1
n D−1

n X†
n, q[n] = q − 2Xn,1Mn

−1X†
n,2, (3)

with

Mn =
(

Ψ†
iΨj

λj − λi

)
1≤i,j≤n

, Xn = [Ψ1,Ψ2, . . . ,Ψn], Dn = diag(λ− λ1, λ− λ2, . . . , λ− λn),

in which Xn,k (k = 1, 2) is the kth row of Xn, I is the 2 × 2 identity matrix and the superscript † stands 
for the conjugate transpose. Moreover, based on the work in Refs. [23,29], we know that the above DT can 
be further generalized by a special limit, which is useful in constructing the higher-order soliton solutions. 
In this way, by expanding the Ψi at points λ = λi: Ψi =

∑ni−1
j=0 Ψ[j]

i (λ − λi)[j], so that the generalized DT
can be formulated as follows: [23]

T [m1,m2, . . . ,mn] = I − XM−1D−1X†, q [m1,m2, . . . ,mn] = q − 2X1M−1X†
2, (4)

with
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X = [X1, X2, . . . , Xn] , M = YSY†,

Y =

⎡
⎢⎢⎢⎢⎣
Y1 0 · · · 0
0 Y2 · · · 0
...

...
. . .

...
0 0 · · · Yn

⎤
⎥⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎢⎣
D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · Dn

⎤
⎥⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎣
S1,1 S1,2 · · · S1,n
S2,1 S2,2 · · · S2,n

...
...

. . .
...

Sn,1 Sn,2 · · · Sn,n

⎤
⎥⎥⎥⎥⎦ ,

and

Xa =
[
Ψ[0]

a ,Ψ[1]
a , . . . ,Ψ[ma−1]

a

]
, Sa,b =

(
(−1)l+1(

λb − λ̄a

)k+l−1

(
k + l − 2
k − 1

))
1≤k≤ma,1≤l≤mb

,

Ya =

⎡
⎢⎢⎢⎢⎣

Ψ[0]†
a 0 · · · 0

Ψ[1]†
a Ψ[0]†

a · · · 0
...

...
. . .

...
Ψ[ma−1]†

a Ψ[ma−1]†
a · · · Ψ[0]†

a

⎤
⎥⎥⎥⎥⎦ , Da =

⎡
⎢⎢⎢⎢⎢⎣

1(
λ−λ̄a

) 0 · · · 0
1(

λ−λ̄a

)2 1(
λ−λ̄a

) · · · 0
...

...
. . .

...
1(

λ−λ̄a

)ma
1(

λ−λ̄a

)ma−1 · · · 1(
λ−λ̄a

)

⎤
⎥⎥⎥⎥⎥⎦ .

3. Jacobi elliptic function solutions and the solutions of Lax pair

In this section, we would like to exploit Jacobi elliptic function solutions of Eq. (1) and derive the 
corresponding solutions of the Lax pair (2) by the MSW function approach. We look for a wave solution to 
Eq. (1) of the following form

q(x, t) =
√

u(x, t) exp(iat), (5)

where u(x, t) is a positive real function to be determined and a is a real constant. First, we set two eigen-
functions of the Lax pair (2): Ψ1 = (ψ1, φ1)T and Ψ2 = (ψ2, φ2)T, which are used to build a squared wave 
function via

f = − i
2 (ψ1φ2 + ψ2φ1) , g = ψ1ψ2, h = −φ1φ2. (6)

In combination with the definition of f, g and h in Eqs. (6) and using the Lax pair (2), we get

fx = −iHg + iGh, gx = 2iGf + 2Fg, hx = −2iHf − 2Fh, (7)

ft = −iCg + iBh, gt = 2iBf + 2Ag, ht = −2iCf − 2Ah. (8)

Based on the Eqs. (7) and (8), one can find that y2(λ) ≡ f2 − gh is independent of x and t and is only the 
function of λ. Next we want to derive quasi-periodic solutions of Lax pair (2) in the presence of periodic 
background. It is known that periodic and quasi-periodic solutions of integrable evolution equations are 
associated with Riemann surfaces in the algebro-geometric theory [7]. In our situation, we consider such a 
surface determined by the following polynomial

y2 = f2 − gh =
4∏

i=1
(λ− λi) = λ4 − s1λ

3 + s2λ
2 − s3λ + s4, (9)

where λi are zeros of the polynomial which parameterize the genus-1 solution. Eqs. (7) and (8) have a 
solution in the polynomial forms of f, g and h:
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f = λ2 − f1(x, t)λ + f2(x, t), g = iq(x, t)(λ− μ(x, t)), h = iq̄(x, t) (λ− μ̄(x, t)) . (10)

By comparing the coefficients of λk on both sides of Eq. (9), we obtain

f1(x, t) = 1
2s1, f2(x, t) = 1

2(p1 − u(x, t)), (11)

μ(x, t) + μ̄(x, t) = 1
2s1 −

1
u(x, t)p2, μ(x, t)μ̄(x, t) = − 1

4u(x, t)
(
u2(x, t) − 2p1u(x, t) + p2

1 − 4s4
)
, (12)

where

p1 = s2 −
1
4s

2
1, p2 = 1

2s1

(
s2 −

1
4s

2
1

)
− s3. (13)

From the above expressions (12), we can derive the exact expressions of μ and μ̄

μ, μ̄ = 1
4s1 −

p2 ± i
√

−R(u)
2u(x, t) , (14)

where

R(u) = u3(x, t) + (s2
1/4 − 2p1)u2(x, t) + (p2

1 − s1p2 − 4s4)u(x, t) + p2
2. (15)

From the first equation in Eqs. (11), the function f1(x, t) is a constant determining the phase velocity 
of the background periodic wave. For simplicity, we consider the case of f1 = 0. The case of f1 �= 0 can be 
similarly treated as the case of f1 = 0. In order to satisfy f1 = 0 and u(x, t) > 0, the zeros λi need to be 
formed by two pairs of specific complex numbers and their complex conjugates

λ1 = b + ic, λ2 = −b + id, λ3 = b− ic, λ4 = −b− id, (16)

where b, c and d are positive real constants. In addition, when the polynomial (15) admits three zeros 
uj (j = 1, 2, 3), then through a direct calculation, we can derive the relations between the roots and the 
coefficients:

u1 = −1
4(λ1 + λ3 − λ2 − λ4)2, u2 = −1

4(λ1 + λ4 − λ2 − λ3)2, u3 = −1
4(λ1 + λ2 − λ3 − λ4)2, (17)

and

s1 = 0, s2 = 1
2 (u1 + u2 + u3) , s3 =

√
−u1u2u3, s4 = 1

16
(
u2

1 − 2 (u2 + u3)u1 + (u2 − u3) 2) . (18)

Meanwhile, by inserting Eqs. (16) into Eqs. (17), we obtain u1 = −4b2, u2 = (c − d)2 and u3 = (c + d)2. 
Using Eqs. (6)-(8) and taking λ = μ, one can obtain

μx = −2i
√

f(μ) = −2iy(μ), μt = −4βs3μx. (19)

Based on Eqs. (7) and (8), we further derive the expression of u with respect to x and t

ux = 2
√

−R(u), ut = −4βs3ux. (20)

Since R(u) is a cubic polynomial and u1 ≤ 0 ≤ u2 < u3, the explicit expression of u is readily obtained in 
terms of the Jacobi elliptic function
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u (x− 4βs3t) = u3 + (u2 − u3) sn2 (√u3 − u1 (x− 4βs3t) ;m
)
, (21)

where m =
√

u3−u2
u3−u1

. Moreover, from Eqs. (7), (8) and (10), we find that

qx = 2iμq = is3

u
q + (1

2 ln u)xq, qt = 2i
(
αs2 + β(3s2

2 − 4s4)
)
q − 4βs3qx. (22)

Based on the results of Eqs. (20) and Eqs. (22), we deduce that

q(x, t) =
√

u3 + (u2 − u3) sn2
(√

u3 − u1x;m
)
exp

(
2i
[
αs2 + β(3s2

2 − 4s4)
]
t
)
, (23)

where we have set s3 = 0 for convenience. Therefore, under this condition s3 =
√−u1u2u3 = 0, the 

solution (23) can reduce to the following two types of Jacobi elliptic function solutions

(i) For u1 = 0 (i.e., b = 0)

q(x, t) = k dn (kx;m) exp(iat), (24)

where k = c + d, m =
√

4cd
(c+d)2 and a = 2 

[
α
(
c2 + d2) + β

(
3c4 + 2c2d2 + 3d4)].

(ii) For u2 = 0 (i.e., c = d)

q(x, t) = km cn(kx;m) exp(iat), (25)

where k = 2
√
b2 + d2, m =

√
d2

b2+d2 and a = 4 
[
α
(
d2 − b2

)
+ 4β

(
b4 − 4b2d2 + d4)].

Next, we proceed to construct the solutions of the Lax pair (2) on the background of the periodic 
solutions (24) and (25) using the MSW approach. By defining wj ≡ φj

ψj
(j = 1, 2) and using Eqs. (6), we 

have

f(x, t;λ) = i
2

(
h(x, t;λ)
wj(x, t;λ) − g(x, t;λ)wj(x, t;λ)

)
,

which implies that

w1(x, t;λ) = i
(
f(x, t;λ) + y

g(x, t;λ)

)
= i

(
h(x, t;λ)

f(x, t;λ) − y

)
,

w2(x, t;λ) = i
(
f(x, t;λ) − y

g(x, t;λ)

)
= i

(
h(x, t;λ)

f(x, t;λ) + y

)
. (26)

Then, from the Lax pair (2), the functions ψ1 and φ1 in Ψ1 can be derived as:

(lnψ1)x = F + Gw1, (lnφ1)x = H
1
w1

− F. (27)

(lnψ1)t = A + Bw1, (lnφ1)t = C
1
w1

−A. (28)

Inserting Eqs. (10) into Eqs. (27) and combining w1 in Eqs. (26), we have
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(lnψ1)x = −iλ− h(x, t;λ)
f(x, t;λ) − y

q(x, t) = iλ + i C1

u(x) − 2γ1
+ 1

2 ln (u(x) − 2γ1)x ,

(lnφ1)x = iλ + g(x, t;λ)
f(x, t;λ) + y

q̄(x, t) = −iλ− i C2

u(x) − 2γ2
+ 1

2 ln (u(x) − 2γ2)x ,

where Cj = 4λγj and γj = λ2 + s2/2 ∓ y (∓ symbol: the upper sign is for j = 1 and the lower sign is for 
j = 2). Integrating with respect to x once for the above equations gives

lnψ1 = iλx + i
x∫

0

C1 ds
u(s) − 2γ1

+ 1
2 ln (u(x) − 2γ1) + D1(t), (29)

lnφ1 = −iλx− i
x∫

0

C2 ds
u(s) − 2γ2

+ 1
2 ln (u(x) − 2γ2) + D2(t). (30)

With the aid of Eqs. (19) and Eqs. (22), we insert the high-order derivative of μ and q with respect to x
into Eqs. (28), we arrive at

(lnψ1)t = iα (2y + s2) + iβ(P1y + P0), (lnφ1)t = iα (2y − s2) + iβ(P1y − P0), (31)

where

P1 = 4s2 − 8λ2 − 4u(x) [μ̄(x) + μ(x)]
λ− μ(x) ,

P0 = −
(
u(x) [4μ(x)μ̄(x) + u(x)] − 2s2u(x) − 2s2

2
)

+ 2u(x) [μ̄(x) + μ(x)] (−2λμ(x) − s2 + u(x))
λ− μ(x) .

By use of μμ̄ = − 1
4u

(
u2 − 2s2u + s2

2 − 4s4
)

and μ̄ + μ = 0 in Eqs. (12), the P1 and P0 can be simplified as

P1 = 4s2 − 8λ2, P0 = 3s2
2 − 4s4. (32)

Furthermore, based on Eqs. (29)-(32), the ψ1 and φ1 can be given by

ψ1(x, t;λ) = B1
√
u(x) − 2γ1 exp (θ1) , θ1 = i

x∫
0

C1 ds
u(s) − 2γ1

+ iλx + iD1t, (33)

φ1(x, t;λ) = B2
√

u(x) − 2γ2 exp (θ2) , θ2 = −i
x∫

0

C2 ds
u(s) − 2γ2

− iλx + iD2t, (34)

where Dj = α (2y ± s2) + β
[
y
(
4s2 − 8λ2)± (

3s2
2 − 4s4

)]
, and the Bj (j = 1, 2) stand for two complex 

constants to be determined. According to the definition: w1 ≡ φ1
ψ1

, one can derive that

w1(0, 0;λ) = i

√
f(0, 0;λ) + y

f(0, 0;λ) − y

√
h(0, 0;λ)
g(0, 0;λ) = i

√
u(0) − 2γ2

u(0) − 2γ1
≡ B2

B1

√
u(0) − 2γ2

u(0) − 2γ1
. (35)

For simplicity, we consider B1 = 1 and B2 = i.
By using a similar procedure as in φ1 and ψ1, we can also obtain the other vector solution of the Lax 

pair (2) as follows:

ψ2(x, t;λ) =
√

u(x) − 2γ2 exp (−θ2) , φ2(x, t;λ) = i
√

u(x) − 2γ1 exp (−θ1) . (36)
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Therefore, one fundamental solution for the Lax pair (2) with q as the elliptic function (23) can be 
represented as:

Ψ(x, t;λ) =
[ √

u(x) − 2γ1eθ1
√

u(x) − 2γ2e−θ2

i
√

u(x) − 2γ2eθ2 i
√

u(x) − 2γ1e−θ1

]
. (37)

4. Theta function representation for solutions and multi-breather solution

To begin with, we will use theta functions to express the solutions q, ψj and φj (j = 1, 2). Based on 
Eqs. (19), we know that the spectra curve (9) as genus-1 Riemann surface can be parameterized by the 
uniformization variable z [7,63]

y(z) = k

2
d
dz μ

(
i(z − l)

k

)
, λ(z) = μ

(
i(z − l)

k

)
, (38)

with k =
√
u3 − u1 and l ∈

[
−K′

2 , K′

2

]
, where K ′ = K(1 −m) and K(m) is the complete elliptic integral of 

the first kind. Furthermore, in order to deduce the solutions of the Lax pair (2) with a uniform expression 
for different l, we introduce the parameterization:

u1 = −k2dn2(a0;m), u2 = −m2k2cn2(a0;m), u3 = m2k2sn2(a0;m), a0 = K + 2il. (39)

Combining Eqs. (18) and Eq. (21), we have u(x) = k2 (dn2(kx;m) − dn2(a0;m)
)

and s2 = k2

2 (2 − m2 −
3dn2(a0; m)). Obviously, when ld = K′

2 and lc = 0, u(x) can reduce to the Jacobi elliptic dn and cn
functions, respectively. Moreover, with the aid of the associated transformation relationship (see appendix 
B of Ref. [63]), we can derive directly the solutions q in terms of the theta functions:

qd(x, t) = k
ϑ4ϑ3

(
kx
2K

)
ϑ3ϑ4

(
kx
2K

) exp(iat), qc(x, t) = k
ϑ2ϑ4ϑ2

(
kx
2K

)
ϑ2

3ϑ4
(
kx
2K

) exp(iat). (40)

To continue, according to the definition of μ := − i
4 ln(u)x, taking λ = μ in Eqs. (38), we can obtain the 

corresponding λ(z) of Eqs. (40) as follows:

λd(z) = i
2km

2 sn(i(z − l)) cd(i(z − l)), λc(z) = i
2kdn(i(z − l)) sc(i(z − l)).

Hereafter, for simplicity, we omit the modulus parameter m. Using the addition formulas of the Jacobi 
elliptic functions (see 122.18 of Ref. [9]), the above expressions can be rewritten as one formula for different 
l (i.e., ld or lc):

λ(z) = i
2k [dn(2il)dn(i(z − l)) sc(i(z + l)) −mcn(2il)sd(2il)] . (41)

On account of Eqs. (38), we can write y(z) in the form:

yd(z) = 1
4k

2m2 (sn(i(z − l))2 − cd(i(z − l))2
)
, yc(z) = 1

4k
2 (m2sn(i(z − l))2 − dc(i(z − l))2

)
.

Furthermore, the above two equations can merge into one

y(z) = 1
k2 (dn2(a2) − dn2(a1)

)
, (42)
4
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where a1 = i(z − l) and a2 = K + iK ′ − i(z + l). In order to simplify parametrization of the solutions, we 
consider a better formula of λ2(z) by the addition formula

λ2(z) = 1
4k

2 (dn2(a0) + dn2(a1) + dn2(a2) + m2 − 2
)
. (43)

With these results, we obtain

γj = λ2(z) + 1
2s2 ∓ y(z) = 1

2k
2 (dn2(aj) − dn2(a0)

)
, (j = 1, 2). (44)

Meanwhile, we have u(x) − 2γj = k2 (dn2(kx) − dn2(aj)
)

= k2m2 (sn2(aj) − sn2(kx)
)
. Based on Eqs. (9)

and (38), we know that 2y dy
dλ = 4λ3 + 2s2λ, and thus the Cj can be derived as

Cj = 4λ(z)γj = 2y(z)
(

dy(z)
dλ(z) ∓ 2λ(z)

)
= k

d
dz

(
y(z) ∓ λ2(z)

)
= ik3m2sn(aj)cn(aj)dn(aj). (45)

Next, we will present the elements of the solutions (37) in terms of theta functions. By utilizing the inte-
gration formula (see appendix B of Ref. [63]), one can derive

x∫
0

iCj

u(s) − 2γj
ds =

kx∫
0

sn(aj) cn(aj)dn(aj)
sn2(s) − sn2(aj)

ds = 1
2 ln

ϑ1

(
aj−kx

2K

)
ϑ1

(
aj+kx

2K

) + kZ(aj)x. (46)

Using the addition formula of theta functions (see 3.4 of Ref. [37]), we get

u(x) − 2γj = k2ϑ
2
2

ϑ2
3

(
ϑ2

1
( aj

2K
)

ϑ2
4
( aj

2K
) −

ϑ2
1
(
kx
2K

)
ϑ2

4
(
kx
2K

)
)

= k2ϑ
2
2

ϑ2
3

ϑ2
4ϑ1

(
aj+kx

2K

)
ϑ1

(
aj−kx

2K

)
ϑ2

4
( aj

2K
)
ϑ2

4
(
kx
2K

) . (47)

Then, by inserting the above two equations into Eq. (37), we have

ψ1(x, t; z) = kϑ2ϑ4

ϑ3ϑ4
(
kx
2K

) ϑ1

(
i(z−l)−kx

2K

)
ϑ4

(
i(z−l)
2K

) eE1x+iD1t, φ1(x, t; z) = ikϑ2ϑ4

ϑ3ϑ4
(
kx
2K

) ϑ3

(
i(z+l)−kx

2K

)
ϑ2

(
i(z+l)
2K

) eE2x+iD2t,

and

ψ2(x, t; z) = kϑ2ϑ4

ϑ3ϑ4
(
kx
2K

) ϑ3

(
i(z+l)+kx

2K

)
ϑ2

(
i(z+l)
2K

) e−E2x−iD2t, φ2(x, t; z) = ikϑ2ϑ4

ϑ3ϑ4
(
kx
2K

) ϑ1

(
i(z−l)+kx

2K

)
ϑ4

(
i(z−l)
2K

) e−E1x−iD1t,

where E1 = kZ(i(z − l)) + iλ and E2 = − ikπ
2K − kZ(K + iK ′ − i(z + l)) − iλ. Using the addition formulas of 

the Zeta function (see 142 of Ref. [9]), we get

Z1 = Z(K + iK ′ − i(z + l))

= Z(−i(z − l)) + Z (K + iK ′ − 2il) + m2 sn(i(z − l)) sn (K + iK ′ − 2il) sn (K + iK ′ − i(z + l))

= −Z(i(z − l)) − Z(K + 2il) + cs(K − 2il) dn(K − 2il) − iπ
2K

+ m2 sn(i(z − l)) sn (K + iK ′ − 2il) sn (K + iK ′ − i(z + l)) .

For l = ld or l = lc, we find that the Z1 can be further simplified into
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Z1 = −Z(i(z − l)) − Z(K + 2il) − iπ
2K − 2i

k
λ(z). (48)

Hence, the E2 can be rewritten in the form

E2 = kZ(i(z − l)) + kZ(K + 2il) + iλ(z) = E1 + kZ(K + 2il). (49)

Therefore, one fundamental solution for the Lax pair (2) with q represented by Eq. (40) can be expressed 
in terms of theta functions

[
ψ1(x, t; z)
φ1(x, t; z)

]
=

kϑ2ϑ4

ϑ3ϑ4
(
kx
2K

)eE1x+i
[
α(2y+s2)+β(y(4s2−8λ2)+(3s22−4s4))

]
t

⎡
⎢⎢⎣

ϑ1

(
i(z−l)−kx

2K

)
ϑ4

(
i(z−l)

2K

)
iϑ3

(
i(z+l)−kx

2K

)
ϑ2

(
i(z+l)
2K

) ekZ(K+2il)x−2i
[
αs2+β(3s22−4s4)

]
t

⎤
⎥⎥⎦ (50)

and
[
ψ2(x, t; z)
φ2(x, t; z)

]
=

kϑ2ϑ4

ϑ3ϑ4
(
kx
2K

)e−E1x−i
[
α(2y+s2)+β(y(4s2−8λ2)+(3s22−4s4))

]
t

⎡
⎢⎢⎣

ϑ3

(
i(z+l)+kx

2K

)
ϑ2

(
i(z+l)
2K

) e−kZ(K+2il)x+2i
[
αs2+β(3s22−4s4)

]
t

iϑ1

(
i(z−l)+kx

2K

)
ϑ4

(
i(z−l)

2K

)

⎤
⎥⎥⎦ .

(51)

In the following, we construct multi-breather solutions of Eq. (1) on the background of the Jacobi elliptic 
functions. In this way, we consider the linear combination of the two sets of solutions

Ψ(x, t; zi) =
[
ψ1(x, t; zi)
φ1(x, t; zi)

]
+ αi

[
ψ2(x, t; zi)
φ2(x, t; zi)

]

= G(x)
(
ω2(x, t; zi)

[
d14(−x; zi)

id32(−x; zi)ω1(x, t)

]
+ αiω

−1
2 (x, t; zi)

[
d32(x; zi)ω−1

1 (x, t)
id14(x; zi)

])
, (52)

in which αi is a complex constant, and

ω1(x, t) := exp
(
kZ(K + 2il)x− 2i

[
αs2 + β(3s2

2 − 4s4)
]
t
)
,

ω2(x, t; zi) := exp
(
kZ(i(z − l))x + iλx + i

[
α(2y + s2) + β(y(4s2 − 8λ2) + (3s2

2 − 4s4))
]
t
)
,

G(x) := kϑ2ϑ4

ϑ3ϑ4
(
kx
2K

) , d14(x; zi) :=
ϑ1

(
i(zi−l)+kx

2K

)
ϑ4

(
i(zi−l)

2K

) , d32(x; zi) :=
ϑ3

(
i(zi+l)+kx

2K

)
ϑ2

(
i(zi+l)

2K

) .

Then, the complex conjugate of the solution (52) can be given by:

Ψ̄(x, t; zj) = G(x)
(
−ω̄2(x, t; zj)

[
d14(x; z̄j)

id32(x; z̄j)ω−1(x, t)

]
+ ᾱjω̄

−1
2 (x, t; zj)

[
d32(−x; z̄j)ω1(x, t)

id14(−x; z̄j)

])
. (53)
1
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Consequently, the potential transformation in Eq. (3) can be rewritten in this form:

qn(x, t) = q(x, t)1−n det (H)
det (M) , M =

(
Ψ†(zj)Φ(zi)

2 (λ(zi) − λ(z̄j))

)
1≤i,j≤n

, H = q(x, t)M − Φ1Φ2, (54)

where Φ1 = [Ψ1 (z1) ,Ψ1 (z2) , . . . ,Ψ1 (zn)], Φ2 = [Ψ2 (z1) ,Ψ2 (z2) , . . . ,Ψ2 (zn)]†. Then, according to the 
representation of the solution for the NLS equation [23], we would like to use Eq. (52) and Eq. (53) to 
represent the elements in Eq. (54)

Ψ†(zj)Ψ(zi) = G(x)2 (ω2(x, t; zi)ω̄2(x, t; zj) [d32(x; z̄j)d32(−x; zi) − d14(x; z̄j)d14(−x; zi)]

+ αiω
−1
1 (x, t)ω−1

2 (x, t; zi)ω̄2(x, t; zj) [d14(x; zi)d32(x; z̄j) − d14(x; z̄j)d32(x; zi)]

+ ᾱjω1(x, t)ω2(x, t; zi)ω̄−1
2 (x, t; zj) [d14(−x; zi)d32(−x; z̄j) − d14(−x; z̄j)d32(−x; zi)]

+αiᾱjω
−1
2 (x, t; zi)ω̄−1

2 (x, t; zj) [d32(x; zi)d32(−x; z̄j) − d14(x; zi)d14(−x; z̄j)]
)
. (55)

The terms in square brackets can be simplified based on the addition formula for the theta functions (see 
3.5b and 3.8 of Ref. [37]),

[d32(x; z̄j)d32(−x; zi) − d14(x; z̄j)d14(−x; zi)] =
ϑ3

( 2il
2K

)
ϑ4

(
kx
2K

)
ϑ3

(
i(zi+z̄j)

2K

)
ϑ4

(
i(zi−z̄j)−kx

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(z̄j−l)

2K

) ,

[d14(x; zi)d32(x; z̄j) − d14(x; z̄j)d32(x; zi)] =
ϑ3

( 2il
2K

)
ϑ4

(
kx
2K

)
ϑ1

(
i(zi−z̄j)

2K

)
ϑ2

(
i(zi+z̄j)+kx

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(z̄j−l)

2K

) .

Due to the symmetry relationship, the other two terms can be given by

[d14(−x; zi)d32(−x; z̄j) − d14(−x; z̄j)d32(−x; zi)] =
ϑ3

( 2il
2K

)
ϑ4

(
kx
2K

)
ϑ1

(
i(zi−z̄j)

2K

)
ϑ2

(
i(zi+z̄j)−kx

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(z̄j−l)

2K

) ,

[d32(x; zi)d32(−x; z̄j) − d14(x; zi)d14(−x; z̄j)] =
ϑ3

( 2il
2K

)
ϑ4

(
kx
2K

)
ϑ3

(
i(zi+z̄j)

2K

)
ϑ4

(
i(zi−z̄j)+kx

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(z̄j−l)

2K

) .

Similarly, by using the addition formula (see 3.8 of Ref. [37]) and according to the λ(z) in Eq. (41), we 
arrive at

2 (λ(zi) − λ(z̄j)) = iG(x)
ϑ3

( 2il
2K

)
ϑ4

(
kx
2K

)
ϑ1

(
i(zi−z̄j)

2K

)
ϑ3

(
i(zi+z̄j)

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(z̄j−l)

2K

) . (56)

Furthermore, we have

Mj,i = Ψ†(zj)Ψ(zi)
2 (λ(zi) − λ(z̄j))

= −iG(x)Mj,i, (57)

where
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Mj,i =ω2(x, t; zi)ω̄2(x, t; zj)
ϑ4

(
i(zi−z̄j)−kx

2K

)
ϑ1

(
i(zi−z̄j)

2K

) + αiω
−1
1 (x, t)ω−1

2 (x, t; zi)ω̄2(x, t; zj)
ϑ2

(
i(zi+z̄j)+kx

2K

)
ϑ3

(
i(zi+z̄j)

2K

)

+ ᾱjω1(x, t)ω2(x, t; zi)ω̄−1
2 (x, t; zj)

ϑ2

(
i(zi+z̄j)−kx

2K

)
ϑ3

(
i(zi+z̄j)

2K

) + αiᾱjω
−1
2 (x, t; zi)ω̄−1

2 (x, t; zj)
ϑ4

(
i(zi−z̄j)+kx

2K

)
ϑ1

(
i(zi−z̄j)

2K

) .

In addition, we also have

Ψ1(zi)Ψ̄2(zj) = −iG(x)2
⎛
⎝ω−1

1 (x, t)ω2(x, t; zi)ω̄2(x, t; zj)
ϑ1

(
i(zi−l)−kx

2K

)
ϑ4

(
i(zi−l)

2K

) ϑ3

(
i(z̄j+l)+kx

2K

)
ϑ2

(
i(z̄j+l)

2K

)

+ αiω̄2(x, t; zj)ω−2
1 (x, t)ω−1

2 (x, t; zi)
ϑ3

(
i(zi+l)+kx

2K

)
ϑ2

(
i(zi+l)

2K

) ϑ3

(
i(z̄j+l)+kx

2K

)
ϑ2

(
i(z̄j+l)

2K

)

− ᾱjω2(x, t; zi)ω̄−1
2 (x, t; zj)

ϑ1

(
i(zi−l)−kx

2K

)
ϑ4

(
i(zi−l)

2K

) ϑ1

(
i(z̄j−l)−kx

2K

)
ϑ4

(
i(z̄j−l)

2K

)

−αiᾱjω
−1
1 (x, t)ω−1

2 (x, t; zi)ω̄−1
2 (x, t; zj)

ϑ1

(
i(z̄j−l)−kx

2K

)
ϑ4

(
i(z̄j−l)

2K

) ϑ3

(
i(zi+l)+kx

2K

)
ϑ2

(
i(zi+l)

2K

)
⎞
⎠ . (58)

Based on Eqs. (40), we note that q(x, t) can be represented in the form:

q(x, t) = ω−1
1 (x, t)G(x, t)

ϑ2
(
kx+2il

2K
)

ϑ3
( 2il

2K
) . (59)

With the above results and the additional formula for the theta functions (see 3.5b and 3.7 of Ref. [37]), 
the Hj,i in Eq. (54) can be written as

Hj,i = q(x, t)Mj,i − Ψ̄2(zj)Ψ1(zi) = −iω−1
1 (x, t)G2(x, t)Hj,i, (60)

where

Hj,i =ω2(x, t; zi)ω̄2(x, t; zj)
ϑ2

(
i(zi+l)

2K

)
ϑ2

(
i(zi−z̄j−2l)−kx

2K

)
ϑ4

(
kx
2K

)
ϑ4

(
i(z̄j−l)

2K

)
ϑ1

(
i(zi−z̄j)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ3

( 2il
2K

)
ϑ4

(
i(zi−l)

2K

)

+ αiω
−1
1 (x, t)ω−1

2 (x, t; zi)ω̄2(x, t; zj)
−ϑ4

(
i(zi−l)

2K

)
ϑ4

(
i(zi+z̄j+2l)+kx

2K

)
ϑ4

(
kx
2K

)
ϑ4

(
i(z̄j−l)

2K

)
ϑ3

(
i(zi+z̄j)

2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ3

( 2il
2K

)
ϑ2

(
i(zi+l)

2K

)

+ ᾱjω1(x, t)ω2(x, t; zi)ω̄−1
2 (x, t; zj)

ϑ2

(
i(zi+l)

2K

)
ϑ4

(
i(zi+z̄j−2l)−kx

2K

)
ϑ4

(
kx
2K

)
ϑ2

(
i(z̄j+l)

2K

)
ϑ3

(
i(zi+z̄j)

2K

)
ϑ4

(
i(z̄j−l)

2K

)
ϑ3

( 2il
2K

)
ϑ4

(
i(zi−l)

2K

)

+ αiᾱjω
−1
2 (x, t; zi)ω̄−1

2 (x, t; zj)
ϑ2

(
i(z̄j+l)

2K

)
ϑ2

(
i(zi−z̄j+2l)+kx

2K

)
ϑ4

(
kx
2K

)
ϑ4

(
i(zi−l)

2K

)
ϑ1

(
i(zi−z̄j)

2K

)
ϑ2

(
i(zi+l)

2K

)
ϑ3

( 2il
2K

)
ϑ4

(
i(z̄j−l)

2K

) .

Therefore, by inserting Eq. (57) and Eq. (60) into Eq. (54), we derive the multi-breather solutions of 
Eq. (1) on the background of the Jacobi elliptic functions
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qn(x, t) = q(x, t) det (Hn)
det (Mn)

(
ϑ3

( 2il
2K

)
ϑ2

(
kx+2il

2K
)
)n

, (61)

in which Hn = (Hj,i)1≤i,j≤n and Mn = (Mj,i)1≤i,j≤n.

4.1. Breather solutions on the dn-periodic wave background

First, we consider the parameters l = ld = K′

2 and n = 1 in Eq. (61), with which one can obtain a 
single breather solution on the dn-periodic wave. Furthermore, with the aid of the shift formula of theta 
functions (see 2.7 of Ref. [37]), we derive a more compact expression for the breather solution:

q1 = k
ϑ4

ϑ3

Hd

Md
e2

[
αs2+β(3s22−4s4)

]
t, (62)

where

Md =
ϑ4

(
i(z1−z̄1)−kx

2K

)
ϑ1

(
i(z1−z̄1)

2K

) + η1
ϑ2

(
i(z1+z̄1)+kx

2K

)
ϑ3

(
i(z1+z̄1)

2K

) + η̄1
ϑ2

(
i(z1+z̄1)−kx

2K

)
ϑ3

(
i(z1+z̄1)

2K

) + |η1|2
ϑ4

(
i(z1−z̄1)+kx

2K

)
ϑ1

(
i(z1−z̄1)

2K

) ,

Hd = η2

η̄2

ϑ3

(
i(z1−z̄1)−kx

2K

)
ϑ1

(
i(z1−z̄1)

2K

) − i η1

|η2|2
ϑ1

(
i(z1+z̄1)+kx

2K

)
ϑ3

(
i(z1+z̄1)

2K

) − iη̄1|η2|2
ϑ1

(
i(z1+z̄1)−kx

2K

)
ϑ3

(
i(z1+z̄1)

2K

) + |η1|2
η̄2

η2

ϑ3

(
i(z1−z̄1)+kx

2K

)
ϑ1

(
i(z1−z̄1)

2K

) ,

and η1 = α1 exp (
x− �t),


 =
(

iπ
2Kk − 2Z(i(z1 − ld))k − 2iλ

)
, � = 2iy

(
2α + β(4s2 − 8λ2)

)
, η2 =

ϑ2

(
i(z1+ld)

2K

)
ϑ4

(
i(z1−ld)

2K

)e
−πz1
2K ,

λ = i
2km

2 sn(i(z1 − ld)) cd(i(z1 − ld)), y = 1
4k

2m2 (sn(i(z1 − ld))2 − cd(i(z1 − ld))2
)
.

Fixing the parameters of background solution k = 1 and m =
√

2
2 , we have u1 = 0, u2 = 1

2 , u3 = 1, s2 = 3
4

and s4 = 1
64 . From Eq. (40), one can obtain that the maximum of |q| located on these lines: x = 2τK, τ ∈ Z. 

And the maximum of |q1| can be calculated by the peak-height formula [15]: |qn| = |q| +
∑n

i=1 2|Im(λ(zi))|. 
To reveal the dynamic behaviors of the solution (62), we rewrite η1 in this form:

η1 = α1

[
2 exp

(
ξ1
2

)
cosh

(
ξ1
2

)
− 1

]
[cos(ξ2) + isin(ξ2)] , and ξ1 = 
Rx− �Rt, ξ2 = 
Ix− �It, (63)

where the subscript R and I represent the real and imaginary parts of the variable, respectively. In this 
way, we know that the breather is localized in the straight line: ξ1 = 0.

For 
R �= 0, the velocity of the breather moving along the above line can be derived: v = �R/
R. By 
taking z1 = −0.6180 − 0.6953i and α1 = −1, we plot the Fig. 1(a). It can be seen that the peaks all lie on 
a line, and the velocity is v1 = −7.1465. Meanwhile, using the inverse of the velocity, the slopes of this line 
can be calculated: K1 = −0.1399. Moreover, due to λ(z1) = 0.1526 + 0.7803i and based on the peak-height 
formula, we obtain the maximum of |q1| is 1 + 2|Im(λ(z1))| = 2.5605 located at the origin. Specially, we 
consider the choice z1 = −0.9270 − 0.6953i such that �R = 0. This condition can result in a breather 
solution, which will propagate in the line: x = 0. On account of �I = 3.1976 and λ(z1) = 0.9229i, the period 
of breather in this line is T = 2π/�I = 1.9650, and the maximum of |q1| is 2.8458 located at x = 0 and 
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Fig. 1. The breather solutions of Eq. (1) with α = β = 1 on the dn-periodic wave background. (a) The general breather (GB) 
solution with z1 = −0.6180 − 0.6953i and α1 = −1. (b) The KMB solution with z1 = −0.9270 − 0.6953i and α1 = −1. (c) The AB 
solution with z1 = −0.4000 − 0.9270i and α1 = −1. (d-f) Show the contour plots of the corresponding solutions.

t = τT . To illustrate this point, we plot Fig. 1(b), it is shown that the solution is temporally breathing and 
spatially localized, which is similar to the KMB on the plane wave background.

On the other hand, by taking z1 = −0.4000 − 0.9270i such that 
R = 0, we can obtain another form of 
breather solution: the AB solution, and all its peaks located on the line: t = 0 as shown in Fig. 1(c). As 
seen from this figure, we find that the breather does not have a shift of crest, and the maximum value is 
2.2064 located at the origin.

Next, by choosing the parameters l = ld and n = 2 in Eq. (61), we obtain two-breather solution on 
the dn-periodic wave background. Then, we fix the same parameters as the background wave in single 
breather solution. Taking z1 = −0.9270 − 0.6953i, z2 = −0.4000 − 0.9270i and α1 = α2 = −1, we plot the 
Fig. 2(a). In this figure, it exhibits the spatio-temporal structure of an interaction between an AB and a 
KMB. Both breathers have no the shift of crest after the interaction. The maximum value can be derived 
by: |q2| = 1 + 2Im(λ(z1) + λ(z2)) = 4.4063, and it is also located at the origin. We note that at the crossing 
point there exists a fundamental second-order rogue wave with a “four-claw” symmetric structure around 
the central peak.

4.2. Breather solutions on the cn-periodic wave background

Similarly, by choosing the parameters l = lc = 0 and n = 1 in Eq. (61), we can obtain the single breather 
solution on the cn-periodic wave background. Then, we fix the parameters of background solution k = 1
and m =

√
2

2 , so that u1 = −1
2 , u2 = 0, u3 = 1

2 , s2 = 3
4 and s4 = 1

16 . By taking z1 = −1.4833 + 0.4635i
and α1 = 1, we have λ(z1) = −1.4833 + 0.4635i and plot the Fig. 3(a). It is shown that this solution 
is a GB moving to left along a line with the velocity −5.5744. The slope of this line is −0.1794 and the 
maximum amplitude of the breather is 1.9270 at the origin. In addition, if we take z1 = 1.8541 + 0.6953i, 
so that y1 = 3.2891 and λ(z1) = −0.7024i, the KMB on the cn-periodic background can be obtained. As 
shown in Fig. 3(b), the breather is temporally breathing and spatially localized. By a calculation, we find 
that the period T is 0.9551 and the maximum value is 2.4048 at x = 0, t = 2τT . Moreover, by choosing 
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Fig. 2. (a) The two-breather solution of Eq. (1) on the dn-periodic wave background. (b) Show the contour plot of the solution. 
The parameters of the solution (62) are chosen as α = β = 1, z1 = −0.9270 − 0.6953i, z2 = −0.4000 − 0.9270i and α1 = α2 = −1.

Fig. 3. The breather solutions of Eq. (1) with α = β = 1 on the cn-periodic wave background. (a) The GB solution with z1 =
−1.4833 + 0.4635i and α1 = 1. (b) The KMB solution with z1 = −0.9270 − 0.6953i and α1 = 1. (c) The AB solution with 
z1 = −0.4000 − 0.9270i and α1 = −1. (d-f) Show the contour plots of the corresponding solutions.

z1 = −0.7711 − 0.56i and α1 = −1, we can obtain the AB on the cn-periodic background, as shown in 
Fig. 3(c). From this figure, we deduce that the breather admits the shift of crest, and the maximum value 
is 1.2643 at the origin.

Next, by taking the parameters l = lc and n = 2 in Eq. (61), the two-breather solution on the cn-periodic 
wave background can be obtained. Taking z1 = −1.4833 + 0.4635i, z2 = −0.7711 − 0.56i and α1 = α2 = 1, 
we plot the Fig. 4(a). From this figure, we can see that this solution exhibits an interaction between a GB 
and a KMB. Two breathers both have the shift of crest after the interaction.

5. Rogue waves on the elliptic function background

In the previous section, we know that the period of breather solutions (KMB solution or AB solution) is 
related to y(λ) (i.e., T = 2π/�I , �I = Im(2iy(2α + β(4s2 − 8λ2)))). In the following, by taking y(λ) → 0, 
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Fig. 4. (a) The two-breather solution of Eq. (1) on the cn-periodic wave background. (b) Show the contour plot of the solution. The 
parameters of the solution (61) are chosen as α = β = 1, z1 = −1.4833 + 0.4635i, z2 = 1.4833 + 0.4635i and α1 = α2 = 1.

we will construct rogue wave solutions on the elliptic function background. To begin with, we expand the 
parameter y(λ) at the branch point λ1 : λ = λ1 + ε21 with ε1 being small parameter, and we arrive at

y(λ) =
√

(λ− λ1)(λ− λ2)(λ− λ3)(λ− λ4) = ε1y1Y1, (64)

where

y1 =
√

(λ1 − λ2)(λ1 − λ3)(λ1 − λ4), Y1 =

√(
1 + ε21

λ1 − λ2

)(
1 + ε21

λ1 − λ3

)(
1 + ε21

λ1 − λ4

)
.

Furthermore, we have

γ1 = λ2
1 + s2/2 + ε21(2λ1 + ε21) − ε1y1Y1, u(x) − 2γ1 = u1(x) − 2ε2

(
2λ1 + ε21

)
+ 2ε1y1Y1,

C1 = C0 + 4
[
ε21(3λ2

1 + s2/2 + 3λ1ε
2
1 + ε41) − ε1y1Y1(λ1 + ε21)

]
,

D1 = �0 + ε1y1Y1
[
�1 − 8βε21(2λ1 + ε21)

]
,

in which u1(x) = u(x) −
(
2λ2

1 + s2
)
, C0 = 4λ3

1 +2s2λ1, �0 = αs2 +β(3s2
2 −4s4) and �1 = 2α+β(4s2 −8λ2

1). 
Then, by inserting the above equations into the vector solution Ψ1, we would like to expand them in Taylor 
series of ε1. In this way, we first consider the expansion of ψ1 as follows:

ψ1 =
√
u(x) − 2γ1exp (θ1) =

∞∑
i=0

ψ
[i]
1 ε

[i]
1 , θ1 = i

x∫
0

C1 ds
u(s) − 2γ1

+ iλx + iD1t. (65)

Then, with the aid of Eqs. (5), (10) and (22), we arrive at

φ1 = ih
f − y

ψ1 = 2u(x)λ− iux(x)/2√
u(x)

√
u(x) − 2γ1

exp (θ1 − θ0) =
∞∑
i=0

φ
[i]
1 ε

[i]
1 , (66)

where θ0 = 2i�0t and the above expansion coefficients ψ[i]
1 and φ[i]

1 are defined by

ψ
[i]
1 = 1 ∂iψ1

i
|ε1=0, φ

[i]
1 = 1 ∂iφ1

i
|ε1=0.
i! ∂ε1 i! ∂ε1
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In a similar procedure, ψ2 and φ2 can be treated for the other eigenvalue λ = λ2 + ε22 with ε2 as a small 
parameter

ψ2 =
∞∑
i=0

ψ
[i]
2 ε

[i]
2 , φ2 =

∞∑
i=0

φ
[i]
2 ε

[i]
2 , (67)

where ψ[i]
2 and φ[i]

2 have the same forms of ψ[i]
1 and φ[i]

1 by exchanging λ1 to λ2. Moreover, using Eq. (10)
and f2 − gh = 0, we have

u1(x)2 = − 1
u(x)

[(
2u(x)λ1 −

iux(x)
2

)(
2u(x)λ1 + iux(x)

2

)]
. (68)

To avoid singularity, we consider a different representation for the expansion coefficients of φ1 based on 
Eq. (68). For convenience, we would present the first two odd-order coefficients

ψ
[1]
1 = r1(x)√

u1(x)
exp(Θ1), φ

[1]
1 = −r2(x)

√
u(x)u1(x)

J1(x) exp(Θ2), (69)

ψ
[3]
1 =

∑4
i=1 (ei1ξi) + e01

6
√
u1(x)

exp(Θ1), φ
[3]
1 =

√
u(x)u1(x)

[
2r2(x)
u1(x)2 −

∑4
i=1 (ei2ξi) + e02

6J1(x)

]
exp(Θ2), (70)

with

Θ1 = iC0ξ1 + iλ1x + i�0t, Θ2 = Θ1 − 2i�0t, J1(x) = 2u(x)λ1 + iux(x)
2 ,

r1(x) = 1 +
(
i�1t− 4iλ1

(
ξ1 + (2λ2

1 + s2)ξ2
))

u1(x), r2(x) = r1(x) − 2,

e0j = 3rj(x)
( 4∑

i=2

1
λ1 − λi

+ 2ix
)

± 12λ1

u1(x) (2 − rj(x)) + y2
1

u1(x)2
(
rj(x)3 ± (8 − 6rj(x))

)
,

e1j = 12i
(
s2rj(x) + 6λ2

1rj(x) − 2u1(x)
)
, e4j = −96iλ1y

2
1
(
2λ2

1 + s2
)
u1(x),

e3j = 48iλ1
(
y2
1
(
s2rj(x) + 2λ2

1rj(x) − 2u1(x)
)
− 4λ1

(
2λ2

1 + s2
)
u1(x)

)
,

e2j = 24i
(
s2

(
2λ2

1rj(x) − u1(x)
)

+ 2λ1
(
−5λ1u1(x) + 2λ3

1rj(x) + y2
1rj(x)

))
,

in which j = 1, 2, and the definition of ξi is given by

ξi :=
x∫

0

ds
u1(s)i

= κi

x∫
0

ds
(1 − ζ2sn2(s))i

, κ = 1
u3 − (2λ2

1 + s2)
, ζ2 = u3 − u2

u3 − (2λ2
1 + s2)

. (71)

To calculate ξi, we would use the integration formulas (see 336 of Ref. [9]) of Jacobi elliptic functions, and 
obtain

ξ1 = κΠ(ϕ, ζ2,m), ϕ = am(kx), (71a)

ξ2 = κ2

2(1 − ζ2)(m2 − ζ2)

[
−ζ2E(kx) + (ζ2 −m2)kx− 1

κ
υ1ξ1 + ζ4sn(kx)cn(kx)dn(kx)

1 − ζ2sn(kx)

]
, (71b)

ξ3 = κ3

2 2 2

[
m2kx + 2 (m2ζ2 + ζ2 − 3m2)ξ1 −

3
2 υ1ξ2 + ζ4sn(kx)cn(kx)dn(kx)

2 2

]
, (71c)
4(1 − ζ )(m − ζ ) κ κ (1 − ζ sn(kx))
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ξ4 = κ4

6(1 − ζ2)(m2 − ζ2)

[
3
κ
m2ξ1 + 4

κ2 (m2ζ2 + ζ2 − 3m2)ξ2 −
5
κ3 υ1ξ3 + ζ4sn(kx)cn(kx)dn(kx)

(1 − ζ2sn(kx))3

]
,

(71d)

where υ1 = (2ζ2(1 + m2) − ζ4 − 3m2), E(kx) and Π(ϕ, ζ2, m) respectively stand for the elliptic integral of 
the second and third kind (see appendix B of Ref. [63]), which can be given by

E(kx) = Z(kx) + E(m)
K(m)kx,

Π
(
ϕ, ζ2,m

)
= kx + sc(υ2) nd (υ2)

(
1
2 ln

ϑ4
(
kx−υ2

2K
)

ϑ4
(
kx+υ2

2K
) + kxZ(υ2)

)
, sn(υ2) = ζ

m
.

(73)

Therefore, with the these Eqs. (71a)-(71d) and (73), we can obtain ψ[i]
j and φ[i]

j to construct higher-order 
rogue wave solutions on the elliptic function background.

5.1. Rogue waves on the dn-periodic background

In this case, taking λ1 = λ̄3 = ci and λ2 = λ̄4 = di, then we fix the background solution q(x, t) =
k dn (kx;m) exp(iat) with k = c + d, m =

√
4cd

(c+d)2 and a = 2�0 = 2[α(c2 + d2) + β(3c4 + 2c2d2 + 3d4)]. To 

obtain the first-order rogue wave solution, we first derive r1(x) by using Eqs. (71a) and Eq. (71b)

r1(x) = 1 +
(
i�1t− 4iλ1

(
ξ1 + (2λ2

1 + s2)ξ2
))

u1(x)

= 1 +
(

i�1t + c + d

2c(c− d)

(
Z(kx) + E(m)

K(m)kx
)

+ x

2c

)
u1(x) − 2d(c + d)

c− d
sn(kx)cn(kx)dn(kx),

where �1 = 2α + 4β(3c2 + d2), u1(x) = u(x) + c2 − d2 and u(x) = k2 dn(kx)2. Next, taking ψ1 = ψ
[1]
1 and 

φ1 = φ
[1]
1 into one-fold DT (3), we obtain the first-order rogue wave solution on the dn-periodic background

q1 = k dn (kx;m)
[
1 + 2cu1(x)(|r1(x, t)|2 − 2r1(x, t))(2ciu(x) + iux(x)/2)

|r1(x, t)|2|2ciu(x) + iux(x)/2|2 + u(x)u1(x)2|r1(x, t) − 2|2
]

eiat . (74)

It should be noted that another rogue wave solution can be derived by the interchange of the parameters c
and d, which corresponds to a different branch point.

By choosing the amplitude of background wave as a fixed value k = 1, we plot Fig. 5(a) and Fig. 5(b). 
They exhibit the spatiotemporal patterns of two types of rogue waves on the background of the dn-periodic 
traveling wave, respectively. As seen from Fig. 5(a), the central part resembles an interaction between two 
solitons, and they collide elastically and generate a transient high wave in the interaction region. Fig. 5(b) 
displays a periodic oscillation of the rogue wave along the x-direction on the periodic background.

To continue, taking Ψ1 = (ψ[1]
1 , φ[1]

1 )T and Ψ2 = (ψ[1]
2 , φ[1]

2 )T into the two-fold DT (3), we can derive the 
second-order rogue wave solution on the periodic background

q2 = k dn(kx)
[

det (H2)
det (M2)

]
eiat, (75)

where

M2 =

⎡
⎢⎣

∣∣∣ψ[1]
1

∣∣∣2+∣∣∣φ[1]
1

∣∣∣2
2c

ψ̄
[1]
1 ψ

[1]
2 +φ̄

[1]
1 φ

[1]
2

c+d

ψ̄
[1]
2 ψ

[1]
1 +φ̄

[1]
2 φ

[1]
1

∣∣∣ψ[1]
2

∣∣∣2+∣∣∣φ[1]
2

∣∣∣2
⎤
⎥⎦ , H2 = M2 −

2i e−iat

k dn(kx)

[
φ̄

[1]
1

φ̄
[1]
2

] [
ψ

[1]
1 , ψ

[1]
1

]
,

c+d 2d
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Fig. 5. (a) The first-order dn-rogue wave solution with α = β = 1, c = 0.675, d = 0.325 and m = 0.9367. (b) The other first-order 
dn-rogue wave solution with α = β = 1, c = 0.325, d = 0.675 and m = 0.9367. (c) The second-order dn-rogue wave solution. (d-f) 
Show the contour plots of the corresponding solutions.

in which ψ[1]
j and φ[1]

j are given by Eq. (69).
By choosing the same parameters c and d as those in Fig. 5(b), we plot the Fig. 5(c), which shows the 

solution (75) on the dn-periodic wave. The maximum value of the |q2| is 3 at origin. It is observed that in 
the central part three solitons form a second-order rogue wave with a large peak, and the other part is still 
period in x.

Next, we give some special cases for the above rogue wave solutions. When c → 0 and d → 1 (or d → 0
and c → 1) such that k = 1, then we have dn(x; 0) = 1. In this case, the rogue wave solution (74) can 
reduce to the classical rogue wave solution (Peregrine soliton) on the constant background. In Fig. 6(a), the 
maximum value of |q1| is about 3 at the origin. The maximum amplitude for the rogue wave is three times 
as that of the exciting plane wave. When c → d, then dn(x; 1) = sech(x), one can obtain that the rogue 
wave solutions (74) and (75) respectively reduce to the double- and third-pole soliton solutions, as shown in 
Fig. 6(b) and Fig. 6(c). The maximum values of |q1| and |q2| are 2 and 3 at the origin. In Fig. 6(b), two solitons 
with equal amplitudes elastically collide along with a strong interaction, and generate a first-order rogue 
wave. In Fig. 6(c), three solitons with equal amplitudes elastically collide and generate a second-order rogue 
wave. We would like to point out that this kind of multi-pole soliton solution was first reported by Zakharov 
and Shabat in the NLS equation [69]. The multi-pole solution can be regarded as the degeneration of the 
N -soliton solution when N distinct poles (reflection coefficient admits N simple poles in the terminology of 
the inverse scattering transform) coalesce into one.

In order to obtain higher-order rogue waves, we consider expansions at two different spectral parameters 
and take m1 = m2 = 2 in the generalized DT (4), then the corresponding second-second-fold potential 
transformation is represented as

q2,2 = q − 2X1M−1X†
2, (76)

where M = YSY†, X = [Ψ[0]
1 , Ψ[1]

1 , Ψ[0]
2 , Ψ[1]

2 ] and
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Fig. 6. (a) The Peregrine soliton via solution (74) with c = 1, d = 0 and m = 0. (b-c) The double- and third-pole soliton solutions (74)
and (75) with c = d = 0.5 and m = 1. (d-f) Show the contour plots of the corresponding solutions.

Y =

⎡
⎢⎢⎢⎣

Ψ[0]†
1 0 0 0

Ψ[1]†
1 Ψ[0]†

1 0 0
0 0 Ψ[0]†

2 0
0 0 Ψ[1]†

2 Ψ[0]†
2

⎤
⎥⎥⎥⎦ , S =

⎡
⎢⎢⎢⎢⎢⎣

1
λ1−λ̄1

−1(
λ1−λ̄1

)2 1
λ2−λ̄1

−1(
λ2−λ̄1

)2
1(

λ1−λ̄1
)2 −2(

λ1−λ̄1
)3 1(

λ2−λ̄1
)2 −2(

λ2−λ̄1
)3

1
λ1−λ̄2

−1(
λ1−λ̄2

)2 1
λ2−λ̄2

−1(
λ2−λ̄2

)2
1(

λ1−λ̄2
)2 −2(

λ1−λ̄2
)3 1(

λ2−λ̄2
)2 −2(

λ2−λ̄2
)3

⎤
⎥⎥⎥⎥⎥⎦ .

Taking Ψ[0]
j = (ψ[1]

j , φ[1]
j )T and Ψ[1]

j = (ψ[3]
j , φ[3]

j )T , and plugging them into Eq. (76), thus we can obtain the 
second-second-order rogue wave solution.

By setting the parameters c = 0.675 and d = 0.325, we can obtain the second-second-order rogue wave 
on the dn-periodic background. As shown in Fig. 7, it is clearly seen that a larger-amplitude rogue wave is 
located at the origin, which corresponds to the third-pole soliton solution on the dn-periodic background. 
The rogue wave shown in Fig. 7 is actually enhanced in the center position up to 5 times as high as 
the height of the periodic background. In fact, we can compute the maximum value formulas: |q2,2| =
|q(x, t)| + 2|2Im(λ1)| + 2|2Im(λ2)|.

5.2. Rogue waves on the cn-periodic background

Similarly, the parameter choices are λ1 = λ̄3 = b + di and λ2 = λ̄4 = −b + di, then we fix the background 

solution q(x, t) = km cn (kx;m) exp(iat) with k = 2
√
b2 + d2, m =

√
d2

b2+d2 and a = 4[α(d2 − b2) + 4β(b4 −
4b2d2 + d4)]. To continue, we first give r1(x) in the form

r1(x) = 1 +
(

i�1t + −b + di
2bc

(
Z(kx) + E(m)

K(m)kx
)

+ x

2c

)
u1(x) + 2d(−b + di)

b
sn(kx)cn(kx)dn(kx),

where �1 = 2α+ 16β(d2 − b2 + bdi)), u1(x) = u(x) + 4bdi and u(x) = k2m2 cn(kx)2. Then, taking ψ1 = ψ
[1]
1

and φ1 = φ
[1]
1 , and inserting them into one-fold DT (3), thus we can derive the first-order rogue wave 

solution.
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Fig. 7. (a) The second-second-order rogue wave solution on the dn-periodic background with α = β = 1, c = 0.675, d = 0.325 and 
m = 0.9367. (b) The contour plot of (a).

Fig. 8. (a) The first-order cn-rogue wave solution with α = β = 1, b = −0.45, d = 0.5 and m = 0.7433. (b) The other cn-rogue wave 
solution with α = β = 1, b = 0.45, d = 0.5 and m = 0.7433. (c) The second-order cn-rogue wave solution. (d-f) Show the contour 
plots of the corresponding solutions.

By fixing the amplitude of background: km = 1 with the parameters b = −0.45 and d = 0.5, we plot 
Fig. 8(a). It shows the spatiotemporal structure of the rogue wave solution on the cn-periodic background 
with m = 0.7433. In this figure, it is obvious that the rogue wave moves to the right, and the maximum 
value of |q1| is 2 located at the origin. Moreover, if we take b = 0.45 and d = 0.5, one can derive another 
rogue wave moving to the left, which arises from a different branch point, shown in Fig. 8(b). In addition, 
we can obtain the second-order rogue wave solution by taking λ1 = −0.45 + 0.5i and λ2 = 0.45 + 0.5i, 
shown in Fig. 8(c). On the cn-periodic background, a fundamental second-order rogue wave is located at 
the central part, and its maximum amplitude reaches 3 located at the origin.

Particularly, when b → 0, then cn(kx; 1) = sech(kx). Thus, the above rogue wave solutions can also reduce 
to the double- and third-pole soliton solutions, which agree completely with the results in Section 5.1.
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Fig. 9. (a) The second-second-order rogue wave solution on the cn-periodic background with α = β = 1, b = 0.2, d = 0.5 and 
m = 0.9285. (b) The contour plot of (a).

Fig. 10. The KMB on the dn-periodic wave background with the same parameters in Fig. 1(b) except for (a) β = 0.01 and (b) 
β = 100. (c) and (d) respectively show the contour plots of (a) and (b).

By setting b = 0.2 and d = 0.5, we plot the Fig. 9, which displays the spatiotemporal structures of 
the second-second-order rogue wave on the cn-periodic background. It seems that four breathers collide and 
produce a transient high wave at the origin, which corresponds to second-order rogue wave with double poles. 
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Fig. 11. The rogue wave on the dn-periodic wave background with the same parameters in Fig. 5(a) except for (a) β = 0.01 and (b) 
β = 100. (c) and (d) respectively show the contour plots of (a) and (b).

In addition, the maximum value of the rogue wave can be derived: |q2,2| = |q(x, t)| +2|2Im(λ1)| +2|2Im(λ2)| =
5.

6. The effects of the parameter β on the breathers and rogue waves

In this section, we mainly discuss how the parameter β (the strength of higher-order nonlinear effects) 
affects the breathers and rogue waves on the periodic background.

From the expression (62) of the breather on the periodic background, we know that the period of the 
breathers is T = 2π/�I , �I = Im(2iy(2α+ β(4s2 − 8λ2))). Therefore, the parameter β can affect the period 
of the breathers, namely, the period decreases when the value of β increases. Since the parameter β has the 
similar effect on the GB, KMB and AB on the periodic background, in the following we take the KMB on 
the dn-periodic wave background as an illustrative example. From three cases in Fig. 10(a), Fig. 1(b) and 
Fig. 10(b) with β = 0.01, β = 1 and β = 100 respectively, it can be clearly seen that the number of peaks 
for the breathers on same time interval is increasing when the value of β increases. In addition, the height 
of peaks of this breather is |q1| = q(0, 0) + 2|Im(λ(z1))|. Therefore, the amplitude and the magnification 
factor for the breather is independent of the parameter β.

For the purpose of comparison, by choosing three cases of Fig. 11(a), Fig. 5(a) and Fig. 11(b) with the 
parameter β = 0.01, β = 1 and β = 100 respectively, we show the surface plots of rogue waves on the 
dn-periodic wave background. It is obvious that the parameter β is responsible for compression effect of 
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the rogue wave in the time direction. When the value of β increases, the rogue wave compression increases. 
Similar to the breathers, the parameter β does not affect the amplitude and the magnification factor for 
the rogue wave on the periodic background.

7. Conclusions

In this paper, we have constructed the multi-breather and higher-order rogue wave solutions of a fourth-
order NLS equation on the periodic background. First, by use of the MSW function approach, we have 
computed a complete family of elliptic solution, which can degenerate into two particular cases, i.e., the 
dnoidal and cnoidal solutions. In addition, we have solved the corresponding solutions to the associated 
spectral problem. Second, these solutions have been parameterized via the algebro-geometric method. With 
the aid of the multifold DT and the additional formulas of the theta functions, we have explicitly expressed 
the multi-breather solutions in terms of the theta function determinants on the dn and cn periodic back-
grounds, which correspond to the parameter l = K′

2 and l = 0, respectively. On the periodic background, we 
have constructed three types of multi-breathers: (a) the GB solution; (b) the AB solution; (c) the KMB so-
lution, and two-breather interaction solutions. Moreover, by taking some special limits at the branch points 
of the breather solutions, we have obtained the first-order, second-order and second-second-order rogue wave 
solutions on the dn and cn periodic backgrounds. In addition, we have discussed how the parameter β (the 
strength of higher-order nonlinear effects) affects the breathers and rogue waves on the periodic background.
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