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Through symbolic computation with Maple, two classes of lump solutions, rationally

localized in all directions in space, are presented for a new extended (2 + 1)-dimensional
Boussinesq equation. Analyticity of the solutions is naturally achieved, and particularly,

taking special choices of the involved parameters will guarantee the positiveness of the

constant term in the quadratic function f . Moreover, it deserves a note that one param-
eter in f plays an important role in order to maintain the positiveness of the quadratic

function f . As illustrative examples, two particular lump solutions with specific values

of the involved parameters are worked out and their three-dimensional plots, contour
plots, x-curves and y-curves are made.

Keywords: Lump solution; Hirota bilinear method; (2 + 1)-dimensional Boussinesq
equation.

1. Introduction

Searching for exact solutions of nonlinear partial differential equations is a hot

research topic. One kind of exact solutions are soliton solutions, which are

exponentially localized solutions in all directions in space. Recently, another kind

of exact solutions has been widely discussed, called lump solutions. In contrast
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to soliton solutions, lump solutions are localized solutions, which are rationally

decayed.

A class of lump solutions for the Kadomtsev–Petviashvili (KP) equation was

presented by Manakov et al. in 1977.1 Then, many high-dimensional nonlinear

partial differential equations that have lump solutions were found, such as the

three-dimensional three-wave resonant interaction equation,2 Davey–Stewartson II

equation,3 BKP equation.4 As lump waves were regarded as the appropriate pro-

totypes to model rogue wave dynamics in both oceanography and nonlinear optics,

many methods have been developed to search for lump solutions of nonlinear partial

differential equations, such as the inverse scattering transformation,5 the Darboux

transformation,6 the Bäckland transformation2 and the Hirota bilinear method7

and so on. Among them, the Hirota bilinear method based on a quadratic function

plays an important role in presenting lump solutions of nonlinear partial differential

equations.8–12

It is well known that the Boussinesq equation describes the propagation of

shallow water waves with small amplitudes as they propagate at a uniform speed

in a water canal of constant depth. It was proposed in 1871 by Boussinesq,13 and

was written as

utt − uxx + β(u2)xx + γuxxxx = 0, (1)

where β and α are arbitrary constants. It is also a soliton equation solvable by the

inverse scattering method,14 which arises in several other physical applications in-

cluding one-dimensional nonlinear lattice-waves,15 vibrations in a nonlinear string14

and ion sound waves in a plasma.16 In Ref. 17, solitons solution of the Boussinesq

equation was obtained by using Darboux transformation of three-order eigenvalue

differential equations. The rational solutions of the Boussinesq equation and appli-

cations to rogue waves have been studied in Ref. 18. Moreover, solitons, positrons

and complexitons, including rational solutions, were systematically presented by

the Wronskian technique.19,20

Recently, a new integrable (2+1)-dimensional Boussinesq equation was studied21

utt − 4uyt + 4uyy − 3εuxy −
3

2
ε(u2)xx +

3

4
ε2uxxxx = 0, ε2 = ±1 . (2)

For the sake of generality, four arbitrary parameters were inserted in the original

Eq. (2) in Ref. 22, which is called a new extended (2 + 1)-dimensional Boussinesq

equation

utt + αuyt − αuyy + α1εuxy + α2ε(u
2)xx + α3ε

2uxxxx = 0, ε2 = ±1 , (3)

where α, α1, α2, α3 are arbitrary constants. The one-soliton solutions of both bright

and dark types of Eq. (3) are derived by using the traveling wave method, and

N-soliton, breather and rational solutions are also obtained by using the Hirota

bilinear method and the long wave limit.22
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In this paper, we focus on the new extended (2 + 1)-dimensional Boussinesq

equation and present two classes of lump solutions of Eq. (3) by symbolic computa-

tion with Maple. Using the Hirota bilinear form (5) of Eq. (3), we will try to search

for exact solutions with positive quadratic function solutions for Eq. (3). In the two

classes of lump solutions, the positive quadratic function solutions contain five or

six parameters except the parameters α, α1, α2, α3, respectively, and it deserves a

note that in order to get lump solutions of Eq. (3), the parameter α3 needs to be

greater than zero. Finally, a few concluding remarks will be given at the end of the

paper.

2. Lump Solution

In order to obtain lump solutions to the potential function u in (3), we first use the

dependent variable transformation

u =
6α3ε

α2
(ln f)xx, (4)

to transform Eq. (3) into the bilinear form

(D2
t + αDyDt − αD2

y + α1εDxDy + α3ε
2D4

x)f · f = 0, (5)

where f is a real function and D is the Hirota bilinear differential operator.

Therefore, if f solves the bilinear Eq. (5), u = 6α3ε
α2

(ln f)xx will solve the non-

linear Eq. (3). In order to derive quadratic function solutions f to Eq. (5), we

assume

f = g2 + h2 + a9 , (6)

with

g = (a1x+ a2y + a3t+ a4)2, h = (a5x+ a6y + a7t+ a8)2 , (7)

where ai(1 ≤ i ≤ 8) are real parameters to be determined. A simple form of h2 +a5
can generate analytic solutions of Eq. (3), but those solutions are not rationally

localized in all directions in the space. So, we start with (6) and submit Eqs. (6) and

(7) into Eq. (5). Through symbolic computation, two sets of constraining equations

on the parameters are generated.

Case one:

a2 = 0, a5 = −1

4

a21a
2
6α

2
1ε

2 − a23a26α2 − 4a23a
2
6α− 4a43

a23a6α1ε
,

a7 = −1

2

a6(a1α1ε+ a3α)

a3
,

a9 = − 3

256

1

a103 a
4
6α

4
1ε

2
[α3(a41a

4
6α

4
1ε

4 − 2a21a
2
3a

4
6α

2α2
1ε

2 − 8a21a
2
3a

4
6αα

2
1ε

2

+ 8a21a
4
3a

2
6α

2
1ε

2 + a43a
4
6α

4 + 8a43a
4
6α

3 + 8a63a
2
6α

2 + 16a43a
4
6α

2

+ 32a63a
2
6α+ 16a83)2] ,

(8)
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which needs to satisfy the following constraint conditions:

a6 6= 0, a3 6= 0, a1a6 − a2a5 6= 0, α1 6= 0, a9 > 0 , (9)

to guarantee the well-definition of f , the positiveness of f and the localization of u

in all directions in the (x, y)-plane. The parameters in the set of (8) generate the

first class of positive quadratic function solutions f to Eq. (5) as follows:

f = (a1x+ a2y + a3t+ a4)2 +

(
a6y −

a6(a1α1ε+ a3α)

2a3
t

− a21a
2
6α

2
1ε

2 − a23a26α2 − 4a23a
2
6α− 4a43

4a23a6α1ε
x+ a8

)2

+ a9 , (10)

where a9 is the same as the parameter presented by equations in (8). So, the first

class of lump solutions to Eq. (3) is as follows:

u =
6α3

α2

2(a21 − a25)(h2 − g2)− 8a1a5gh+ 2(a21 + a25)a9
(g2 + h2 + a9)2

, (11)

where

g = a1x+ a2y + a3t+ a4 , (12a)

h = −1

4

a21a
2
6α

2
1ε

2 − a23a26α2 − 4a23a
2
6α− 4a43

a23a6α1ε
x+ a6y

− 1

2

a6(a1α1ε+ a3α)

a3
t+ a8 . (12b)

Note that in order to guarantee the positiveness of f , the value of the parameter

a9 must be greater than zero. So, the value of the corresponding parameter α3 must

be less than zero. If we take

a1 = 1, a2 = 0, a3 = 0.5, a4 = 0, a5 = −0.5, a7 = 0.5, a8 = 0 ,

a9 = 18.75, α = 1, α1 = −1, α2 = −1, α3 = −1, ε = 1, a6 = 1 ,
(13)

this leads to

f = 1.25x2 + y2 + 0.5t2 + 0.5tx− xy + ty + 18.75 , (14a)

u =
3

(m)2
(−0.15625tx+ 0.4375ty + 5.859375 + 0.125t2 − 0.390625x2

+ 0.1875y2 + 0.3125xy) , (14b)

where m = 0.25y2 + 0.125t2 + 0.3125x2 + 4.6875 + 0.125tx− 0.25xy + 0.25ty, and

when t = 0, the corresponding three-dimensional plot, contour plot, x-curves and

y-curves are depicted in Fig. 1. It is obvious that this kind of lump solution, as a type

of rational solutions, are rationally localized in all directions in the space, which is

different from soliton solutions exponentially localized in certain directions. From

Fig. 1(a), it can be seen that the solution has one peak and two valleys. Because the
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(a) (b) (c) (d)

Fig. 1. (Color online) The lump wave via the solution u in (15) with related parameters are

chosen as a1 = 1, a2 = 0, a3 = 0.5, a4 = 0, a6 = 1, a8 = 0, α = 1, α1 = −1, α2 = −1, α3 = −1,

ε = 1 and t = 0. (a) Three-dimensional plot; (b) contour plot; (c) x-curves; (d) y-curves.

height of the peak is larger than the depths of the valley bottoms, the solution can be

called bright lump waves. In fact, there are also other kind of lump solutions, which

have one peak and one valley and called bright-dark lump waves.23 Figure 1(b)

shows that the solution concentrate the energy of the background wave into a small

region, so it is limited. Figures 1(c) and 1(d) show the different localized oscillations

of the lump solution along the x- and y-axes, respectively.

Case two:

a1 =
m11

α1ε(a22 + a26)
, a5 =

m12

α1ε(a22 + a26)
,

a9 = − 1

α4
1ε

2(a22 + a26)(a2a7 − a3a6)2
[3α3(a42α

2 − 2a32a3α
2 + a22a

2
3α

2

+ 2a22a
2
6α

2 − 2a22a6a7α
2 + a22a

2
7α

2 − 2a2a3a
2
6α

2 + a23a
2
6α

2 + a46α
2

− 2a36a7α
2 + a26a

2
7α

2 − 2a22a
2
3α+ 2a22a

2
7α+ 2a2a

3
3α− 8a2a3a6a7α

+ 2a2a3a
2
7α+ 2a23a

2
6α+ 2a23a6a7α− 2a26a

2
7α+ 2a6a

3
7α+ a43

+ 2a23a
2
7 + a47)2] ,

(15)

where

m11 = a32α− a22a3α+ a2a
2
6α− a3a26α− a2a23 + a2a

2
7 − 2a3a6a7 ,

m12 = a22a6α− a22a7α+ a36α− a26a7α− 2a2a3a7 + a23a6 − a6a27 ,
(16)

which need to satisfy

a2a7 − a3a6 6= 0, a2a6 6= 0 , (17)

to make the corresponding solutions f to be well defined, the conditions

α3 < 0, a1a6 − a2a5 6= 0 , (18)

to guarantee the positiveness of f and the localization of u in all directions in the

space, respectively. The parameters in set (15) yield the second class of positive
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quadratic function solutions to Eq. (3) as

f =

(
m11

α1ε(a22 + a26)
x+ a2y + a3t+ a4

)2

+

(
m12

α1ε(a22 + a26)
x+ a6y + a7t+ a8

)2

+ a9 , (19)

where a9 is the same as the parameter presented in Eq. (15). So, the corresponding

lump solution of equation u is as follows:

u =
6α3

α2

2(a21 − a25)(h2 − g2)− 8a1a5gh+ 2(a21 + a25)a9
(g2 + h2 + a9)2

, (20)

with the functions g and h being given as follows:

g =
a32α− a22a3α+ a2a

2
6α− a3a26α− a2a23 + a2a

2
7

α1ε(a22 + a26)
x

− 2a3a6a7
α1ε(a22 + a26)

x+ a2y + a3t+ a4 , (21a)

h =
a22a6α− a22a7α+ a36α− a26a7α− 2a2a3a7 + a23a6

α1ε(a22 + a26)
x

− a6a
2
7

α1ε(a22 + a26)
x+ a6y + a7t+ a8 . (21b)

If we take

a1 = 1, a2 = 1, a3 = 1, a4 = 0, a5 = −3, a6 = −1, a7 = 1 ,

a8 = 0, a9 = 150, α = 1, α1 = 1, α2 = 1, α3 = −1, ε = 1 ,
(22)

we obtain

f = 2t2 − 4tx+ 10x2 + 8xy + 2y2 + 150 , (23a)

u = −12(3t2 + 10tx+ 8ty − 25x2 − 20xy − 3y2 + 375)

(5x2 + 4xy + y2 + t2 − 2tx+ 75)2
, (23b)

and when t = 0, the localized characteristics and energy distribution of lump so-

lution can be seen clearly in Fig. 2 including three-dimensional plot, contour plot,

(a) (b) (c) (d)

Fig. 2. (Color online) The lump wave via the solution v in (15) with related parameters are
chosen as a2 = 1, a3 = 1, a4 = 0, a6 = −1, a7 = 1, a8 = 0, α = 1, α1 = 1, α2 = 1, α3 = −1,

ε = 1 and t = 0. (a) Three-dimensional plot; (b) contour plot; (c) x-curves; (d) y-curves.
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x-curves and y-curves. It can be seen from Fig. 2(a) that the lump solution has two

small peaks and one valley. The valley is hidden under the plane wave, and hence,

it can be called a dark lump solution. Figure 2(b) shows the energy distribution of

lump solution, and this solution concentrates the energy of the background wave

into a small region. Figures 2(c) and 2(d) represent the localized characteristics of

lump solution in the space, and the localized oscillation is presented.

3. Conclusions

In this paper, we obtained two classes of lump solutions to Eq. (3) based on the

Hirota formulation. It deserves to take note that in order to keep the positiveness

of f , the value of the parameter α3 must be less than zero. It is also observed

that at any given time t, all the above lump solutions g2 +h2→ ∝, or equivalently,

x2+y2→ ∝, which means that the exact solution u(x, y, t) is analytic and localized

in all directions.

It is known that the Hirota bilinear form provides an efficient tool to solve non-

linear differential equations of mathematical physics. By involving different prime

numbers, Hirota bilinear operators have been generalized to generate diverse non-

linear differential equations possessing potential applications. So, it is interesting

to investigate lump solutions for nonlinear differential equations which possess gen-

eralized bilinear forms, which will be one of our future work.

Meanwhile, compared with the extensive study of various exact solutions for

nonlinear evolution equation, such as soliton solutions and so on, for both discrete

and continuous cases,24–28 the study of interaction solutions has aroused great in-

terest of researchers.29–34 When lump solutions of Eq. (3) is generated through

symbolic computations, there is an interesting question that is what kind of inter-

action solutions can be formulated by combining other kinds of functions? There

are already some results about interaction solutions between lump solutions and

stripe solutions.35–39 We will do some work in our next paper.
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