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Through symbolic computation with Maple, two classes of lump solutions, rationally
localized in all directions in space, are presented for a new extended (2 + 1)-dimensional
Boussinesq equation. Analyticity of the solutions is naturally achieved, and particularly,
taking special choices of the involved parameters will guarantee the positiveness of the
constant term in the quadratic function f. Moreover, it deserves a note that one param-
eter in f plays an important role in order to maintain the positiveness of the quadratic
function f. As illustrative examples, two particular lump solutions with specific values
of the involved parameters are worked out and their three-dimensional plots, contour
plots, z-curves and y-curves are made.

Keywords: Lump solution; Hirota bilinear method; (2 + 1)-dimensional Boussinesq
equation.

1. Introduction

Searching for exact solutions of nonlinear partial differential equations is a hot
research topic. One kind of exact solutions are soliton solutions, which are
exponentially localized solutions in all directions in space. Recently, another kind
of exact solutions has been widely discussed, called lump solutions. In contrast
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to soliton solutions, lump solutions are localized solutions, which are rationally
decayed.

A class of lump solutions for the Kadomtsev—Petviashvili (KP) equation was
presented by Manakov et al. in 1977.1 Then, many high-dimensional nonlinear
partial differential equations that have lump solutions were found, such as the
three-dimensional three-wave resonant interaction equation,? Davey-Stewartson 11
equation,®> BKP equation.* As lump waves were regarded as the appropriate pro-
totypes to model rogue wave dynamics in both oceanography and nonlinear optics,
many methods have been developed to search for lump solutions of nonlinear partial
differential equations, such as the inverse scattering transformation,® the Darboux
transformation,® the Backland transformation? and the Hirota bilinear method”
and so on. Among them, the Hirota bilinear method based on a quadratic function
plays an important role in presenting lump solutions of nonlinear partial differential
equations.® 12

It is well known that the Boussinesq equation describes the propagation of
shallow water waves with small amplitudes as they propagate at a uniform speed
in a water canal of constant depth. It was proposed in 1871 by Boussinesq,'? and
was written as

Ut — Ugy + 6(uz)zr + YUgrxx = Oa (1)

where 8 and « are arbitrary constants. It is also a soliton equation solvable by the
inverse scattering method,'4 which arises in several other physical applications in-
cluding one-dimensional nonlinear lattice-waves,'® vibrations in a nonlinear string!4
and ion sound waves in a plasma.l® In Ref. 17, solitons solution of the Boussinesq
equation was obtained by using Darboux transformation of three-order eigenvalue
differential equations. The rational solutions of the Boussinesq equation and appli-
cations to rogue waves have been studied in Ref. 18. Moreover, solitons, positrons
and complexitons, including rational solutions, were systematically presented by
the Wronskian technique.!?-20

Recently, a new integrable (2+1)-dimensional Boussinesq equation was studied?!

3 3
“e(u)pn + S%Upppe =0, €2 =1, (2)

Ugp — dys + 4y — 3EULy — 5 1

For the sake of generality, four arbitrary parameters were inserted in the original
Eq. (2) in Ref. 22, which is called a new extended (2 + 1)-dimensional Boussinesq
equation

2 2 2
Ugt + QUys — Oy + O EULy + (U7 )3y + 3 Uggre =0, €” =1, (3)

where «, a1, as, a3 are arbitrary constants. The one-soliton solutions of both bright
and dark types of Eq. (3) are derived by using the traveling wave method, and
N-soliton, breather and rational solutions are also obtained by using the Hirota
bilinear method and the long wave limit.22
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In this paper, we focus on the new extended (2 + 1)-dimensional Boussinesq
equation and present two classes of lump solutions of Eq. (3) by symbolic computa-
tion with Maple. Using the Hirota bilinear form (5) of Eq. (3), we will try to search
for exact solutions with positive quadratic function solutions for Eq. (3). In the two
classes of lump solutions, the positive quadratic function solutions contain five or
six parameters except the parameters «, ay, as, ag, respectively, and it deserves a
note that in order to get lump solutions of Eq. (3), the parameter a3 needs to be
greater than zero. Finally, a few concluding remarks will be given at the end of the

paper.

2. Lump Solution

In order to obtain lump solutions to the potential function u in (3), we first use the
dependent variable transformation
o 60438

(&%)

to transform Eq. (3) into the bilinear form
(D} + aDyD; — aD; + a1eDy Dy, + ase’Dy) f - f =0, (5)
where f is a real function and D is the Hirota bilinear differential operator.
Therefore, if f solves the bilinear Eq. (5), u = 63‘—25(1n f)ze will solve the non-

linear Eq. (3). In order to derive quadratic function solutions f to Eq. (5), we
assume

f=9"+h+ay, (6)

with
g = (a1 + agy + ast +as)?, h = (asz + agy + art + ag)?, (7)
where a;(1 < i < 8) are real parameters to be determined. A simple form of h2 + as
can generate analytic solutions of Eq. (3), but those solutions are not rationally
localized in all directions in the space. So, we start with (6) and submit Eqs. (6) and

(7) into Eq. (5). Through symbolic computation, two sets of constraining equations
on the parameters are generated.

Case one:

1 ajaiaie? — a3aka? — 4a3aia — da}

a9 = 0 as =
’ 4 agaﬁals ’

1 ag(arane + agar)
ag=—-————
2 as ’

—73 71 [a3(a4a4a454 — 2a2a2a4a2a252 — 8a2a2a4aa252 (8)
: 1%6%1 1%3%6 1 1%3%6 1
256 a10a4a4€2
3 671

ag =
+ 8atajalaie? + ajaga + Sajaga® + 8aSala’ + 16a3aga’

+ 32aga§a + lﬁag)z] ,
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which needs to satisfy the following constraint conditions:

ag 7& 0, as 7é 0, a1ae — a2as5 7é 0, (051 7& O, ag > 0, (9)

to guarantee the well-definition of f, the positiveness of f and the localization of u
in all directions in the (z,y)-plane. The parameters in the set of (8) generate the
first class of positive quadratic function solutions f to Eq. (5) as follows:

aglaia€ + azo
f = (a7 + aoy + ast + as)* + (%‘y - %t
3
2
_ afagaie’ — azaga® — dajaia — 4a§x vas) +a (10)
4aagane ’

where ag is the same as the parameter presented by equations in (8). So, the first
class of lump solutions to Eq. (3) is as follows:

60y 2(a3 —a?)(W” — ¢?) — Sasasgh + 2(a} + a)ag

; (11)

g (92 + h2 +ag)?
where
g = a1z + a2y + ast + aq, (12a)
b 1 ajataie? — dfaia® — dafata — 4a§x + asy
4 a?,,agoqe
1 .
— 7—a6(a1a15+a3a)t+a8. (12b)

2 as

Note that in order to guarantee the positiveness of f, the value of the parameter
ag must be greater than zero. So, the value of the corresponding parameter a3 must
be less than zero. If we take

a; = 1, as = 0, as = 0.5, a4y = 0, as = —0.5, a7 = 0.5, ag = 0,

(13)
ag =18.75, a=1, a1=-1, a=-1, as=-1, e=1, ag=1,
this leads to
f =125z +y* 4+ 0.5t + 0.5tx — ay + ty + 18.75, (14a)
3
u= W(—0.15625m + 0.4375ty 4+ 5.859375 4 0.125¢% — 0.39062522
+0.1875y* + 0.31252y) , (14b)

where m = 0.25y% + 0.125¢t2 + 0.312522 + 4.6875 + 0.125tz — 0.25zy + 0.25ty, and
when ¢t = 0, the corresponding three-dimensional plot, contour plot, z-curves and
y-curves are depicted in Fig. 1. It is obvious that this kind of lump solution, as a type
of rational solutions, are rationally localized in all directions in the space, which is
different from soliton solutions exponentially localized in certain directions. From
Fig. 1(a), it can be seen that the solution has one peak and two valleys. Because the
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Fig. 1. (Color online) The lump wave via the solution u in (15) with related parameters are
chosen as a1 = 1,a2 =0,a3 =0.5,a4 =0,a6 =1,a8 =0, a =1, a1 = -1, ag = —1, ag = —1,
e =1 and ¢t = 0. (a) Three-dimensional plot; (b) contour plot; (c) z-curves; (d) y-curves.

height of the peak is larger than the depths of the valley bottoms, the solution can be
called bright lump waves. In fact, there are also other kind of lump solutions, which
have one peak and one valley and called bright-dark lump waves.?? Figure 1(b)
shows that the solution concentrate the energy of the background wave into a small
region, so it is limited. Figures 1(c) and 1(d) show the different localized oscillations
of the lump solution along the z- and y-axes, respectively.

Case two:
mii mi2
a1 = "5 2y W= 5 o\
aie(az + ag) aie(az + ag)
1
_ 3 4.2 903002 2 2 2
ag P I B  ——— [Bas(asa asasa” + asaszo

2.2 2 2 2, 2,2 2 2.2, 2.2 2 | 4 2
+ 2a5a5a° — 2a3a6a70° + azaza” — 2asazaga’ + ajaia” + ago (15)
— 2a3a70’ + a2aa’ — 2a3a3a + 2a3aia + 2a0a3a — 8azazagara
+ 2apazaZa + 2a3aia + 2a3agara — 2akaia + 2aada + aj
2.2 42
+ 2a3a7 + az)7],

where
mi = a%a — a%aga + aga?;a — agaga — agag + agag — 2asagar ,
(16)
mig = a%aGa — a%awx + agoz — a§a7a — 2asaza7 + a§a6 — aga% s
which need to satisfy
azar —azag # 0, azag # 0, (17)
to make the corresponding solutions f to be well defined, the conditions
ag <0, aias—azas #0, (18)

to guarantee the positiveness of f and the localization of w in all directions in the
space, respectively. The parameters in set (15) yield the second class of positive
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quadratic function solutions to Eq. (3) as

2 2
F=(—00  staytasttas] +(—at 2+ agy + art + as
are(ad +al) are(a +a?)

+ ag ) (19)

where ag is the same as the parameter presented in Eq. (15). So, the corresponding
lump solution of equation u is as follows:

Gy 2(a3 — a2) (B — ¢%) — Saasgh + 2(a} + aZ)ay

, 20
s (92 + h2 + ag)? (20)
with the functions g and h being given as follows:
_ a%a - a%aga + CLQG%CV — agaga — agag + a2a$
are(as + ag)
2&3(16(17
- t+aq, 21a
ale(ag +a§)x+a2y+a3 aq (21a)
h— a%aga — a%awx + a%a — a§a7a — 2asasza7 + a%agx
are(a? + a?)
2
a6a7
- t+asg. 21b
aie(a3 + a?) T+ agy +art + as (21b)
If we take
al—l, ag—l, a3—1, a4—O, a5:—3, ag——l, a7—1,
(22)
ag =0, ag=150, a=1, a;=1, ay=1 az3=-1, e=1,
we obtain
f=2t* — 4tz + 102 + Szy + 2y + 150, (23a)
12(3t? + 10t 8ty — 2522 — 202y — 3y% + 375
= 2B+ 06w + 8ty = 35¢” — 0wy — 3y + 375) (23b)

(522 4+ 4oy + y? + t2 — 2tx + 75)2
and when ¢t = 0, the localized characteristics and energy distribution of lump so-
lution can be seen clearly in Fig. 2 including three-dimensional plot, contour plot,

A,
kN

(a) (b) (c)
Fig. 2. (Color online) The lump wave via the solution v in (15) with related parameters are

chosen as ag = 1, a3 =1,a4 =0,a6 = —1,a7 =1,a8 =0, a=1, a1 =1, aa = 1, a3 = —1,
e =1 and ¢t = 0. (a) Three-dimensional plot; (b) contour plot; (c) z-curves; (d) y-curves.
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a-curves and y-curves. It can be seen from Fig. 2(a) that the lump solution has two
small peaks and one valley. The valley is hidden under the plane wave, and hence,
it can be called a dark lump solution. Figure 2(b) shows the energy distribution of
lump solution, and this solution concentrates the energy of the background wave
into a small region. Figures 2(c) and 2(d) represent the localized characteristics of
lump solution in the space, and the localized oscillation is presented.

3. Conclusions

In this paper, we obtained two classes of lump solutions to Eq. (3) based on the
Hirota formulation. It deserves to take note that in order to keep the positiveness
of f, the value of the parameter as must be less than zero. It is also observed
that at any given time ¢, all the above lump solutions ¢2 + h* — , or equivalently,
22 4+9? — o, which means that the exact solution u(x,y,t) is analytic and localized
in all directions.

It is known that the Hirota bilinear form provides an efficient tool to solve non-
linear differential equations of mathematical physics. By involving different prime
numbers, Hirota bilinear operators have been generalized to generate diverse non-
linear differential equations possessing potential applications. So, it is interesting
to investigate lump solutions for nonlinear differential equations which possess gen-
eralized bilinear forms, which will be one of our future work.

Meanwhile, compared with the extensive study of various exact solutions for
nonlinear evolution equation, such as soliton solutions and so on, for both discrete
and continuous cases,2* 28 the study of interaction solutions has aroused great in-

29734 When lump solutions of Eq. (3) is generated through

terest of researchers.
symbolic computations, there is an interesting question that is what kind of inter-
action solutions can be formulated by combining other kinds of functions? There
are already some results about interaction solutions between lump solutions and

stripe solutions.?>3? We will do some work in our next paper.
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