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This paper aims to study lump solutions to a class of (24 1)-dimensional nonlinear
PDE systems, which involve the fourth-order Hirota derivative term: DfD,ch. This
Hirota derivative term generates higher-order derivatives of the temporal variable. Lump
solutions to the resulting new class of nonlinear PDE systems are studied in detail via
the Hirota bilinear method.
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1. Introduction

As is well known, Hirota’s bilinear method’ is one of the most powerful tools to
search for multiple-soliton solutions (stable, localized, exponentially decaying at
infinity). Recently, applying Hirota’s bilinear method to search for lump solutions
is an ad hoc problem and the results are fruitful. Lump solutions (see, e.g. Ref. 2)
are a kind of spatially localized and rationally decaying solutions.

An early example of constructing lump solution is due to Manakov and his
collaborators, they obtained special lumps of the KPI equation by first construct-
ing multi-solitons and then taking the long-wave limit. Based on this method, many
integrable equations are found to have lump solutions such as the Davey—Stewartson
IT equation* and the Ishimori-I equation.® Recently, in 2015, one of the authors®
applied Hirota’s bilinear method to construct a complete set of second-order lump
solutions for the KP equation in a straightforward and effective way.
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Based on Hirota’s bilinear method, lump solutions of many famous inte-
grable equations are algorithmically obtained. Those examples include the BKP
equation”® and its generalization,” the generalized Bogoyavlensky—Konopelchenko
equation,!%the Hirota—Satsuma-Ito equation!! just to name a few. Besides those
(24 1)-dimensional equations, there also exist higher-dimensional examples, such as
(3+1)-dimensional KP equation and its generalizations!®!3 and (3+1)-dimensional
BKP-Boussinesq equation.!* Lump solutions are a kind of solutions which are sta-
ble and detectable and the peaks of a solution move along a straight line. All these
properties enable us to study the interaction between lump solutions and solitons,
hence lump solutions play a significant role in physics. Moreover, it is also impor-
tant to study the time evolution of an integrable equation with given a lump initial
data.t?

In this study, we will mainly focus on the computation part, and lump solutions
to a new type of (2 + 1)-dimensional nonlinear PDEs will be construed algorithmi-
cally. We first simply describe the main idea of the method, for more details with
rigorous proofs, see Ref. 2. Given a nonlinear PDE or a coupled PDE system in
general,

P(u) =0,

where P is a differential polynomial with respect to spatial variables. Then via the
bilinear transform or Hopf transform, u = 2log(f).. or u = 2log(f)., we arrive at
a bilinear differential equation

B(f) = 0.

The relation between the original differential equation(s) P(u) and the bilinearized
differential equation(s) B(f) is given by

P(u) = (B(f)/f*)z or B(f)/f*.
The most difficult part of the method is to find Hirota’s representation:

B(f):P(Divay7Dt)ff7

where P(Dg, Dy, D;) is a polynomial of the Hirota derivatives.

In many integrable equations, Hirota’s representation involves terms like: D; D3,
DgDz and D% and so on, and we find that there are no terms for higher-order
Hirota derivative with respect to ¢. This gives us the motivation to study a type of
PDEs which involves Hirota’s derivatives D7D, D,. After one finds Hirota’s repre-
sentation, following the theorems in Ref. 2, all lower degree lump solutions share
the following form:

f = (a1t + agx + azy + ag)? + (b1t + box + byy + by)? + €.

The rest of the work is to determine the involved coefficients. Lastly, to ensure
that the solution is a lump solution, one needs to check that asbs — agbs # 0.

In this paper, we would like to study a class of coupled PDE systems in
(24 1) dimensions. Lump solutions are constructed via the method described in the
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paper.5 In Sec. 3, we give some relations between the coefficients of the solution and
the Hirota derivatives, which are used to find the explicit solutions. The notation
introduced there can significantly reduce the length of the expression. In Sec. 5, an
illustrative example for a reduced case is presented, along with 3D plots for each
component in the coupled system.

2. A Family of Nonlinear PDEs with 4th Order Hirota’s Form

In this paper, we will focus on nonlinear PDEs in R? whose corresponding Hirota
bilinear forms are of fourth-order. Let us assume that the independent variables
are x1,%2,x3 € R. And we define the Hirota derivatives with respect to the jth
independent variable as follows:

k-4
) J k! n j—n
D;‘cjf.f:ngon!(kj*;)!(*l)n(ajf) @; )%,

where 0; f = Mwé’iff’m7j = 1,2,3. In the following contents, we set 1 = ¢,z =
Y, 3 =y. '
Due to the cyclic symmetry of x1, s, 3, there are actually only four types of 4th
powers Hirota derivatives we need to discuss, which are D, D, D3, DO%D;7 D?D,D,.
Now, we would like to introduce a class of nonlinear PDEs:

P(u) = ay (6utty + Upas) + a2(3us, + ) + a3 (202 + uvy + uyy)s
+ 044(’1133815 + 251531 + stzy)z + dlum + dQUtz ) (1)

where v = wy, 5, = wy, v, = wy,and the coefficients aj,7 = 1,2,3,4and d;,j = 1,2
are arbitrary. Then by applying the Hopf transform w = 2(log(f))., we arrive at
the following Hirota bilinear form:

B(f) = (1D} + 02Dy D3 + a3 DD} + 0y D} Dy Dydy D2 + do Dy Dy ) f - f = 0. (2)

Remark 1. In our class of NLPDEs, the fourth order term such as D3 D, is not
included, which has been analyzed in previous work!%:'” by one of the authors. In
other words, the main purpose of this paper is to study how the Hirota bilinear
form generated by types (2,1,1), i.e. D7D, D,, affects the process of solving for
lump solutions.

3. Relations between Hirota’s Form and the Coefficients of the
Quadratic Solution

In this section, we will study the relations between the coefficients of the quadratic
function and the Hirota bilinear form.

First of all, following the theorems in Ref. 2, the low order general lump solution
to (2 4 1)-dimensional NLPDEs is by setting f in the bilinear form as

f(@,y,t) = (a1t + asx + asy + as)? + (bit 4 box + b3y + bs)* + €. (3)
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Due to Corollary 3.5 in Ref. 2, if f solves B(f) = 0, then a4, by are arbitrary. Hence,
the main computation is to represent aq, b, e in terms of the rest of the coefficients.
Now, introduce the following compact notations:

N:t(l,]) = a;aj; + blbj y

S (4)
Mi(l,']) = aib]’ + biaj .
Then by direct calculating, we obtain
Dif - f=24N%(2,2),
DDA f = 24N (2,2)N4(1,2),
(5)

DID;f - f =8M?(2,3) + 24M3 (2,3),
DID,D,f - f=8Ny(2,3)Ny(1,1) + 16asaza? + 16b; M (2,3)a; + 16babsb7 .

As we can see, the fourth-order Hirota derivative acting on the quadratic functions,
f, only generates some constant terms. Moreover, the degree of the coefficients is
exactly the order of the corresponding order of the Hirota derivative, i.e. in the
second equation, the order of as equals the order of D, which is 3.

Next, we compute the terms generated by the second-order Hirota derivative, in
fact, there are only two types (2,0) or (1,1), hence, we list the coefficients related
to D2 and D, D,,.

For D2 f- f, we obtain a new quadratic function which has 9 coefficients, namely

=

)

16M+ (3, 4)&2[)2 s

2 —4N3(2,2),

y*: —4N_(2,2)N_(3,3),

t2: —4N_(1,1)N_(2,2) — 16ajazbiby ,

tr: —8N,(2,2)N4(1,2),

ty: —8N_(1,3)N_

zy: —8N4+(2,2) 2,3), ©
(
—(
(

(3.3)
(2,2) -
(1,2)
(2,2) — 16M4 (1, 3)agbs ,
(2,3)
(2,4)
-(2,2) -
N_(2,2) —16M(1,4)azbs ,

1: [ (4, 4) 46]N,(2, 2) — 16a2b2a4b4 .
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For DD, f - f, we have

(
(
(
tw: — 8N4 (2,2
ty: — 8N_(3,3)N_
xy: — 8N4 ( 3
2: — 8N4 (2,2) N, (3,4
y: —8N_(3,3)N_(2,4
t: — (8az —b2)N1(3,4) —8M_(3,4)M_(1,2),
1: — AN_(4,4)N_(2,3) + 4eN(2,3) — SM_(2,3)asbs .

For the rest of the second order terms, the coefficients can be carried out by using
cyclic symmetry of the independent variables (x,y, t).
Now, let us consider the following differential polynomial:

P(u) = a1 (6utty + Upes) + a2(3usy + tig) s + as(202 + UVy + Uyy )z
+ g (Vg St + 2858y + Stay)s + A1y + dovyy (8)

By a straightforward symbolic computation, we have a set of solutions for the
parameters as:

dq (N_ (2, 2)&3 + 2&2[)21)3)

“m=- ds N (3,3) ’ o
9
by — 7d1(N7(27 2)bs — 2azbaas)
e dy N, (3,3) '

The constant e can also be represented in terms of as, ag, aq, ba, b3, by and the co-
efficients coming from the original equation. Here, we introduce a way using the
notation giving in the last section. Since the equations related to e appear only at
the constant terms, that means we need to solve the following linear equation to
get e:

a1(24N2(2,2)) + a2(24N1.(2,2) N4 (1,2)
+a3(8M?(2,3) + 24M2(2,3)) + (8N4 (2,3) N4 (1,1) + 16azaza?
+16by M, (2,3)a; + 16b2b3b?)
+dy ([~4N_(4,4) + 4e]N_(2,2) — 16abyasby)
+dy(—4AN_(4,4)N_(2,3) + 4eN; (2,3) — 8M_(2,3)asbs) = 0. (10)
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Then replacing a1, by using the equations we get in (9), we finally arrive at an ex-
pression in terms of as, as, a4, b2, b3, by and the coefficients coming from the original
equation. In fact, we see that e equals

[4di N — (2,2) + 4d2 N+ (2,3)] a1 (24N%(2,2))

d2N+1(3 37 (AN (2 2)(N-(2,2)N4(2,3) + 2azba M- (2,3)
+as(8M2(2,3) 4 24M7(2,3))
+ 0‘4(%2;))([N—(2 2)az + 2azbabs)? + [N_(2,2)bs + 2asbsas]?)
16a2a3d1

——— 1 IN_(2,2 2 2
d%NE(S,S)[ ( ) )a3+ a2b2b3]

16M (2, 3)d?
d3N2(3,3)

16babsd?
BN7(3,3)
+d; (—4N_ (47 4)N_ (2, 2) — 16a2b2a4b4)
4 dy(—AN_(4,4)N_(2,3) — SM_(2,3)asbs)} . (11)

(N2(2,2)asbs + 4azbzasbs +2N_(2,2) N (3,3)azbs)

[N,(2, 2)[)5 + 2a2b2a3]2)

Though (11) is very complicated to read, the symbolic computer algebra system
really brings many benefits for figuring out the exact solutions, especially, the lump
solutions.

Remark 2. In theory, by the algorithm we introduced above, we can compute all

the lump solutions to the class of equations given by (1).

4. An Illustrative Example

Let us consider the situation when
a1:1,a2=2,a3:1,a4:2,d1:—1,d2:1, (12)
which leads to the following coupled nonlinear PDEs:

(6utty + Ugzz) + 2(3usy + utz) + (202 + uvy + wyy)
+ 2(’Ug;St + 28;1;Sy + stmy) — Wgy + Wiy = 0,

U= w,, (13)
Sg = Wy,
Vg = Wy .
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(a) watt=0. (b) uw at t = 20. (c) u at t = 40.

Fig. 1. Profiles of u.

(a) vatt=0. (b) v at t = 20. (c) v at ¢ = 40.
Fig. 2. Profiles of v.

Then based on the previous computation, since a;,b;,j = 2,3,4 can be chosen
arbitrarily, we take
{agzl,a3:17a4:2,b2:—1,b3:2,b4:2}. (14)

Plug into Egs. (10) and (12), we can determine coefficients a1, by, e, which are

IR S
ay = 55 1= 57 6_5 .

Via the relation between the solution of bilinear equation and the original equation,

one obtains the solution to the coupled nonlinear system as follows:

) 8t2 + 10tz — 50ty — 2522 + 25xy + 50y% — 60t + 150y + 240
(482 — Atz — 16ty + 1022 — 102y + 2552 — 24t + 60y + 96)>

—8x — 32y — 48 + 16¢
@92t = G (Cie — 16y —24) 1 + 25y + (—102 7 60)y + 1022 £ 96"
—20z + 100y + 120 — 32t
oY) = G (Cay — 16y — 24)1 5 2557 1 (~102 + 60) y + 1022 + 96

u(z,y,t) =

(15)
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(a) sat t=0. (b) s at t = 20. (c) s at t = 40.

Fig. 3. Profiles of s.

Amplitude

Fig. 4. A 2D plot for u,v,s at y = 0 and (solid) ¢t = 0, (dash) ¢ = 2.

The three-dimensional plots for lump solutions of all three functions w,v,s are
presented in Figs. 1-3. Also, Fig. 4 shows profiles of u, v, s by fixing y and varying ¢.

5. Conclusion and Remarks

In this paper, we explores a class of nonlinear PDE systems, whose Hirota rep-
resentations involve DD, D,. Such a class of PDE systems has not been studied
before, to the best of our knowledge. From the computation point of view, the
higher-order of the ¢ derivative will increase the complexity of the representation
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of the constant e. And also since many famous nonlinear evolutions do not involve
this high-order ¢ derivative, our work will bring some new thoughts to the study of
nonlinear evolutionary PDEs, especially lump solutions to the field.

In general, nonlinear PDEs are rarely solvable. However, Hirota’s bilinear
method, along with the idea by one of the authors, it is possible to explore some
class of nonlinear PDEs. This paper provides an example and a brand-new nonlin-
ear PDEs which can be explicitly solved by using the bilinear method. However,
there are many studies which need to be done in the field of lump solutions. To list
some of them: (1) how to efficiently construct multiple-lump solution? (2) how to
construct lump solutions for a hierarchy of equations, say KP hierarchy?.

Lump solutions are also important in studying the initial-boundary value prob-
lems of nonlinear evolution equations. For example, a study about how initial lump
data evolute has been presented by Smyth and his collaborates;! their studies show
that lump initial data play a crucial role in computing the numerical solutions to
nonlinear equations such as the KP equation, the nonlinear Schrédinger equation
and the mKdV equation.

Recently, the study for the rational solutions of integrable equations such as
Painleve-type equations, attract much interest. It would also be interesting to study
rational solutions to higher-dimensional equations. Definitely, lump solutions as a
special type of rational solutions will enrich the theory of integrable equations.
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