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This paper aims to study lump solutions to a class of (2 + 1)-dimensional nonlinear

PDE systems, which involve the fourth-order Hirota derivative term: D2
tDxDy . This

Hirota derivative term generates higher-order derivatives of the temporal variable. Lump
solutions to the resulting new class of nonlinear PDE systems are studied in detail via

the Hirota bilinear method.
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1. Introduction

As is well known, Hirota’s bilinear method1 is one of the most powerful tools to

search for multiple-soliton solutions (stable, localized, exponentially decaying at

infinity). Recently, applying Hirota’s bilinear method to search for lump solutions

is an ad hoc problem and the results are fruitful. Lump solutions (see, e.g. Ref. 2)

are a kind of spatially localized and rationally decaying solutions.

An early example of constructing lump solution is due to Manakov and his

collaborators,3 they obtained special lumps of the KPI equation by first construct-

ing multi-solitons and then taking the long-wave limit. Based on this method, many

integrable equations are found to have lump solutions such as the Davey–Stewartson

II equation4 and the Ishimori-I equation.5 Recently, in 2015, one of the authors6

applied Hirota’s bilinear method to construct a complete set of second-order lump

solutions for the KP equation in a straightforward and effective way.
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Based on Hirota’s bilinear method, lump solutions of many famous inte-

grable equations are algorithmically obtained. Those examples include the BKP

equation7,8 and its generalization,9 the generalized Bogoyavlensky–Konopelchenko

equation,10the Hirota–Satsuma–Ito equation11 just to name a few. Besides those

(2+1)-dimensional equations, there also exist higher-dimensional examples, such as

(3+1)-dimensional KP equation and its generalizations12,13 and (3+1)-dimensional

BKP–Boussinesq equation.14 Lump solutions are a kind of solutions which are sta-

ble and detectable and the peaks of a solution move along a straight line. All these

properties enable us to study the interaction between lump solutions and solitons,

hence lump solutions play a significant role in physics. Moreover, it is also impor-

tant to study the time evolution of an integrable equation with given a lump initial

data.15

In this study, we will mainly focus on the computation part, and lump solutions

to a new type of (2 + 1)-dimensional nonlinear PDEs will be construed algorithmi-

cally. We first simply describe the main idea of the method, for more details with

rigorous proofs, see Ref. 2. Given a nonlinear PDE or a coupled PDE system in

general,

P (u) = 0 ,

where P is a differential polynomial with respect to spatial variables. Then via the

bilinear transform or Hopf transform, u = 2 log(f)xx or u = 2 log(f)x, we arrive at

a bilinear differential equation

B(f) = 0 .

The relation between the original differential equation(s) P (u) and the bilinearized

differential equation(s) B(f) is given by

P (u) = (B(f)/f2)x or B(f)/f2 .

The most difficult part of the method is to find Hirota’s representation:

B(f) = P (Dx, Dy, Dt)f · f ,

where P (Dx, Dy, Dt) is a polynomial of the Hirota derivatives.

In many integrable equations, Hirota’s representation involves terms like: DtD
3
x,

D2
xD

2
y and D4

x and so on, and we find that there are no terms for higher-order

Hirota derivative with respect to t. This gives us the motivation to study a type of

PDEs which involves Hirota’s derivatives D2
tDxDy. After one finds Hirota’s repre-

sentation, following the theorems in Ref. 2, all lower degree lump solutions share

the following form:

f = (a1t+ a2x+ a3y + a4)2 + (b1t+ b2x+ b3y + b4)2 + e .

The rest of the work is to determine the involved coefficients. Lastly, to ensure

that the solution is a lump solution, one needs to check that a2b3 − a3b2 6= 0.

In this paper, we would like to study a class of coupled PDE systems in

(2+1) dimensions. Lump solutions are constructed via the method described in the
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paper.6 In Sec. 3, we give some relations between the coefficients of the solution and

the Hirota derivatives, which are used to find the explicit solutions. The notation

introduced there can significantly reduce the length of the expression. In Sec. 5, an

illustrative example for a reduced case is presented, along with 3D plots for each

component in the coupled system.

2. A Family of Nonlinear PDEs with 4th Order Hirota’s Form

In this paper, we will focus on nonlinear PDEs in R3 whose corresponding Hirota

bilinear forms are of fourth-order. Let us assume that the independent variables

are x1, x2, x3 ∈ R. And we define the Hirota derivatives with respect to the jth

independent variable as follows:

D
kj

j f · f =

kj∑
n=0

kj !

n!(kj − n)!(−1)n
(∂jf)n(∂jf)kj−n ,

where ∂jf = ∂f(x1,x2,x3)
∂xj

, j = 1, 2, 3. In the following contents, we set x1 = t, x2 =

y, x3 = y.

Due to the cyclic symmetry of x1, x2, x3, there are actually only four types of 4th

powers Hirota derivatives we need to discuss, which are D4
x, DtD

3
x, D

2
xD

2
y, D

2
tDxDy.

Now, we would like to introduce a class of nonlinear PDEs:

P (u) = α1(6uux + uxxx) + α2(3usx + utx)x + α3(2v2x + uvy + uyy)x

+α4(vxst + 2sxsy + stxy)x + d1ux + d2vtx , (1)

where u = wx, sx = wt, vx = wy,and the coefficients αj , j = 1, 2, 3, 4 and dj , j = 1, 2

are arbitrary. Then by applying the Hopf transform w = 2(log(f))x, we arrive at

the following Hirota bilinear form:

B(f) = (α1D
4
x + α2DtD

3
x + α3D

2
xD

2
y + α4D

2
tDxDyd1D

2
x + d2DtDy)f · f = 0 . (2)

Remark 1. In our class of NLPDEs, the fourth order term such as D3
xDy is not

included, which has been analyzed in previous work16,17 by one of the authors. In

other words, the main purpose of this paper is to study how the Hirota bilinear

form generated by types (2, 1, 1), i.e. D2
tDxDy, affects the process of solving for

lump solutions.

3. Relations between Hirota’s Form and the Coefficients of the

Quadratic Solution

In this section, we will study the relations between the coefficients of the quadratic

function and the Hirota bilinear form.

First of all, following the theorems in Ref. 2, the low order general lump solution

to (2 + 1)-dimensional NLPDEs is by setting f in the bilinear form as

f(x, y, t) = (a1t+ a2x+ a3y + a4)2 + (b1t+ b2x+ b3y + b4)2 + e . (3)
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Due to Corollary 3.5 in Ref. 2, if f solves B(f) = 0, then a4, b4 are arbitrary. Hence,

the main computation is to represent a1, b1, e in terms of the rest of the coefficients.

Now, introduce the following compact notations:

N±(i, j) = aiaj ± bibj ,

M±(i, j) = aibj ± biaj .
(4)

Then by direct calculating, we obtain

D4
xf · f = 24N2

+(2, 2) ,

DtD
3
xf · f = 24N+(2, 2)N+(1, 2) ,

D2
xD

2
yf · f = 8M2

−(2, 3) + 24M2
+(2, 3) ,

D2
tDxDyf · f = 8N+(2, 3)N+(1, 1) + 16a2a3a

2
1 + 16b1M+(2, 3)a1 + 16b2b3b

2
1 .

(5)

As we can see, the fourth-order Hirota derivative acting on the quadratic functions,

f , only generates some constant terms. Moreover, the degree of the coefficients is

exactly the order of the corresponding order of the Hirota derivative, i.e. in the

second equation, the order of a2 equals the order of Dx which is 3.

Next, we compute the terms generated by the second-order Hirota derivative, in

fact, there are only two types (2, 0) or (1, 1), hence, we list the coefficients related

to D2
x and DxDy.

For D2
xf ·f , we obtain a new quadratic function which has 9 coefficients, namely

x2 : − 4N2
+(2, 2) ,

y2 : − 4N−(2, 2)N−(3, 3) ,

t2 : − 4N−(1, 1)N−(2, 2)− 16a1a2b1b2 ,

tx : − 8N+(2, 2)N+(1, 2) ,

ty : − 8N−(1, 3)N−(2, 2)− 16M+(1, 3)a2b2 ,

xy : − 8N+(2, 2)N+(2, 3) ,

x : − 8N+(2, 2)N+(2, 4) ,

y : − 8N−(3, 4)N−(2, 2)− 16M+(3, 4)a2b2 ,

t : − 8N−(1, 4)N−(2, 2)− 16M+(1, 4)a2b2 ,

1 : [−4N−(4, 4) + 4e]N−(2, 2)− 16a2b2a4b4 .

(6)
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For DxDyf · f , we have

x2 : − 4N+(2, 2)N+(2, 3) ,

y2 : − 4N−(2, 3)N−(3, 3) ,

t2 : − 4N−(1, 1)N−(2, 3)−M+(2, 3)a1b1 ,

tx : − 8N+(2, 2)N+(1, 3) ,

ty : − 8N−(3, 3)N−(1, 2) ,

xy : − 8N+(2, 2)N+(3, 3) ,

x : − 8N+(2, 2)N+(3, 4) ,

y : − 8N−(3, 3)N−(2, 4) ,

t : − (8a2 − b2)N+(3, 4)− 8M−(3, 4)M−(1, 2) ,

1 : − 4N−(4, 4)N−(2, 3) + 4eN+(2, 3)− 8M−(2, 3)a4b4 .

(7)

For the rest of the second order terms, the coefficients can be carried out by using

cyclic symmetry of the independent variables (x, y, t).

Now, let us consider the following differential polynomial:

P (u) = α1(6uux + uxxx) + α2(3usx + utx)x + α3(2v2x + uvy + uyy)x

+α4(vxst + 2sxsy + stxy)x + d1ux + d2vtx . (8)

By a straightforward symbolic computation, we have a set of solutions for the

parameters as:

a1 = −d1(N−(2, 2)a3 + 2a2b2b3)

d2N+(3, 3)
,

b1 = −d1(N−(2, 2)b3 − 2a2b2a3)

d2N+(3, 3)
.

(9)

The constant e can also be represented in terms of a2, a3, a4, b2, b3, b4 and the co-

efficients coming from the original equation. Here, we introduce a way using the

notation giving in the last section. Since the equations related to e appear only at

the constant terms, that means we need to solve the following linear equation to

get e:

α1(24N2
+(2, 2)) + α2(24N+(2, 2)N+(1, 2)

+α3(8M2
−(2, 3) + 24M2

+(2, 3)) + α4(8N+(2, 3)N+(1, 1) + 16a2a3a
2
1

+ 16b1M+(2, 3)a1 + 16b2b3b
2
1)

+ d1([−4N−(4, 4) + 4e]N−(2, 2)− 16a2b2a4b4)

+ d2(−4N−(4, 4)N−(2, 3) + 4eN+(2, 3)− 8M−(2, 3)a4b4) = 0 . (10)
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Then replacing a1, b1 using the equations we get in (9), we finally arrive at an ex-

pression in terms of a2, a3, a4, b2, b3, b4 and the coefficients coming from the original

equation. In fact, we see that e equals

[4d1N − (2, 2) + 4d2N+(2, 3)]−1{α1(24N2
+(2, 2))

−α2
d1

d2N+(3, 3)
(24N+(2, 2)(N−(2, 2)N+(2, 3) + 2a2b2M−(2, 3))

+α3(8M2
−(2, 3) + 24M2

+(2, 3))

+α4(
8N+(2, 3)d21
d22N

2
+(3, 3)

([N−(2, 2)a3 + 2a2b2b3]2 + [N−(2, 2)b3 + 2a2b2a3]2)

+
16a2a3d

2
1

d22N
2
+(3, 3)

[N−(2, 2)a3 + 2a2b2b3]2

+
16M+(2, 3)d21
d22N

2
+(3, 3)

(N2
−(2, 2)a3b3 + 4a22b

2
2a3b3 + 2N−(2, 2)N+(3, 3)a2b2)

+
16b2b3d

2
1

d22N
2
+(3, 3)

[N−(2, 2)b3 + 2a2b2a3]2)

+ d1(−4N−(4, 4)N−(2, 2)− 16a2b2a4b4)

+ d2(−4N−(4, 4)N−(2, 3)− 8M−(2, 3)a4b4)} . (11)

Though (11) is very complicated to read, the symbolic computer algebra system

really brings many benefits for figuring out the exact solutions, especially, the lump

solutions.

Remark 2. In theory, by the algorithm we introduced above, we can compute all

the lump solutions to the class of equations given by (1).

4. An Illustrative Example

Let us consider the situation when

α1 = 1, α2 = 2, α3 = 1, α4 = 2, d1 = −1, d2 = 1 , (12)

which leads to the following coupled nonlinear PDEs:

(6uux + uxxx) + 2(3usx + utx) + (2v2x + uvy + uyy)

+ 2(vxst + 2sxsy + stxy)− wxx + wty = 0 ,

u = wx ,

sx = wt ,

vx = wy .

(13)
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(a) u at t = 0. (b) u at t = 20. (c) u at t = 40.

Fig. 1. Profiles of u.

(a) v at t = 0. (b) v at t = 20. (c) v at t = 40.

Fig. 2. Profiles of v.

Then based on the previous computation, since aj , bj , j = 2, 3, 4 can be chosen

arbitrarily, we take

{a2 = 1, a3 = 1, a4 = 2, b2 = −1, b3 = 2, b4 = 2} . (14)

Plug into Eqs. (10) and (12), we can determine coefficients a1, b1, e, which are{
a1 = −4

5
, b1 = −2

5
, e =

56

5

}
.

Via the relation between the solution of bilinear equation and the original equation,

one obtains the solution to the coupled nonlinear system as follows:

u(x, y, t) = 16
8t2 + 10tx− 50ty − 25x2 + 25xy + 50y2 − 60t+ 150y + 240

(4t2 − 4tx− 16ty + 10x2 − 10xy + 25y2 − 24t+ 60y + 96)
2 ,

s(x, y, t) =
−8x− 32y − 48 + 16t

4t2 + (−4x− 16y − 24) t+ 25y2 + (−10x+ 60) y + 10x2 + 96
,

v(x, y, t) =
−20x+ 100y + 120− 32t

4t2 + (−4x− 16y − 24) t+ 25y2 + (−10x+ 60) y + 10x2 + 96
.

(15)
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(a) s at t = 0. (b) s at t = 20. (c) s at t = 40.

Fig. 3. Profiles of s.

Fig. 4. A 2D plot for u, v, s at y = 0 and (solid) t = 0, (dash) t = 2.

The three-dimensional plots for lump solutions of all three functions u, v, s are

presented in Figs. 1–3. Also, Fig. 4 shows profiles of u, v, s by fixing y and varying t.

5. Conclusion and Remarks

In this paper, we explores a class of nonlinear PDE systems, whose Hirota rep-

resentations involve D2
tDxDy. Such a class of PDE systems has not been studied

before, to the best of our knowledge. From the computation point of view, the

higher-order of the t derivative will increase the complexity of the representation
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of the constant e. And also since many famous nonlinear evolutions do not involve

this high-order t derivative, our work will bring some new thoughts to the study of

nonlinear evolutionary PDEs, especially lump solutions to the field.

In general, nonlinear PDEs are rarely solvable. However, Hirota’s bilinear

method, along with the idea by one of the authors, it is possible to explore some

class of nonlinear PDEs. This paper provides an example and a brand-new nonlin-

ear PDEs which can be explicitly solved by using the bilinear method. However,

there are many studies which need to be done in the field of lump solutions. To list

some of them: (1) how to efficiently construct multiple-lump solution? (2) how to

construct lump solutions for a hierarchy of equations, say KP hierarchy?.

Lump solutions are also important in studying the initial-boundary value prob-

lems of nonlinear evolution equations. For example, a study about how initial lump

data evolute has been presented by Smyth and his collaborates;15 their studies show

that lump initial data play a crucial role in computing the numerical solutions to

nonlinear equations such as the KP equation, the nonlinear Schrödinger equation

and the mKdV equation.

Recently, the study for the rational solutions of integrable equations such as

Painleve-type equations, attract much interest. It would also be interesting to study

rational solutions to higher-dimensional equations. Definitely, lump solutions as a

special type of rational solutions will enrich the theory of integrable equations.
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